Skip to main content
Log in

Signaling in an Unknown World

  • Original Research
  • Published:
Erkenntnis Aims and scope Submit manuscript

Abstract

This paper proposes a sender-receiver model to explain two large-scale patterns observed in natural languages: Zipf’s inverse power law relating the frequency of word use and word rank, and the negative correlation between the frequency of word use and rate of lexical change. Computer simulations show that the model recreates Zipf’s inverse power law and the negative correlation between signal frequency and rate of change, provided that agents balance the rates with which they invent new signals and forget old ones. Results are robust across a wide range of parameter values and structural assumptions, such as different forgetting rules and forgetting rates. Analysis of the model further suggests that Zipf’s law relating word frequency and rank arises because of language-external factors and that frequent signals change less because frequent signals are less subject to drift than rare ones. The paper concludes with some brief considerations on model-based and data-driven approaches in philosophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Pence and Ramsey (2018) offer an overview of data repositories, analytical tools, and related challenges in this emerging field.

References

  • Alexander, J. M. (2013). Preferential attachment and the search for successful theories. Philosophy of Science, 80(5), 769–782.

    Article  Google Scholar 

  • Alexander, J. M. (2014). Learning to signal in a dynamic world. The British Journal for the Philosophy of Science, 65(4), 797–820.

    Article  Google Scholar 

  • Alexander, J. M., Skyrms, B., & Zabell, S. L. (2012). Inventing new signals. Dynamic Games and Applications, 2(1), 129–145.

    Article  Google Scholar 

  • Atkinson, Q. D., Meade, A., Venditti, C., Greenhill, S. J., & Pagel, M. (2008). Languages evolve in punctuational bursts. Science, 319(5863), 588–588.

    Article  Google Scholar 

  • Barrett, J., & Zollman, K. J. (2009). The role of forgetting in the evolution and learning of language. Journal of Experimental & Theoretical Artificial Intelligence, 21(4), 293–309.

    Article  Google Scholar 

  • Barrett, J. A., & LaCroix, T. (2020). Epistemology and the structure of language. Erkenntnis, 1–15.

  • Blume, A., DeJong, D. V., Kim, Y.-G., & Sprinkle, G. B. (1998). Experimental evidence on the evolution of meaning of messages in sender-receiver games. The American Economic Review, 88(5), 1323–1340.

    Google Scholar 

  • Blume, A., DeJong, D. V., Kim, Y.-G., & Sprinkle, G. B. (2001). Evolution of communication with partial common interest. Games and Economic Behavior, 37(1), 79–120.

    Article  Google Scholar 

  • Bruner, J., O’Connor, C., Rubin, H., & Huttegger, S. M. (2014). David Lewis in the lab: Experimental results on the emergence of meaning. Synthese, 1–19.

  • Byron, J. M. (2007). Whence philosophy of biology? The British Journal for the Philosophy of Science, 58(3), 409–422.

    Article  Google Scholar 

  • Calude, A. S., & Pagel, M. (2011). How do we use language? Shared patterns in the frequency of word use across 17 world languages. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1567), 1101–1107.

    Article  Google Scholar 

  • Dehaene, S., & Mehler, J. (1992). Cross-linguistic regularities in the frequency of number words. Cognition, 43(1), 1–29.

    Article  Google Scholar 

  • Dunn, M., Greenhill, S. J., Levinson, S. C., & Gray, R. D. (2011). Evolved structure of language shows lineage-specific trends in word-order universals. Nature, 473(7345), 79.

    Article  Google Scholar 

  • Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. The Journal of Animal Ecology, 42–58.

  • Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379–391.

    Article  Google Scholar 

  • Grim, P., Singer, D. J., Bramson, A., Holman, B., McGeehan, S., & Berger, W. J. (2019). Diversity, ability, and expertise in epistemic communities. Philosophy of Science, 86(1), 98–123.

    Article  Google Scholar 

  • Hoppe, F. M. (1984). Pólya-like urns and the Ewens’ sampling formula. Journal of Mathematical Biology, 20(1), 91–94.

    Article  Google Scholar 

  • Huttegger, S. M. (2017). The probabilistic foundations of rational learning. Cambridge University Press.

  • Huttegger, S. M., Skyrms, B., & Zollman, K. J. (2014). Probe and adjust in information transfer games. Erkenntnis, 79(4), 835–853.

    Article  Google Scholar 

  • i Cancho, R. F., & Solé, R. V. (2003). Least effort and the origins of scaling in human language. Proceedings of the National Academy of Sciences, 100(3), 788–791.

    Article  Google Scholar 

  • LaCroix, T. (2019). Evolutionary explanations of simple communication: Signalling games and their models. Journal for General Philosophy of Science, 1–25

  • Levy, A. (2011). Game theory, indirect modeling, and the origin of morality. The Journal of Philosophy, 108(4), 171–187.

    Article  Google Scholar 

  • Lewis, D. (1969). Convention: A philosophical study. Harvard University Press.

  • Li, W. (1992). Random texts exhibit Zipf’s-law-like word frequency distribution. IEEE Transactions on Information Theory, 38(6), 1842–1845.

    Article  Google Scholar 

  • Lieberman, E., Michel, J.-B., Jackson, J., Tang, T., & Nowak, M. A. (2007). Quantifying the evolutionary dynamics of language. Nature, 449(7163), 713.

    Article  Google Scholar 

  • Lynch, M. (2011). The lower bound to the evolution of mutation rates. Genome Biology and Evolution, 3, 1107–1118.

    Article  Google Scholar 

  • Machery, E., & Cohen, K. (2011). An evidence-based study of the evolutionary behavioral sciences. The British Journal for the Philosophy of Science, 63(1), 177–226.

    Article  Google Scholar 

  • Manin, D. Y. (2008). Zipf’s law and avoidance of excessive synonymy. Cognitive Science, 32(7), 1075–1098.

    Article  Google Scholar 

  • Martini, C., & Pinto, M. F. (2017). Modeling the social organization of science. European Journal for Philosophy of Science, 7(2), 221–238.

    Article  Google Scholar 

  • McCowan, B., Doyle, L. R., Jenkins, J. M., & Hanser, S. F. (2005). The appropriate use of Zipf’s law in animal communication studies. Animal Behaviour, 69(1), F1–F7.

    Article  Google Scholar 

  • McCowan, B., Hanser, S. F., & Doyle, L. R. (1999). Quantitative tools for comparing animal communication systems: Information theory applied to bottlenose dolphin whistle repertoires. Animal Behaviour, 57(2), 409–419.

    Article  Google Scholar 

  • McShea, D. W., & Brandon, R. N. (2010). Biology’s first law: The tendency for diversity and complexity to increase in evolutionary systems. University of Chicago Press.

  • Mesoudi, A. (2011). Cultural evolution: How Darwinian theory can explain human culture and synthesize the social sciences. University of Chicago Press.

  • Moreno-Sanchez, I., Font-Clos, F., & Corral, A. (2016). Large-scale analysis of Zipf’s law in English texts. PloS one, 11(1), e0147073.

    Article  Google Scholar 

  • Overton, J. A. (2013). Explain in scientific discourse. Synthese, 1–23.

  • Pagel, M., Atkinson, Q. D., & Meade, A. (2007). Frequency of word-use predicts rates of lexical evolution throughout Indo-European history. Nature, 449(7163), 717–720.

    Article  Google Scholar 

  • Pence, C., & Ramsey, G. (2018). How to do digital philosophy of science. Philosophy of Science, 85(5), 930–941.

    Article  Google Scholar 

  • Piantadosi, S. T. (2014). Zipf’s word frequency law in natural language: A critical review and future directions. Psychonomic Bulletin & Review, 21(5), 1112–1130.

    Article  Google Scholar 

  • Roth, A. E., & Erev, I. (1995). Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term. Games and Economic Behavior, 8(1), 164–212.

    Article  Google Scholar 

  • Rubin, H., O’Connor, C., & Bruner, J. (2019). Experimental economics for philosophers. In E. Fischer & M. Curtis (Eds.), Methodological advances in experimental philosophy. Bloomsbury Publishing.

  • Salge, C., Ay, N., Polani, D., & Prokopenko, M. (2015). Zipf’s law: Balancing signal usage cost and communication efficiency. PLoS one, 10(10), e0139475.

    Article  Google Scholar 

  • Seyfarth, R. M., & Cheney, D. L. (2017). The origin of meaning in animal signals. Animal Behaviour, 124, 339–346.

    Article  Google Scholar 

  • Silk, J. B., Kaldor, E., & Boyd, R. (2000). Cheap talk when interests conflict. Animal Behaviour, 59(2), 423–432.

    Article  Google Scholar 

  • Skyrms, B. (2010). Signals: Evolution, learning, and information. Oxford University Press.

  • Suzuki, R., Buck, J. R., & Tyack, P. L. (2005). The use of Zipf’s law in animal communication analysis. Animal Behaviour, 69(1), F9–F17.

    Article  Google Scholar 

  • Wagner, E. (2009). Communication and structured correlation. Erkenntnis, 71(3), 377–393.

    Article  Google Scholar 

  • Wagner, E. O. (2011). Deterministic chaos and the evolution of meaning. The British Journal for the Philosophy of Science, 63(3), 547–575.

    Article  Google Scholar 

  • Weingart, S. B. (2015). Finding the History and Philosophy of Science. Erkenntnis, 80(1), 201–213.

    Article  Google Scholar 

  • Weisberg, M., & Muldoon, R. (2009). Epistemic landscapes and the division of cognitive labor. Philosophy of Science, 76(2), 225–252.

    Article  Google Scholar 

  • Wray, K. B. (2010). Philosophy of science: What are the key journals in the field? Erkenntnis, 72(3), 423–430.

    Article  Google Scholar 

  • Zabell, S. L. (1992). Predicting the unpredictable. Synthese, 90(2), 205–232.

    Article  Google Scholar 

  • Zanette, D., & Montemurro, M. (2005). Dynamics of text generation with realistic Zipf’s distribution. Journal of Quantitative Linguistics, 12(1), 29–40.

    Article  Google Scholar 

  • Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Addison-Wisley.

  • Zollman, K. J. (2005). Talking to neighbors: The evolution of regional meaning. Philosophy of Science, 72(1), 69–85.

    Article  Google Scholar 

  • Zollman, K. J. (2010). The epistemic benefit of transient diversity. Erkenntnis, 72(1), 17.

    Article  Google Scholar 

  • Zollman, K. J., Bergstrom, C. T., & Huttegger, S. M. (2013). Between cheap and costly signals: The evolution of partially honest communication. Proceedings of the Royal Society B: Biological Sciences, 280(1750), 1–8.

    Google Scholar 

Download references

Acknowledgements

I would like to thank Brian Skyrms, Louis Narens, Cailin O’Connor, Simon Huttegger, Jeffrey Barrett, Travis LaCroix, and other members of the Social Dynamics Seminar at UC Irvine for their comments on an earlier version of this paper. I am equally grateful for the organizers and the audience of the conference “Generalized Theory of Evolution” in Düsseldorf. I would also like to thank Hannah Read for her numerous comments on previous versions of this paper, as well as Gareth Roberts and Justin Bruner for their helpful feedback on earlier drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Ventura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, R. Signaling in an Unknown World. Erkenn 88, 885–905 (2023). https://doi.org/10.1007/s10670-021-00385-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10670-021-00385-x

Navigation