Skip to main content

Advertisement

Log in

A systematic review of potential bioactive compounds from Saccharomyces cerevisiae: exploring their applications in health promotion and food development

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

A Correction to this article was published on 20 May 2024

This article has been updated

Highlights

Explored wide spectrum of Saccharomyces cerevisiae (SC)-derived bioactive compounds (BAC).

Outline applications in functional foods and their established health benefits through a systematic review.

Highlight the transformative potential of these bioactive substances in revolutionizing food production.

Bridging the gap between the scientific community and industry for SC as functional foods.

Abstract

The ubiquitous yeast Saccharomyces cerevisiae (SC), found in wine, beer, and bread, harbors a rich reservoir of bioactive substances capable of significantly improving health and transforming the food industry. In exploring the unexplored potential of SC, this systematic review finds 13 different bioactive compounds (BACs) that this yeast produces. We examine their wide variety of health advantages and explored 13 potential functions, from promoting gut and immune system health to preventing chronic illness. Environmentally beneficial methods are promoted via SC fermentation, which uses a readily available and renewable material. Furthermore, the bioactive compounds that have been identified can be utilized to create novel functional foods that meet the increasing needs of consumers who seek out items that provide health advantages beyond simple nutrition. The review also looks into SC’s amazing adaptability, showing how it can be used to ferment an astonishing more than thirteen different food products. This emphasizes how SC has the ability to transform the food sector in a sustainable manner. The transformative potential of these BACs in food development goes beyond the domain, revolutionizing the food industry, and leading to a healthier planet and a tastier palate. This review serves as a conduit for bridging the gap between the science community and the industry, facilitating the realization of the enormous potential of SC’s BACs within the food and healthcare sectors. It clears the path for further study and development and encourages the development of new functional foods and nutraceuticals that make use of this ordinary yet extraordinary yeast.

Graphical Abstract

Applications of bioactive compounds produced by Saccharomyces cerevisiae for health and food industry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this manuscript.

Change history

  • 16 May 2024

    The original article has been corrected: City name in affiliation of the author Dr. Awdhesh Kumar Mishra has been corrected.

  • 20 May 2024

    A Correction to this paper has been published: https://doi.org/10.1007/s10668-024-05017-2

Abbreviations

ABTS:

2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid

ACE:

Angiotensin-converting enzyme

ATP:

Adenosine triphosphate

BAC:

Bioactive compounds

BCD:

β-cyclodextrin

BGCC:

Beta-glucan-chitin-chitosan

BRF:

Brown rice flour

BRYE:

Black rice yeast extract

BRYE:

Brewer’s yeast extract

BS:

Buckwheat sprouts

DPPH:

2,2-diphenyl-1-picrylhydrazyl

EPS:

Exopolysaccharide

EV:

Extracellular vesicles

FGUBF:

Fermented and gelatinized Urad bean flour

FRAP:

Ferric reducing ability of plasma

GABA:

Gamma-aminobutyric acid

GRS:

Generally recognized as safe

HMG:

Hydroxymethylglutaryl

HT:

Hydroxytyrosol

MP:

Mannoproteins

PEF:

Pulsed Electric Fields

PP:

Potato peel

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta- Analyses

RSA:

Radical Scavenging Activity

SC:

Saccharomyces cerevisiae

SCFA:

Short-chain fatty acids

SO2 :

Sulfur dioxide

TNF:

Tumour Necrosis Factor

VOS:

Visualization of Similarities

References

  • Agustini, R., Sanjaya, G., & Herdyastuti, N. (2021). Chemical Properties of Black Rice yeast extracts as Pharmaceutical ingredients for the management of type 2 diabetes mellitus. Tropical Journal of Natural Product Research (TJNPR), 5(5), 494–502.

    CAS  Google Scholar 

  • Ali, S. A., Saeed, S. M. G., Sohail, M., Elkhadragy, M. F., Yehia, H. M., & Giuffrè, A. M. (2023). Functionalization of pre-gelatinized urad bean fermented by Saccharomyces cerevisiae MK-157 as a fat replacer and its impact on physico-chemical, micromorphology, nutritional and sensory characteristics of biscuits. Arabian Journal of Chemistry, 16(9), 105029.

    Article  CAS  Google Scholar 

  • Álvarez-Fernández, M. A., Fernández-Cruz, E., Cantos-Villar, E., Troncoso, A. M., & García-Parrilla, M. C. (2018). Determination of hydroxytyrosol produced by winemaking yeasts during alcoholic fermentation using a validated UHPLC-HRMS method. Food Chemistry, 242, 345–351.

    Article  Google Scholar 

  • Amorim, M., Pereira, J. O., Gomes, D., Pereira, C. D., Pinheiro, H., & Pintado, M. (2016). Nutritional ingredients from spent brewer’s yeast obtained by hydrolysis and selective membrane filtration integrated in a pilot process. Journal of Food Engineering, 185, 42–47.

    Article  CAS  Google Scholar 

  • Amorim, M., Marques, C., Pereira, J. O., Guardão, L., Martins, M. J., Osório, H., et al. (2019). Antihypertensive effect of spent brewer yeast peptide. Process Biochemistry, 76, 213–218.

    Article  CAS  Google Scholar 

  • Avîrvarei, A. C., Pop, C. R., Mudura, E., Ranga, F., Hegheș, S. C., Gal, E., et al. (2023). Contribution of Saccharomyces and Non-saccharomyces yeasts on the volatile and phenolic profiles of Rosehip Mead. Antioxidants (Basel), 12(7), 1457.

    Article  Google Scholar 

  • Avramia, I., & Amariei, S. (2023). A Comparative Study on the Development of Bioactive Films Based on β-glucan from Spent Brewer’s Yeast and Pomegranate, Bilberry,or Cranberry Juices, Applied Sciences (Vol. 13).

  • Avramia, I., & Amariei, S. (2021). Spent Brewer’s yeast as a source of insoluble β-Glucans. International Journal of Molecular Sciences, 22(2), 825.

    Article  CAS  Google Scholar 

  • Ballet, N., Renaud, S., Roume, H., George, F., Vandekerckove, P., Boyer, M., & Durand-Dubief, M. (2023). Saccharomyces cerevisiae: Multifaceted applications in one health and the achievement of Sustainable Development Goals. Encyclopedia, 3(2), 602–613. https://doi.org/10.3390/encyclopedia3020043.

    Article  Google Scholar 

  • Barreto, N. M. B., Sandôra, D., Braz, B. F., Santelli, R. E., de Oliveira Silva, F., Monteiro, M., et al. (2022). Biscuits prepared with enzymatically-processed soybean meal are Rich in Isoflavone aglycones, sensorially well-accepted and stable during storage for six months. Molecules, 27(22), 7975.

    Article  CAS  Google Scholar 

  • Berzosa, A., Delso, C., Sanz, J., Sánchez-Gimeno, C., & Raso, J. (2023). Sequential extraction of compounds of interest from yeast biomass assisted by pulsed electric fields. Frontiers in Bioengineering and Biotechnology, 11, 1197710.

    Article  Google Scholar 

  • Bezerra, L. S., Magnani, M., Pimentel, T. C., Freire, F. M. S., da Silva, T. A. F., Ramalho, R. C., et al. (2021). Carboxymethyl-glucan from Saccharomyces cerevisiae reduces blood pressure and improves baroreflex sensitivity in spontaneously hypertensive rats. Food & Function, 12(18), 8552–8560.

    Article  CAS  Google Scholar 

  • Branco, P., Maurício, E. M., Costa, A., Ventura, D., Roma-Rodrigues, C., Duarte, M. P., et al. (2023). Exploring the multifaceted potential of a peptide fraction derived from Saccharomyces cerevisiae Metabolism: Antimicrobial, antioxidant, antidiabetic, and anti-inflammatory properties. Antibiotics, 12, 1332.

    Article  CAS  Google Scholar 

  • Cankurtaran Kömürcü, T., & Bilgiçli, N. (2022). Effect of ancient wheat flours and fermentation types on tarhana properties. Food Bioscience, 50, 101982.

    Article  Google Scholar 

  • Capece, A., Pietrafesa, R., Siesto, G., & Romano, P. (2020). Biotechnological Approach based on selected Saccharomyces cerevisiae starters for reducing the Use of Sulfur Dioxide in Wine. Microorganisms, 8(5).

  • Chantarot, S., & Jirasatid, N. M. S (2022). Influence of Saccharomyces cerevisiae strains on fermentation of Monascus vinegar from rice pasta by-product. International Food Research Journal, 29(6), 1390.

    Article  CAS  Google Scholar 

  • Chen, T., Piao, M., Ehsanur Rahman, S. M., Zhang, L., & Deng, Y. (2020). Influence of fermentation on antioxidant and hypolipidemic properties of maifanite mineral water-cultured common buckwheat sprouts. Food Chemistry, 321, 126741.

    Article  CAS  Google Scholar 

  • Chrzanowski, G. (2020). Saccharomyces Cerevisiae-An interesting producer of Bioactive Plant Polyphenolic metabolites. International Journal of Molecular Sciences, 21(19), 7343.

    Article  CAS  Google Scholar 

  • Ciobanu, L. T., Constantinescu-Aruxandei, D., Tritean, N., Lupu, C., Negrilă, R. N.,Farcasanu, I. C., et al. (2023). Valorization of Spent Brewer’s Yeast Bioactive Components via an Optimized Ultrasonication Process, Fermentation (Vol. 9, pp. 952).

  • Coulibaly, W. H., Bouatenin, J. P., Boli, K. M., Alfred, Z. B. I. A. K., Tra Bi, K., Celaire, Y. C. N’sa, K. M., et al. (2020). Influence of yeasts on bioactive compounds content of traditional sorghum beer (tchapalo) produced in Côte d’Ivoire. Current Research in Food Science, 3, 195–200.

    Article  CAS  Google Scholar 

  • Darwesh, O. M., Eweys, A. S., Zhao, Y. S., & Matter, I. A. (2023). Application of environmental-safe fermentation with Saccharomyces cerevisiae for increasing the cinnamon biological activities. Bioresources and Bioprocessing, 10(1), 12.

    Article  Google Scholar 

  • Díaz-Muñoz, C., Van de Voorde, D., Tuenter, E., Lemarcq, V., Van de Walle, D., Soares Maio, J. P., et al. (2023). An in-depth multiphasic analysis of the chocolate production chain, from bean to bar, demonstrates the superiority of Saccharomyces cerevisiae over Hanseniaspora opuntiae as functional starter culture during cocoa fermentation. Food Microbiology, 109, 104115.

    Article  Google Scholar 

  • Duarte, M., Carvalho, M. J., de Carvalho, N. M., Azevedo-Silva, J., Mendes, A., Ribeiro, I. P., et al. (2023). Skincare potential of a sustainable postbiotic extract produced through sugarcane straw fermentation by Saccharomyces cerevisiae. Biofactors (Oxford, England), 49(5), 1038–1060.

    Article  CAS  Google Scholar 

  • Duliński, R., Zdaniewicz, M., Pater, A., Poniewska, D., & Żyła, K. (2020). The impact of Phytases on the release of Bioactive Inositols, the Profile of Inositol Phosphates, and the release of selected minerals in the technology of Buckwheat Beer production. Biomolecules, 10(2), 166.

    Article  Google Scholar 

  • Dumitrașcu, L., Lanciu Dorofte, A., Grigore-Gurgu, L., & Aprodu, I. (2023). Proteases as tools for modulating the antioxidant activity and functionality of the spent Brewer’s yeast proteins. Molecules, 28, 3763.

    Article  Google Scholar 

  • Dvorský, J., Bednarz, J., & Blajer-Gołębiewska, A. (2023). The impact of corporate reputation and social media engagement on the sustainability of SMEs: Perceptions of top managers and the owners. Equilibrium Quarterly Journal of Economics and Economic Policy, 18(3), 779–811.

    Article  Google Scholar 

  • Dziedziński, M., Stachowiak, B., Kobus-Cisowska, J., Faria, M. A., & Ferreira, I. M. P. L. V. O. (2023). Antioxidant, sensory, and functional properties of low-alcoholic IPA beer with Pinus sylvestris L. shoots addition fermented using unconventional yeast. 21(1).

  • Faria, D. J., de Carvalho, A. P. A., & Conte-Junior, C. A. (2023). Valorization of fermented food wastes and byproducts: Bioactive and Valuable compounds, Bioproduct Synthesis, and applications. Fermentation, 9(10), 920. https://doi.org/10.3390/fermentation9100920.

    Article  CAS  Google Scholar 

  • Faustino, M., Durão, J., Pereira, C. F., Oliveira, A. S., Pereira, J. O., Pereira, A. M. (2022). Comparative Analysis of Mannans Extraction Processes from Spent Yeast Saccharomyces cerevisiae, Foods (Vol. 11, pp. 3753).

  • Feldmann, H. (2012). Yeast: Molecular and Cell Biology, 2nd Edition. Germany: Wiley-Blackwell.

  • Fernandes, A., Simões, S., Ferreira, I., Alegria, M. J., Mateus, N., Raymundo, A. (2022). Upcycling Rocha do Oeste Pear Pomace as a sustainable food ingredient: Composition, rheological behavior and microstructure alone and combined with yeast protein extract. Molecules, 28(1).

  • Fleet, G. (2006). The Commercial and Community significance of yeasts in Food and Beverage Production. In A. Querol, & G. Fleet (Eds.), Yeasts in Food and beverages (pp. 1–12). Springer Berlin Heidelberg.

  • Francesca, N., Pirrone, A., Gugino, I., Prestianni, R., Naselli, V., Settanni, L., et al. (2023). A novel microbiological approach to impact the aromatic composition of sour loquat beer. Food Bioscience, 55, 103011.

    Article  CAS  Google Scholar 

  • Fu, W., Zhao, G., & Liu, J. (2022). Effect of preparation methods on physiochemical and functional properties of yeast β-glucan. LWT, 160, 113284.

    Article  CAS  Google Scholar 

  • Grieco, F., Carluccio, M. A., & Giovinazzo, G. (2019). Autochthonous Saccharomyces cerevisiae starter cultures enhance polyphenols content, antioxidant activity, and anti-inflammatory response of apulian red wines. Foods, 8(10), 453.

    Article  CAS  Google Scholar 

  • Guerrini, S., Mangani, S., Romboli, Y., Luti, S., Pazzagli, L., & Granchi, L. (2018). Impact of Saccharomyces cerevisiae strains on Health-promoting compounds in Wine. Fermentation, 4, 26.

    Article  Google Scholar 

  • Hamden, Z., El-Ghoul, Y., Alminderej, F. M., Saleh, S. M., & Majdoub, H. (2022). High-Quality Bioethanol and Vinegar Production from Saudi Arabia Dates: Characterization and Evaluation of Their Value and Antioxidant Efficiency, Antioxidants (Vol. 11, pp. 1155).

  • He, W., Tian, Y., Liu, S., Vaateri, L., Ma, X., Haikonen, T., et al. (2023). Comparison of phenolic composition and sensory quality among pear beverages made using Saccharomyces cerevisiae and Torulaspora Delbrueckii. Food Chemistry, 422, 136184.

    Article  CAS  Google Scholar 

  • Headman, J., Kreel, N. E., Schron, R., Attfield, P. V., Bell, P. J. L., House, A. J. (2019). Saccharomyces cerevisiae yeast strains and methods of use thereof. (Ed.) (Vol. 10,364,444). Microbiogen Pty Ltd Novozymes AS. a. N. AS.

  • Higuchi, A., Morishita, M., Nagata, R., Maruoka, K., Katsumi, H., & Yamamoto, A. (2023). Functional characterization of Extracellular vesicles from Baker’s yeast Saccharomyces Cerevisiae as a Novel Vaccine Material for Immune Cell Maturation. Journal of Pharmaceutical Sciences, 112(2), 525–534.

    Article  CAS  Google Scholar 

  • Hong, J. Y., Lee, N. K., Yi, S. H., Hong, S. P., & Paik, H. D. (2019). Short communication: Physicochemical features and microbial community of milk kefir using a potential probiotic Saccharomyces cerevisiae KU200284. Journal of Dairy Science, 102(12), 10845–10849.

    Article  CAS  Google Scholar 

  • Huang, C. H., Hsiao, S. Y., Lin, Y. H., & Tsai, G. J. (2022). Effects of Fermented Citrus Peel on Ameliorating Obesity in Rats Fed with High-Fat Diet. Molecules, 27(24), 8966.

    Article  CAS  Google Scholar 

  • Ilowefah, M., Bakar, J., Ghazali, H. M., & Muhammad, K. (2017). Enhancement of nutritional and antioxidant properties of Brown Rice Flour through solid-state yeast fermentation. Cereal Chemistry, 94(3), 519–523.

    Article  CAS  Google Scholar 

  • Javmen, A., Nemeikaitė-Čėnienė, A., Grigiškis, S., Lysovienė, J., Jonauskienė, I., Šiaurys, A., et al. (2017). The effect of Saccharomyces cerevisiae β-glucan on proliferation, phagocytosis and cytokine production of murine macrophages and dendritic cells. Biologia, 72(5), 561–568.

    Article  CAS  Google Scholar 

  • Kastberg, L. B., Ard, R., Jensen, M. K., & Workman, C. T. (2022). Burden imposed by Heterologous Protein Production in two major industrial yeast cell factories: Identifying sources and mitigation strategies. Front Fungal Biol, 3, 827704.

    Article  Google Scholar 

  • Kim, J. S., Park, S. E., Kim, E. J., Seo, S. H., & Son, H. S. (2022). Investigation of metabolite differences in green coffee beans fermented with various microbes. LWT, 172, 114202.

    Article  CAS  Google Scholar 

  • Kliestik, T., Nica, E., Durana, P., & Popescu, G. H. (2023). Artificial intelligence-based predictive maintenance, time-sensitive networking, and big data-driven algorithmic decision-making in the economics of Industrial Internet of things. Oeconomia Copernicana, 14(4), 1097–1138. https://doi.org/10.24136/oc.2023.033.

    Article  Google Scholar 

  • Kömürcü, T. C., & Bilgiçli, N. (2022). Effect of ancient wheat flours and fermentation types on tarhana properties. Food Bioscience, 50, 101982

    Article  Google Scholar 

  • Kwon, H. T. (2023). Saccharomyces cerevisiae kwon P-1, 2, 3 which produce aldehyde dehydrogenase and glutathione. In P. C. Ltd (Ed.), US (Vol. 11,618,889). US.

  • Lachowicz, S., Wojdyło, A., Chmielewska, J., & Oszmiański, J. (2017). The influence of yeast type and storage temperature on content of phenolic compounds, antioxidant activity, colour and sensory attributes of chokeberry wine. European Food Research and Technology, 243(12), 2199–2209.

    Article  CAS  Google Scholar 

  • Lachowicz, S., Oszmiański, J., Uździcka, M., & Chmielewska, J. (2019). The influence of yeast strain, β-Cyclodextrin, and Storage Time on concentrations of Phytochemical Components, sensory attributes, and antioxidative activity of Novel Red Apple Ciders. Molecules, 24(13), 2477.

    Article  CAS  Google Scholar 

  • Lee, N. K., Hong, J. Y., Yi, S. H., Hong, S. P., Lee, J. E., & Paik, H. D. (2019). Bioactive compounds of probiotic Saccharomyces cerevisiae strains isolated from cucumber jangajji. Journal of Functional Foods, 58, 324–329.

    Article  CAS  Google Scholar 

  • Li, X., Xing, Y., Cao, L., Xu, Q., Li, S., Wang, R. (2017). Effects of Six Commercial Saccharomyces cerevisiae Strains on Phenolic Attributes, Antioxidant Activity, and Aroma of Kiwifruit (Actinidia deliciosa cv.) Wine. Biomed Res Int, 2017, 2934743.

  • Li, S., Zhang, Y., Yin, P., Zhang, K., Liu, Y., Gao, Y., et al. (2021). Probiotic potential of γ-aminobutyric acid (GABA)–producing yeast and its influence on the quality of cheese. Journal of Dairy Science, 104(6), 6559–6576.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, T., Li, S., Yin, P., Sheng, H., Wang, T., et al. (2022). Influence of GABA-producing yeasts on cheese quality, GABA content, and the volatilome. LWT, 154, 112766.

    Article  CAS  Google Scholar 

  • Liu, B., Yang, Y., Ren, L., Su, Z., Bian, X., Fan, J., et al. (2022). HS-GC-IMS and PCA to characterize the volatile flavor compounds in three Sweet Cherry cultivars and their wines in China. Molecules, 27(24), 9056.

    Article  CAS  Google Scholar 

  • Majumder, S., Ghosh, A., Chakraborty, S., & Bhattacharya, M. (2022). Brewing and biochemical characterization of Camellia japonica Petal wine with comprehensive discussion on metabolomics. Food Production Processing and Nutrition, 4(1), 29.

    Article  CAS  Google Scholar 

  • Makky, E. A., AlMatar, M., Mahmood, M. H., Ting, O. W., & Qi, W. Z. (2021). Evaluation of the antioxidant and antimicrobial activities of Ethyl acetate extract of Saccharomyces cerevisiae. Food Technol Biotechnol, 59(2), 127–136.

    Article  Google Scholar 

  • Mao, J., ping, L. S., Ji, Z., & Han, X. (2021). Stain Saccharomyces cerevisiae M 2016785 producing high concentration of β-phenylethanol and application thereof. In J. University (Ed.) (Vol. 10,982,295). US.

  • Marousek, J., Strunecky, O., Vaníčková, R., et al. (2024). Techno-economic considerations on latest trends in biowaste valuation. Syst Microbiol and Biomanuf, 4, 598–606. https://doi.org/10.1007/s43393-023-00216-w.

    Article  CAS  Google Scholar 

  • Maroušek, J., Strunecký, O., Kolář, L., Vochozka, M., Kopecký, M., Maroušková, A., & Cera, E. (2020). Advances in nutrient management make it possible to accelerate biogas production and thus improve the economy of food waste processing. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–10. https://doi.org/10.1080/15567036.2020.1776796.

  • Maroušek, J., Gavurová, B., Strunecký, O., Maroušková, A., Sekar, M., & Marek, V. (2023a). Techno-economic identification of production factors threatening the competitiveness of algae biodiesel. Fuel, 344, 128056. https://doi.org/10.1016/j.fuel.2023.128056.

    Article  CAS  Google Scholar 

  • Maroušek, J., Maroušková, A., Gavurová, B., Tuček, D., & Strunecký, O. (2023b). Competitive algae biodiesel depends on advances in mass algae cultivation. Bioresource Technology, 374, 128802. https://doi.org/10.1016/j.biortech.2023.128802.

    Article  CAS  Google Scholar 

  • Maroušek, J., Strunecký, O., & Maroušková, A. (2023c). Insect rearing on biowaste represents a competitive advantage for fish farming. Reviews in Aquaculture, 15(3), 965–975. https://doi.org/10.1111/raq.12772.

    Article  Google Scholar 

  • Mateeva, A., Kondeva-Burdina, M., Peikova, L., Guncheva, S., Zlatkov, A., & Georgieva, M. (2023). Simultaneous analysis of water-soluble and fat-soluble vitamins through RP-HPLC/DAD in food supplements and brewer’s yeast. Heliyon, 9(1), e12706.

  • Mencin, M., Jamnik, P., Mikulič Petkovšek, M., Veberič, R., & Terpinc, P. (2022). Improving accessibility and bioactivity of raw, germinated and enzymatic-treated spelt (Triticum spelta L.) seed antioxidants by fermentation. Food Chemistry, 394, 133483.

    Article  CAS  Google Scholar 

  • Mirzaei, M., Mirdamadi, S., Ehsani, M. R., Aminlari, M., & Hosseini, E. (2015). Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. Journal of Functional Foods, 19, 259–268

    Article  CAS  Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. w264.

    Article  Google Scholar 

  • Molska, M., Reguła, J., Kapusta, I., & Świeca, M. (2022). Analysis of Phenolic compounds in Buckwheat (Fagopyrum esculentum Moench) Sprouts modified with probiotic yeast. Molecules, 27(22), 7773.

    Article  CAS  Google Scholar 

  • Mu, Z., Yang, Y., Xia, Y., Zhang, H., Ni, B., Ni, L. (2023). Enhancement of the aromatic alcohols and health properties of Chinese rice wine by using a potentially probiotic Saccharomyces cerevisiae BR14. LWT, 181, 114748.

  • Mustafa, G., Arshad, M. U., Saeed, F., Afzaal, M., Niaz, B., Hussain, M., et al. (2022). Comparative study of raw and fermented oat Bran: Nutritional composition with special reference to their structural and antioxidant Profile. Fermentation, 8, 509.

    Article  CAS  Google Scholar 

  • Najmalddin, H., Yurdugül, S., & Hamzah, H. (2023). Screening of enzyme activities for improvement of bread quality by potato peel addition to the yeast growth medium. Food Bioscience, 51, 102239.

    Article  CAS  Google Scholar 

  • Oliveira, A. S., Pereira, J. O., Ferreira, C., Faustino, M., Durão, J., Pintado, M. E., et al. (2022). Peptide-rich extracts from spent yeast waste streams as a source of bioactive compounds for the nutraceutical market. Innovative Food Science & Emerging Technologies, 81, 103148.

    Article  CAS  Google Scholar 

  • Oliveira, A. L. S., Seara, M., Carvalho, M. J., de Carvalho, N. M., Costa, E. M., Silva, S., et al. (2023). Production of sustainable postbiotics from Sugarcane Straw for Potential Food Applications. Applied Sciences, 13, 3391.

    Article  CAS  Google Scholar 

  • Palla, M., Conte, G., Grassi, A., Esin, S., Serra, A., Mele, M. (2021). Novel Yeasts Producing High Levels of Conjugated Linoleic Acid and Organic Acids in Fermented Doughs. Foods, 10(9), 2087.

  • Parapouli, M., Vasileiadi, A., Afendra, A. S., & Hatziloukas, E. (2020). <em > Saccharomyces cerevisiae and its industrial applications</em >. AIMS Microbiology, 6(1), 1–32. https://doi.org/10.3934/microbiol.2020001.

    Article  CAS  Google Scholar 

  • Petticrew, M., & Roberts, H. (2016). Systematic reviews in the Social Sciences: A practical guide. Wiley.

  • Qiao, Y., Ye, X., Zhong, L., Xia, C., Zhang, L., Yang, F., et al. (2022). Yeast β-1,3-glucan production by an outer membrane β-1,6-glucanase: Process optimization, structural characterization and immunomodulatory activity. Food & Function, 13(7), 3917–3930.

    Article  CAS  Google Scholar 

  • Raikos, V., Grant, S. B., Hayes, H., & Ranawana, V. (2018). Use of β-glucan from spent brewer’s yeast as a thickener in skimmed yogurt: Physicochemical, textural, and structural properties related to sensory perception. Journal of Dairy Science, 101(7), 5821–5831.

    Article  CAS  Google Scholar 

  • Rezaei, S., Najafi, M. A., & Haddadi, T. (2019). Effect of fermentation process, wheat bran size and replacement level on some characteristics of wheat bran, dough, and high-fiber Tafton bread. Journal of Cereal Science, 85, 56–61.

    Article  CAS  Google Scholar 

  • Ribeiro, V. R., Fernandes, I. A. A., Mari, I. P., Stafussa, A. P., Rossetto, R., Maciel, G. M., et al. (2019). Bringing together Saccharomyces cerevisiae and bioactive compounds from plants: A new function for a well-known biosorbent. Journal of Functional Foods, 60, 103433.

    Article  CAS  Google Scholar 

  • Ribeiro, B. G., Guerra, C., J. M., & Sarubbo, L. A. (2022). Production of a biosurfactant from S. Cerevisiae and its application in salad dressing. Biocatalysis and Agricultural Biotechnology, 42, 102358.

    Article  CAS  Google Scholar 

  • Salas-Millán, J. Á., Aznar, A., Conesa, E., Conesa-Bueno, A., & Aguayo, E. (2022). Fruit Wine obtained from Melon by-Products: Physico-Chemical and sensory analysis, and characterization of key aromas by GC-MS. Foods, 11, 3619.

    Article  Google Scholar 

  • Santas, J., Lázaro, E., & Cuñé, J. (2017). Effect of a polysaccharide‐rich hydrolysate from Saccharomyces cerevisiae (LipiGo®) in body weight loss: Randomised, double‐blind, placebo‐controlled clinical trial in overweight and obese adults. Journal of the Science of Food and Agriculture, 97(12), 4250–4257

    Article  CAS  Google Scholar 

  • Santos, J., França, V., Venâncio, R., Hasegawa, P., De Oliveira, A., & Costa, G. (2019). β -GLUCAN FROM SACCHAROMYCES CEREVISIAE IN SKIM YOGURT PRODUCTION. Bioscience Journal, 35, 620–628.

    Article  Google Scholar 

  • Siesto, G., Pietrafesa, R., Tufariello, M., Gerardi, C., Grieco, F., & Capece, A. (2023). Application of microbial cross-over for the production of Italian grape ale (IGA), a fruit beer obtained by grape must addition. Food Bioscience, 52, 102487.

    Article  CAS  Google Scholar 

  • Silva, F. O., Miranda, T. G., Justo, T., Frasão, B. S., Conte-Junior, C. A., Monteiro, M., et al. (2018). Soybean meal and fermented soybean meal as functional ingredients for the production of low-carb, high-protein, high-fiber and high isoflavones biscuits. LWT, 90, 224–231.

    Article  CAS  Google Scholar 

  • Singh, A., & Kocher, G. S. (2020). Standardization of seed and peel infused Syzygium cumini -wine fermentation using response surface methodology. LWT, 134, 109994.

    Article  CAS  Google Scholar 

  • Tadioto, V., Giehl, A., Cadamuro, R. D., Guterres, I. Z., dos Santos, A. A., Bressan, S. K., et al. (2023). Bioactive compounds from and against yeasts in the One Health Context: A Comprehensive Review. Fermentation, 9(4), 363. https://doi.org/10.3390/fermentation9040363.

    Article  CAS  Google Scholar 

  • Tandee, K., Kittiwachana, S., & Mahatheeranont, S. (2021). Antioxidant activities and volatile compounds in longan (Dimocarpus longan Lour.) Wine produced by incorporating longan seeds. Food Chemistry, 348, 128921.

    Article  CAS  Google Scholar 

  • Tatli Seven, P., Iflazoglu Mutlu, S., Seven, I., Arkali, G., Ozer Kaya, S., & Kanmaz, O. E. (2021). Protective role of yeast beta-glucan on lead acetate-induced hepatic and reproductive toxicity in rats. Environmental Science and Pollution Research International, 28(38), 53668–53678.

    Article  CAS  Google Scholar 

  • Utama, G. L., Dio, C., Sulistiyo, J., Yee Chye, F., Lembong, E., Cahyana, Y., et al. (2021). Evaluating comparative β-glucan production aptitude of Saccharomyces cerevisiae, Aspergillus Oryzae, Xanthomonas campestris, and Bacillus natto. Saudi Journal of Biological Sciences, 28(12), 6765–6773.

    Article  CAS  Google Scholar 

  • Valaskova, K., Gajdosikova, D., & Lazaroiu, G. (2023). Has the COVID-19 pandemic affected the corporate financial performance? A case study of Slovak enterprises. Equilibrium Quarterly Journal of Economics and Economic Policy, 18(4), 1133–1178.

    Article  Google Scholar 

  • Valaskova, K., Nagy, M., & Grecu, G. (2024). Digital twin simulation modeling, artificial intelligence-based internet of Manufacturing things systems, and virtual machine and cognitive computing algorithms in the industry 4.0-based Slovak labor market. Oeconomia Copernicana. https://doi.org/10.24136/oc.2814.

    Article  Google Scholar 

  • Viana, A. C., Pimentel, T. C., Borges do Vale, R., Clementino, L. S., Ferreira, J., Magnani, E. T., M., et al. (2021). American pale ale craft beer: Influence of brewer’s yeast strains on the chemical composition and antioxidant capacity. LWT, 152, 112317.

    Article  CAS  Google Scholar 

  • Vieira, E. F., das Neves, J., Vitorino, R., Dias da Silva, D., Carmo, H., & Ferreira, I. M. (2016). Impact of in Vitro gastrointestinal digestion and Transepithelial Transport on antioxidant and ACE-Inhibitory activities of Brewer’s spent yeast autolysate. Journal of Agriculture and Food Chemistry, 64(39), 7335–7341.

    Article  CAS  Google Scholar 

  • Xu, J., Hussain, M., Su, W., Yao, Q., Yang, G., Zhong, Y., et al. (2022). Effects of novel cellulase (cel 906) and probiotic yeast fermentation on antioxidant and anti-inflammatory activities of vine tea (Ampelopsis grossedentata). Frontiers in Bioengineering and Biotechnology, 10, 1006316.

    Article  Google Scholar 

  • Yang, H., Sun, J., Tian, T., Gu, H., Li, X., Cai, G. (2019). Physicochemical characterization and quality of Dangshan pear wines fermented with different Saccharomyces cerevisiae. Journal of Food Biochemistry, 43(8), e12891.

  • Yılmaz, C., & Gökmen, V. (2018). Comparative evaluation of the formations of gamma-aminobutyric acid and other bioactive amines during unhopped wort fermentation. Journal of Food Processing and Preservation, 42(1), e13405.

    Article  Google Scholar 

  • Zahra, C., Esfahani, M. S., Alijan, M. S., & Kianoush Khosravi-Darani. (2023). Production of Zn-Enriched yeast. Bionterface Research in Applied Chemistry, 13(3), 452.

    Google Scholar 

  • Zhao, Y. S., Eweys, A. S., Zhang, J. Y., Zhu, Y., Bai, J., Darwesh, O. M. (2021). Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants (Basel), 10(12), 2004.

  • Złotek, U., & Świeca, M. (2016). Elicitation effect of Saccharomyces cerevisiae yeast extract on main health-promoting compounds and antioxidant and anti-inflammatory potential of butter lettuce (Lactuca sativa L). Journal of the Science of Food and Agriculture, 96(7), 2565–2572.

    Article  Google Scholar 

Download references

Acknowledgements

Y.K.M. and J.P. are highly indebted and extends their sincere thanks to SERB-DST, Government of India for providing support to his Nano-biotechnology and Translational Knowledge Laboratory through research Grant No. SRG/2022/000641.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, B.M., Y.K.M. and A.K.M.; original draft preparation, B.D, B.M., D.S. and J.P; writing—review and editing, S.R, A.K.M, N.R.R & Y.K.M; image preparation, N.R.R; visualization, S.K.M, S.S & S.R and; supervision, Y.K.M. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Awdhesh Kumar Mishra or Yugal Kishore Mohanta.

Ethics declarations

Ethical approval

The authors declare that the submitted manuscript is original and unpublished elsewhere, and that this manuscript complies with the Ethical Rules applicable for this journal.

Financial interests

The authors declare they have no financial interests.

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doolam, B., Mishra, B., Surabhi, D. et al. A systematic review of potential bioactive compounds from Saccharomyces cerevisiae: exploring their applications in health promotion and food development. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04969-9

Keywords

Navigation