Skip to main content

Advertisement

Log in

Agroforestry could be one of the viable options to deal with terminal heat stress in wheat causing yield loss in Indo-Gangetic Plains

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Agroforestry (AF) has played a significant role in the restoration and resilience of cropland ecosystems by mitigating carbon (C) emissions, while increasing crop productivity via modulation of micro-climate for underneath trees. The present study compared four land-use systems including three contrasting wheat (Triticum aestivum L.) based AF systems viz. deciduous poplar (Populus deltoides), dek (Melia composita) and evergreen eucalyptus (Eucalyptus tereticornis) vis-à-vis sole cultivation of seven wheat varieties during 2020–22 in the Indo-Gangetic Plains (IGPs) of north-western India. These results revealed that sole crop system has significantly (p < 0.05) higher grain (~ 17.7–88.3%) and straw yield (~ 34.4–88.8%), compared with AF based systems. Amongst the AF systems, poplar based system has significantly higher grain yield (~ 44.1%) and contributing attributes viz. number of effective tillers m−2 (~ 8.1%), 1000-grain weight (~ 27.2%) and spike length (~ 27.8%), compared with the eucalyptus based AF system. Results revealed that wheat variety PBW-725 outperformed with ~ 14.1–28.1% higher grain and ~ 12.6–21.4% straw yield, compared with HD-3086 under different land-use systems. Nonetheless, root biomass of PBW-725 was significantly higher (~ 13.2–22.7%) than the HD-3086. Similarly, root C yield of wheat varieties in sole crop system was significantly higher (~ 28.2–127.3%) than the AF systems. Root and stubble biomass exhibited a linear significant relationship with total above-ground biomass of wheat (R2 = 0.970* and 0.969*, respectively; p < 0.05). These results revealed a significantly decreased yield of grain (~ 14.9%), straw (~ 8.2%), root biomass (~ 9.3%), grain C (~ 9.9%) and root C (~ 11.3%) during 2021–22 than 2020–21. The decreased wheat grain yield during 2021–22 than 2020–21 was ascribed to increased minimum temperature (Tmin) by + 1.9°C and maximum temperature (Tmax) by + 2.1°C at milking stage. At physiological maturity, higher Tmin and Tmax by + 1.5°C and + 5.8°C, respectively were responsible for decreased grain yield. Under poplar based AF system, PBW-725 and PBW-677 varieties exhibited a lowest impact of increased temperature with reduction in grain yield of ~ 8.7 and 2.0%, respectively. Conversely, in dek based AF system, HD-3226 outperformed under increased temperature conditions with grain yield advantage of ~ 6.8%. These results would help policymakers to implement an ecologically intensified strategy against foreseen climate change for the IGPs of north-western India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All used data is available in the manuscript and in supplementary materials. Original fles are available from author on reasonable request.

References

  • Ahmed, K., Shabbir, G., Ahmed, M., & Shah, K. N. (2020). Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Science of the Total Environmen, 729, 139082. https://doi.org/10.1016/j.scitotenv.2020.139082

    Article  CAS  Google Scholar 

  • Arenas-Corraliza, M. G., López-Díaz, M. L., & Moreno, G. (2018). Winter cereal production in a Mediterranean silvoarable walnut system in the face of climate change. Agriculture, Ecosystem and Environment, 264, 111–118. https://doi.org/10.1016/j.agee.2018.05.024

    Article  Google Scholar 

  • Arenas-Corraliza, M. G., López-Díaz, M. L., Rolo, V., & Moreno, G. (2020). Wheat and barley cultivars show plant traits acclimation and increase grain yield under simulated shade in Mediterranean conditions. Journal of Agronomy and Crop Science, 207, 100–119. https://doi.org/10.1111/jac.12465

    Article  CAS  Google Scholar 

  • Arenas-Corraliza, M. G., Rolo, V., López-Díaz, M. L., & Moreno, G. (2019). Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions. Scientific Reports, 9, 9547. https://doi.org/10.1038/s41598-019-46027-9

    Article  CAS  Google Scholar 

  • Armengot, L., Ferrari, L., Milz, J., Velasquez, F., Hohmann, P., & Schneider, M. (2020). Cacao agroforestry systems do not increase pest and disease incidence compared with monocultures under good cultural management practices. Crop Protection, 130, 105047. https://doi.org/10.1016/j.cropro.2019.105047

    Article  Google Scholar 

  • Artru, S., Garre, S., Dupraz, C., Hiel, M. P., Blitz-Frayret, C., & Lassois, L. (2017). Impact of spatio-temporal shade dynamics on wheat growth and yield, perspectives for temperate agroforestry. European Journal of Agronomy, 82, 60–70. https://doi.org/10.1016/j.eja.2016.10.004

    Article  Google Scholar 

  • Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, 63, 3523–3543. https://doi.org/10.1093/jxb/ers100

    Article  CAS  Google Scholar 

  • Bayala, J., & Prieto, I. (2019). Water acquisition, sharing and redistribution by roots: Applications to agroforestry systems. Plant and Soil, 453, 17–28. https://doi.org/10.1007/s11104-019-04173-z

    Article  CAS  Google Scholar 

  • Benbi, D. K., Brar, K., Toor, A. S., & Singh, P. (2015). Total and labile pools of organic carbon in cultivated and uncultivated soils in northern India. Geoderma, 237–238, 149–158. https://doi.org/10.1016/j.geoderma.2014.09.002

    Article  CAS  Google Scholar 

  • Benbi, D. K., Brar, K., Toor, A. S., Singh, P., & Singh, H. (2012). Soil carbon pools under poplar based agroforestry, rice-wheat and maize-wheat cropping in semiarid India. Nutrient Cycling in Agroecosystem, 92(1), 107–118. https://doi.org/10.1007/s10705-011-9475-8

    Article  CAS  Google Scholar 

  • Benbi, D. K., Singh, P., Toor, A. S., & Verma, G. (2016). Manure and fertilizer application effects on aggregate and mineral-associated organic carbon in a loamy soil under rice-wheat system. Communications in Soil Science and Plant Analysis, 47, 1828–1844. https://doi.org/10.1080/00103624.2016.1208757

    Article  CAS  Google Scholar 

  • Bennett, D., Izanloo, A., Reynolds, M., Kuchel, H., Langridge, P., & Schnurbusch, T. (2012). Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water limited environments. Theoretical and Applied Genetics, 125, 255–271. https://doi.org/10.1007/s00122-012-1831-9

    Article  Google Scholar 

  • Bergeron, M., Lacombe, S., Bradley, R. L., Whalen, J., Cogliastro, A., Jutras, M. F., & Arp, P. (2011). Reduced soil nutrient leaching following the establishment of tree-based intercropping systems in eastern Canada. Agroforestry Systems, 83, 321–330. https://doi.org/10.1007/s10457-011-9402-7

    Article  Google Scholar 

  • Blanchet, G., Barkaoui, K., Bradley, M., Dupraz, C., & Gosme, M. (2021). Interactions between drought and shade on the productivity of winter pea grown in a 25-year-old walnut-based alley-cropping system. Journal of Agronomy and Crop Science. https://doi.org/10.1111/jac.12488

    Article  Google Scholar 

  • Bota, J., Flexas, J., & Medrano, H. (2004). Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytology, 162, 671–681. https://doi.org/10.1093/aob/mcn244

    Article  CAS  Google Scholar 

  • Carboni, G. (2011). Evaluation of conservation tillage and rotation with legumes as adaptation and mitigation strategies of climate change on durum wheat in Sardinia. Ph.D. Thesis, Università degli Studi di Sassari, Sassari, Italy, 2011. 15

  • CGWB. (2013). Ground water information booklet bathinda district, Punjab. Ministry of Water Resources Government of India North Western Region Chandigarh. http://cgwb.gov.in/District_Profile/Punjab/Bathinda.pdf (Assessed on 10-03-2022 at 11.57 a.m.)

  • Chauhan, S. K., Gupta, N., Walia, R., Yadav, S., Chauhan, R., & Mangat, P. S. (2011). Biomass and carbon sequestration potential of poplar-wheat intercropping system in irrigated agroecosystem in India. Journal of Agricultural Science and Technology, 1, 575–586.

    Google Scholar 

  • Cheema, H. S., & Singh, B. (1991). Software statistical package CPCS-1. Punjab Agricultural University.

    Google Scholar 

  • Dhillon, N. K., Singh, P., & Singh, H. (2020). Soil organic carbon, phosphorus and potassium in soils under poplar based agro-forestry in Punjab. International Journal of Current Microbiology and Applied Science, 9(7), 1117–1124. https://doi.org/10.20546/ijcmas.2020.907.xxx

    Article  CAS  Google Scholar 

  • Dufour, L., Metay, A., Talbot, G., & Dupraz, C. (2012). Assessing light competition for cereal production in temperate agroforestry systems using experimentation and crop modeling. Journal of Agronomy and Crop Science, 199, 217–227. https://doi.org/10.1111/jac.12008

    Article  Google Scholar 

  • Dutta, S., Mohanty, S., & Tripathy, B. C. (2009). Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiology, 150, 1050–1061. https://doi.org/10.1104/pp.109.137265

    Article  CAS  Google Scholar 

  • Ehret, M., Gras, R., & Wachendorf, M. (2015). The effect of shade and shade material on white clover/perennial ryegrass mixtures for temperate agroforestry systems. Agroforestry System, 89, 557–570. https://doi.org/10.1007/s10457-015-9791-0

    Article  Google Scholar 

  • Eskandari, H., & Ghanbari, A. (2010). Effect of different planting pattern of wheat (Triticum aestivum) and bean (Vicia faba) on grain yield, dry Matter production and weed biomass. Notulae Scientia Biologicae, 2(4), 111–115. https://doi.org/10.15835/nsb244824

    Article  Google Scholar 

  • Fahad, S., Hussain, S., Saud, S., Khan, F., Hassan, S., & Amanullah, S. (2016). Exogenously applied plant growth regulators affect heat-stressed rice pollens. Journal of Agronomy and Crop Science, 202, 139–150. https://doi.org/10.1111/jac.12148

    Article  CAS  Google Scholar 

  • Fahad, S., Hussain, S., Saud, S., Tanveer, M., Bajwa, A. A., & Hassan, S. (2015). A biochar application protects rice pollen from high-temperature stress. Plant Physiology and Biochemistry, 96, 281–287. https://doi.org/10.1016/j.plaphy.2015.08.009

    Article  CAS  Google Scholar 

  • Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Review in Plant Science, 30, 491–507. https://doi.org/10.1080/07352689.2011.615687

    Article  Google Scholar 

  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185–212. https://doi.org/10.1051/agro:2008021

    Article  Google Scholar 

  • Fernández, M., Gyenge, J., Licata, J., Schlichter, T., & Bond, B. (2008). Belowground interactions for water between trees and grasses in a temperate semiarid agroforestry system. Agroforestry Systems, 74, 185–197. https://doi.org/10.1007/s10457-008-9114-4

    Article  Google Scholar 

  • Garatuza-Payan, J., Argentel-Martinez, L., Yépez, E. A., & Arredondo, T. (2008). Initial response of phenology and yield components of wheat (Triticum durum L., CIRNO C2008) under experimental warming field conditions in the Yaqui Valley. Peer Journal, 6, e5064. https://doi.org/10.7717/peerj.5064

    Article  CAS  Google Scholar 

  • Garrity, D. P. (2004). Agroforestry and the achievement of the millennium development goals. Agroforestry Systems, 61, 5–17. https://doi.org/10.1023/B:AGFO.0000028986.37502.7c

    Article  Google Scholar 

  • Gill, R. I. S., Singh, B., & Kaur, N. (2009). Productivity and nutrient uptake of newly released wheat varieties at different sowing times under poplar plantation in north-western India. Agroforestry Systems, 76, 579–590. https://doi.org/10.1007/s10457-009-9223-0

    Article  Google Scholar 

  • Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical Trans Royal Society b: Biological Sciences, 369, 20120273. https://doi.org/10.1098/rstb.2012.0273

    Article  Google Scholar 

  • Gupta, R., Somanathan, E., & Dey, S. (2017). Global warming and local air pollution have reduced wheat yields in India. Climatic Change, 140, 593–604. https://doi.org/10.1007/s10584-016-1878-8

    Article  Google Scholar 

  • Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  • Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science, 14, 30–36. https://doi.org/10.1016/j.tplants.2008.11.001

    Article  CAS  Google Scholar 

  • Hong, Y., Heerink, N., Jin, S., Berentsen, P., Zhang, L., & Werf, W. V. D. (2017). Intercropping and agroforestry in China-Current state and trends. Agriculture, Ecosystem and Environment, 244, 52–61. https://doi.org/10.1016/j.agee.2017.04.019

    Article  Google Scholar 

  • ICFRE. (2016). Country report on poplars and willows period: 2012 to 2015. National Poplar Commission of India, Indian Council of Forestry Research and Education, Dehradun, 2016.

  • Inurreta-Aguirre, H. D., Lauri, P.-E., Dupraz, C., & Gosme, M. (2018). Yield components and phenology of durum wheat in a Mediterranean alley-cropping system. Agroforestry Systems, 92, 961–974. https://doi.org/10.1007/s10457-018-0201-2

    Article  Google Scholar 

  • IPCC. (2007). Summary for policymakers. In: Parry, M., Canziani, O., Palutikof, J., van der Linden, P., & Hanson, C. (Eds.), Climate Change 2007: Impacts, Adaptation And Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp: 7–22.

  • Jackson, M.L. (1967). Soil Chemical Analysis Prentice Hall of India Pvt. Ltd., New Delhi p. 205.

  • Jobbágy, E. G., & Jackson, R. B. (2004). The uplift of soil nutrients by plants: Biogeochemical consequences across scales. Ecology, 85(9), 2380–2389. https://doi.org/10.1890/03-0245

    Article  Google Scholar 

  • Joshi, A. K., Mishra, B., Chatrath, R., Ferrara, G. O., & Singh, R. P. (2007). Wheat improvement in India: Present status, emerging challenges and future prospects. Euphytica, 157(3), 431–446. https://doi.org/10.1007/s10681-007-9385-7

    Article  Google Scholar 

  • Kaur, G., Rajni., & Sivia, J. S. (2024). Integrating data envelopment analysis and machine learning approaches for energy optimization, decreased carbon footprints, and wheat yield prediction across north-western India. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-024-01647-7.

    Article  Google Scholar 

  • Kaur, N. (2019). Water productivity, energetics and economics of maize based cropping sequences compared to rice-wheat system under different moisture regimes. Ph.D. Thesis. Punjab Agricultural University, Ludhiana.

  • Kaur, J., Ram, H., Kaur, H., & Singh, P. (2020). Grain yield, nitrogen use efficiency and tillage intensity in wheat as affected by precision nutrient management. Communications in Soil Science and Plant Analysis, 11, 1483–1498. https://doi.org/10.1080/00103624.2020.1784918

    Article  CAS  Google Scholar 

  • Kaur, V., & Behl, R. K. (2010). Grain yield in wheat as affected by short periods of high temperature, drought and their interaction during pre- and post-anthesis stages. Cereal Research Communication, 38, 514–520. https://doi.org/10.1556/crc.38.2010.4.8

    Article  Google Scholar 

  • Kumar, M.K., & Singh, N. (2014). Enhancement of wheat (Triticum aestivum L.) grain yield and yield components by tillage practices with interaction of different organic and inorganic nitrogen management and zinc foliar spray. XXI Biennial National Symposium of Indian Society of Agronomy, 24–26th October, at MPUAT, Udaipur, Rajasthan, India.

  • Lakshmanakumar, P., Bana, O. P. S., & Guru, S. K. (2013). Physiological basis of yield variability in wheat (Triticum aestivum L.) under varying degree of shades. Indian Journal of Plant Physiology, 18, 164–168.

    Article  Google Scholar 

  • Li, H., Jiang, D., Wollenweber, B., Dai, T., & Cao, W. (2010). Effects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy, 33, 267–275. https://doi.org/10.1016/j.eja.2010.07.002

    Article  Google Scholar 

  • Lin, B. (2010). The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agriculture, Forestry and Meteorology, 150(4), 510–518. https://doi.org/10.1016/j.agrformet.2009.11.010

    Article  Google Scholar 

  • Ling, Q., Zhao, X., Wu, P., Gao, X., & Sun, W. (2019). Effect of the fodder species canola (Brassica napus L.) and daylily (Hemerocallis fulva L.) on soil physical properties and soil water content in a rainfed orchard on the semiarid Loess Plateau, China. Plant and Soil. https://doi.org/10.1007/s11104-019-04318-0

    Article  Google Scholar 

  • Lopes, M. S., & Reynolds, M. P. (2012). Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany, 63, 3789–3798. https://doi.org/10.1093/jxb/ers071

    Article  CAS  Google Scholar 

  • Ludlow, M. M., & Muchow, R. C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 43, 107–153. https://doi.org/10.1016/S0065-2113(08)60477-0

    Article  Google Scholar 

  • Madiwalar, A. F., Dhillon, G. P. S., Singh, A., Singh, P., & Singh, B. (2023). Eucalyptus clones respond differentially for heavy-metals phytoextraction and carbon sequestration in tree biomass and soil with distillery effluents irrigation in north-western India. Proceedings of the Indian National Science Academy (accepted). https://doi.org/10.1007/s43538-022-00141-x

    Article  Google Scholar 

  • Majumder, B., Mandal, B., Bandyopadhyay, P. K., & Chaudhury, J. (2007). Soil organic carbon pools and productivity relationships for a 34-years old rice-wheat-jute agroecosystem under different fertilizer treatments. Plant and Soil, 297, 53–67.

    Article  CAS  Google Scholar 

  • Makumba, W., Akinnifesi, F. K., Janssen, B., & Oenema, O. (2006). Long-term impact of a Glirricidia-maize intercropping system on carbon sequestration in southern Malawi. Agriculture, Ecosystems and Environment, 118, 237–243. https://doi.org/10.1016/j.agee.2006.05.011

    Article  CAS  Google Scholar 

  • Maroco, J. P., Pereira, J. S., & Chaves, M. M. (1997). Stomatal responses to leaf to air vapour pressure deficit in Sahelian species. Australian Journal of Plant Physiology, 24, 381–387. https://doi.org/10.1093/jxb/erp291

    Article  CAS  Google Scholar 

  • Mervin, H. D., & Peech, M. (1950). Exchangeability of soils potassium in the sand, silt and clay fractions as influenced by the nature of the complementary exchangeable cations. Soil Science Society of America Proceedings, 15, 125–128. https://doi.org/10.2136/SSSAJ1951.036159950015000C0026X

    Article  Google Scholar 

  • Mishra, A., Swamy, S. L., Bargali, S. S., & Singh, A. K. (2010). Tree growth, biomass and productivity of wheat under five promising clones of Populus deltoides in agrisilviculture system. International Journal of Ecology and Environmental Sciences, 36(2–3), 167–174.

    Google Scholar 

  • Mohanty, S., Baishna, B. G., & Tripathy, C. (2006). Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta, 224, 692–699. https://doi.org/10.1007/s00425-006-0248-6

    Article  CAS  Google Scholar 

  • Montagnini, F., & Nair, P. K. R. (2004). Carbon sequestration: An unexploited environmental benefit of agroforest systems. Agroforestry Systems, 61, 281–295.

    Google Scholar 

  • Mu, H., Jiang, D., Wollenweber, B., Dai, T., Jing, Q., & Cao, W. (2010). Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. Journal of Agronomy and Crop Science, 196, 38–47. https://doi.org/10.1111/j.1439-037X.2009.00394.x

    Article  CAS  Google Scholar 

  • Nahar, K., Ahamed, K. U., & Fujita, M. (2010). Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae, 2, 51–56. https://doi.org/10.15835/nsb234723

    Article  Google Scholar 

  • Nawaz, A., Farooq, M., Cheema, S. A., & Wahid, A. (2013). Differential response of wheat cultivars to terminal heat stress. International Journal of Agriculture Biology, 15, 1354–1358.

    Google Scholar 

  • Olsen, S. R., Cole, C. V., Waternabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorous in soil by extraction with sodium bicarbonate. USDA Cir, 939, 919.

    Google Scholar 

  • Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., Hodson, D., Dixon, J. M., Ortiz-Monasterio, J. I., & Reynolds, M. (2008). Climate change: Can wheat beat the heat? Agriculture, Ecosystems and Environment, 126, 46–58. https://doi.org/10.1016/j.agee.2008.01.019

    Article  Google Scholar 

  • Pardon, P., Reubens, B., Mertens, J., Verheyen, K., De Frenne, P., De Smet, G., Van Waes, C., & Reheul, D. (2018). Effects of temperate agroforestry on yield and quality of different arable intercrops. Agriculture Systems, 166, 135–151. https://doi.org/10.1016/j.agsy.2018.08.008

    Article  Google Scholar 

  • Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emission and socioeconomic scenarios. Global Environment Change, 14, 53–67. https://doi.org/10.1016/j.gloenvcha.2003.10.008

    Article  Google Scholar 

  • Pathak, H., Ladha, J. K., Aggarwal, P. K., Peng, S., Das, S., Singh, Y., Singh, B., Kamra, S. K., Mishra, B., Sastri, A. S. R. A. S., & Aggarwal, H. P. (2003). Trends of climatic potential and on-farm yields of rice and wheat in the indo-Gangetic Plains. Field Crop ResEarch, 80(3), 223–234. https://doi.org/10.1016/S0378-4290(02)00194-6

    Article  Google Scholar 

  • POP. (2022). Package of Practices for Rabi crops. Punjab Agricultural University.

    Google Scholar 

  • Prasad, P. V. V., Staggenborg, S. A., & Ristic, Z. (2008). Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In L. H. Ahuja & S. A. Saseendran (Eds.), Response of crops to limited water: understanding and modeling water stress effects on plant growth processes (pp. 301–355). ASA CSSA. https://doi.org/10.2134/advagricsystmodel1.c11

    Chapter  Google Scholar 

  • Rahman, M. A., Chikushi, J., Yoshida, S., & Karim, A. J. M. S. (2009). Growth and yield components of wheat genotypes exposed to high temperature stress under control environment. Bangladesh Journal of Agricultural Research, 34, 361–372. https://doi.org/10.3329/bjar.v34i3.3961

    Article  Google Scholar 

  • Rehman, H. U., Tariq, A., Ashraf, I., Ahmed, M., Muscolo, A., Basra, S. M. A., & Reynolds, M. (2021). Evaluation of physiological and morphological traits for improving spring wheat adaptation to terminal heat stress. Plants, 10, 455. https://doi.org/10.3390/plants10030455

    Article  Google Scholar 

  • Retkute, R., Smith-Unna, S. E., Smith, R. W., Burgess, A. J., Jensen, O., Johnson, G. N., Preston, S. P., & Murchie, E. H. (2015). Exploiting heterogeneous environments: Does photosynthetic acclimation optimize carbon gain in fluctuating light? Journal of Experimental Botany, 66, 2437–2447. https://doi.org/10.1093/jxb/erv055

    Article  CAS  Google Scholar 

  • Reyes, F., Gosme, M., Wolz, K. J., Lecomte, I., & Dupraz, C. (2021). Alley cropping mitigates the impacts of climate change on a wheat crop in a Mediterranean environment: A biophysical model-based assessment. Agriculture, 11, 356. https://doi.org/10.3390/agriculture11040356

    Article  CAS  Google Scholar 

  • Reynolds, M. P., Pierre, C. S., Saad, A. S. I., Vargas, M., & Condon, A. G. (2007). Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Science, 47, S-172-S−189. https://doi.org/10.2135/CROPSCI2007.10.0022IPBS

    Article  Google Scholar 

  • Rizvi, R. H., Handa, A. K., Sridhar, K. B., Singh, R. K., Dhyan, S. K., Rizvi, J., & Dongre, G. (2020). Spatial analysis of area and carbon stocks under Populus deltoides based agroforestry systems in Punjab and Haryana states of Indo-Gangetic Plains. Agroforestry Systems. https://doi.org/10.1007/s10457-020-00540-3

    Article  Google Scholar 

  • Saini, A. D., & Nanda, R. (1986). Influence of temperature and light intensity during early growth period on grain number in wheat. Indian Journal of Agricultural Sciences, 56(512–519), 69.

    Google Scholar 

  • Sandhu, N. K., Dhillon, G. P., Singh, A., & Singh, P. (2023). Effect of artificially simulated moisture regimes on growth attributes of different Eucalyptus clones in sub-tropics of north-western India. Proceedings of the Indian National Science Academy, 89(4), 988–1003. https://doi.org/10.1007/s43538-023-00213-6

    Article  Google Scholar 

  • Sarvade, S., Mishra, H. S., Kaushal, R., Chaturvedi, S., Tewari, S., & Jadhav, T. A. (2014). Performance of wheat (Triticum aestivum L.) crop under different spacing of trees and fertility levels. African Journal of Agricultural Research, 9(9), 866–873. https://doi.org/10.5897/AJAR2013.8300

    Article  Google Scholar 

  • Schlamadinger, B., Bird, N., Johns, T., Brown, S., & Canadell, J. (2007). A synopsis of land use, land-use change and forestry (LULUCF) under the Kyoto protocol and Marrakech accords. Environmental Science and Policy, 10, 271–282. https://doi.org/10.1016/j.envsci.2006.11.002

    Article  Google Scholar 

  • Schmidt, M., Jochheim, H., Kersebaum, K.-C., Lischeid, G., & Nendel, C. (2017). Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes—A review. Agricultural and Forest Meteorology, 232, 659–671. https://doi.org/10.1016/j.agrformet.2016.10.022

    Article  Google Scholar 

  • Schmidt, M., Nendel, C., Funk, R., Mitchell, M. G. E., & Lischeid, G. (2019). Modeling yields response to shading in the field-to-forest transition zones in heterogeneous landscapes. Agriculture, 9, 6. https://doi.org/10.3390/agriculture90100061358

    Article  Google Scholar 

  • Schoeneberger, M., Bentrup, G., de Gooijer, H., Soolaneyakanahally, R., Sauer, T., Brendle, J., Zhou, X. H., & Current, D. (2012). Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture. Journal of Soil and Water Conservation, 67, 128–136. https://doi.org/10.2489/jswc.67.5.128A

    Article  Google Scholar 

  • Sharma, S., Singh, P., Angmo, P., & Satpute, S. (2022). Total and labile pools of organic carbon in relation to soil biological properties under contrasting land-use systems in a dry mountainous region. Carbon Management, 13, 352–371. https://doi.org/10.1080/17583004.2022.2089236

    Article  CAS  Google Scholar 

  • Sharma, S., Singh, P., Choudhary, O. P., & Neemisha. (2021). Nitrogen and rice straw incorporation impact nitrogen use efficiency, soil nitrogen pools and enzyme activity in rice-wheat system in north-western India. Field Crops Research, 266, 108131. https://doi.org/10.1016/j.fcr.2021.108131

    Article  Google Scholar 

  • Sharma, S., Singh, P., & Kumar, S. (2020a). Responses of soil carbon pools, enzymatic activity and crop yields to nitrogen and straw incorporation in a rice-wheat cropping system in north-western India. Frontiers in Sustainable Food Systems, Section Climate-Smart Food Systems. https://doi.org/10.3389/fsufs.2020.532704

    Article  Google Scholar 

  • Sharma, S., Singh, P., & Sodhi, G. P. S. (2020b). Soil organic carbon and biological indicators of uncultivated vis-à-vis intensively cultivated soils under rice–wheat and cotton–wheat cropping systems in South-western Punjab. Carbon Management, 11(6), 681–695. https://doi.org/10.1080/17583004.2020.1840891

    Article  CAS  Google Scholar 

  • Sheppard, J. P., Bohn Reckziegel, R., Borrass, L., Chirwa, P. W., Cuaranhua, C. J., Hassler, S. K., Hoffmeister, S., Kestel, F., Maier, R., Mälicke, M., Morhart, C., Ndlovu, N. P., Veste, M., Funk, R., Lang, F., Seifert, T., du Toit, B., & Kahle, H.-P. (2020). Agroforestry: An appropriate and sustainable response to a changing climate in Southern Africa? Sustainability, 12, 6796. https://doi.org/10.3390/su12176796

    Article  CAS  Google Scholar 

  • Sida, T. S., Baudron, F., Kim, H., & Giller, K. E. (2018). Climate-smart agroforestry: Faidherbia albida trees buffer wheat against climatic extremes in the Central Rift Valley of Ethiopia. Agricultural and Forest Meteorology, 248, 339–347. https://doi.org/10.1016/j.agrformet.2017.10.013

    Article  Google Scholar 

  • Singh, A., Singh, P., Dhillon, G. P., Sharma, S., Singh, B., & Gill, R. I. (2023). Differential impacts of soil salinity and water logging on Eucalyptus growth and carbon sequestration under mulched vs. unmulched soils in south-western Punjab India. Plant and Soil, 482(1), 401–425. https://doi.org/10.1007/s11104-022-05700-1

    Article  CAS  Google Scholar 

  • Singh, A., Singh, P., & Mahajan, M. (2023). Agronomic and biochemical attributes and economic indices of sugarcane (Saccharum officinarum L.) in saline vis-a-vis non-saline soils. The Indian Journal of Agricultural Sciences., 93(1), 106–109. https://doi.org/10.56093/ijas.v93i1.130246

    Article  CAS  Google Scholar 

  • Singh, B., Dhillon, G. P., Singh, A., & Singh, P. (2023). Soil salinity and variable moisture regimes impacts on growth attributes of eucalyptus in north-western Punjab, India: Impact of soil salinity and moisture regimes on eucalyptus. Journal of Soil Salinity and Water Quality., 15(1), 15–24.

    Google Scholar 

  • Singh, P., & Benbi, D. K. (2018a). Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. CATENA, 166, 171–180. https://doi.org/10.1016/j.catena.2018.04.006

    Article  CAS  Google Scholar 

  • Singh, P., & Benbi, D. K. (2018b). Nutrient management effects on organic carbon pools in a sandy loam soil under rice-wheat cropping. Archives of Agronomy and Soil Science, 64(13), 1879–1891. https://doi.org/10.1080/03650340.2018.1465564

    Article  CAS  Google Scholar 

  • Singh, P., & Benbi, D. K. (2021). Physical and chemical stabilization of soil organic matter in cropland ecosystems under rice-wheat, maize-wheat and cotton-wheat cropping systems in north-western India. Carbon Management, 12(6), 603–621. https://doi.org/10.1080/17583004.2021.1992505

    Article  CAS  Google Scholar 

  • Singh, P., & Benbi, D. K. (2022). Nutrient management effects on carbon input through root and shoot biomass in a rice-wheat system. Agricultural Research Journal, 59(1), 135–145. https://doi.org/10.5958/2395-146X.2022.00021.7

    Article  Google Scholar 

  • Singh, P., Benbi, D. K., & Verma, G. (2021). Nutrient management impacts on nutrient use efficiency and energy, carbon, and net ecosystem economic budget of rice-wheat cropping system in north-western India. Journal of Soil Science and Plant Nutrition, 21, 559–577. https://doi.org/10.1007/s42729-020-00383-y

    Article  CAS  Google Scholar 

  • Singh, P., Sharma, S., Nisar, S., & Choudhary, O. P. (2023). Structural stability and organic matter stabilization in soils: Differential impacts of soil salinity and sodicity. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-023-01136-3

    Article  Google Scholar 

  • Singh, P., Singh, G., & Sodhi, G. P. S. (2019). Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab. Energy, 174, 169–179. https://doi.org/10.1016/j.energy.2019.02.169

    Article  Google Scholar 

  • Singh, P., Singh, G., & Sodhi, G. P. S. (2020). Energy and carbon footprints of wheat establishment following different rice residue management strategies vis-à-vis conventional tillage coupled with rice residue burning in north-western India. Energy, 200, 117554. https://doi.org/10.1016/j.energy.2020.117554

    Article  CAS  Google Scholar 

  • Singh, R. C., & Pathak, P. S. (1993). Growth and production of pigeon pea under Acacia tortilis canopy in an Agri-silviculture system. Range Management and Agroforestry, 14(2), 171–178.

    Google Scholar 

  • Sirohi, C., Bangarwa, K. S., Dhillon, R. S., & Bhardwaj, K. K. (2016). Performance of different wheat varieties under poplar (Populus deltoides) based agroforestry system. Indian Journal of Ecology, 43, 752–755.

    Google Scholar 

  • Song, W. F., Zhao, L. J., Zhang, X. M., Zhang, Y. M., Li, J. L., Zhang, L. L., Song, Q. J., Zhao, H. B., Zhang, Y. B., Zhang, C. L., Xin, W. L., Sun, L. F., & Xiao, Z. M. (2015). Effect of timing of heat stress during grain filling in two wheat varieties under moderate and very high temperature. Indian Journal of Genetics, 75, 121–124. https://doi.org/10.5958/0975-6906.2015.00018.8

    Article  Google Scholar 

  • Subedi, K. D., Ma, B. L., & Liang, B. C. (2006). New method to estimate root biomass in soil through root-derived carbon. Soil Biology and BiocheMistry, 38, 2212–2218. https://doi.org/10.1016/j.soilbio.2006.01.027

    Article  CAS  Google Scholar 

  • Surki, A. A., Nazari, M., Fallah, S., Iranipour, R., & Mousavi, A. (2020). The competitive effect of almond trees on light and nutrients absorption, crop growth rate, and the yield in almond–cereal agroforestry systems in semi-arid regions. Agroforestry Systems, 94, 1111–1122. https://doi.org/10.1007/s10457-019-00469-2

    Article  Google Scholar 

  • Swieter, A., Langhof, M., & Lamerre, J. (2022). Competition, stress and benefits: Trees and crops in the transition zone of a temperate short rotation alley cropping agroforestry system. Journal of Agronomy and Crop Science, 208, 209–224. https://doi.org/10.1111/jac.12553

    Article  Google Scholar 

  • Swieter, S., Langhof, M., Lamerre, J., & Greef, J. M. (2019). Long-term yields of oilseed rape and winter wheat in a short rotation alley cropping agroforestry system. Agroforestry Systems, 93, 1853–1864. https://doi.org/10.1007/s10457-018-0288-5

    Article  Google Scholar 

  • Tashiro, T., & Wardlaw, I. F. (1990). The response of high temperature shock and humidity changes prior to and during early stages of grain development in wheat. Australian Journal of Plant Physiology, 17, 551–561. https://doi.org/10.1071/PP9900551

    Article  Google Scholar 

  • Tesfaye, K., Zaidi, P., Gbegbelegbe, S., Boeber, C., Getaneh, F., Seetharam, K., et al. (2017). Climate change impacts and potential benefts of heat-tolerant maize in South Asia. Theoretical and Applied Climatology, 130, 959–970. https://doi.org/10.1007/s00704-016-1931-6

    Article  Google Scholar 

  • Thevathasan, N. V., & Gordon, A. M. (1997). Poplar leaf biomass distribution and nitrogen dynamics in a poplar barley intercropped system in southern Ontario Canada. Agroforestry Systems, 37(1), 79–90. https://doi.org/10.1023/A:1005853811781

    Article  Google Scholar 

  • Vijayalakshmi, K., Fritz, A. K., Paulsen, G. M., Bai, G., Pandravada, S., & Gill, B. S. (2010). Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Molecular Breeding, 26, 163–175. https://doi.org/10.1007/s11032-009-9366-8

    Article  CAS  Google Scholar 

  • Waldron, A., Miller, D. C., Redding, D., Mooers, A., Kuhn, T. S., Nibbelink, N., Roberts, T. J., Tobias, J. A., & Gittleman, J. L. (2017). Reductions in global biodiversity loss predicted from conservation spending. Nature, 551, 364. https://doi.org/10.1038/nature24295

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, C. A. (1934). An examination of the Digtjareff method for determination of soil organic matter and a proposed modification of chromic acid titration method. Soil Science, 37, 29–39.

    Article  CAS  Google Scholar 

  • Wang, B., Zhang, W., Ahanbieke, P., Gan, Y. W., Xu, W. L., Li, L. H., & Li, L. (2014). Interspecific interactions alter root length density, root diameter and specific root length in jujube/wheat agroforestry systems. Agroforestry Systems, 88(5), 835–850. https://doi.org/10.1007/s10457-014-9729-y

    Article  Google Scholar 

  • Wardlaw, I., & Wrigley, C. (1994). Heat tolerance in temperate cereals: An overview. Functional Plant Biology, 21, 695–703.

    Article  Google Scholar 

  • Yang, T., Duan, Z. P., Zhu, Y., Gan, Y. W., Wang, B. J., Hao, X. D., Xu, W. L., Zhang, W., & Li, L. H. (2019). Effects of distance from a tree line on photosynthetic characteristics and yield of wheat in a jujube tree/wheat. Agroforestry Systems, 93, 1545–1555. https://doi.org/10.1007/s10457-018-0267-x

    Article  Google Scholar 

  • Yin, X. Y., Guo, W., & Spiertz, J. H. (2009). A quantitative approach to characterize sink-source relationships during grain filling in contrasting wheat genotypes. Field Crops Research, 114, 119–126. https://doi.org/10.1016/j.fcr.2009.07.013

    Article  Google Scholar 

  • Yokota, A., Kawasaki, S., Iwano, M., Nakamura, C., Miyake, C., & Akashi, K. (2002). Citrulline and DRIP-1 protein (ArgE Homologue) in drought tolerance of wild watermelon. Annals of Botany, 89, 825–832. https://doi.org/10.1093/aob/mcf074

    Article  CAS  Google Scholar 

  • Yu, Q., Li, L., Luo, Q., Eamus, D., Xu, S., Chen, C., Wang, E., Liu, J., & Nielsen, D. C. (2014). Year patterns of climate impact on wheat yields. International Journal of Climatology, 34, 518–528. https://doi.org/10.1002/joc.3704

    Article  Google Scholar 

  • Zhang, W., Wang, B. J., Gan, Y. W., Duan, Z. P., Hao, X. D., Xu, W. L., Lv, X., & Li, L. H. (2017). Competitive interaction in a jujube tree/wheat agroforestry system in northwest China”s Xinjiang Province. Agroforestry Systems, 91, 881–893. https://doi.org/10.1007/s10457-016-9962-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avtar Singh.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Singh, P. & Gill, R.I.S. Agroforestry could be one of the viable options to deal with terminal heat stress in wheat causing yield loss in Indo-Gangetic Plains. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04731-1

Keywords

Navigation