Skip to main content

Advertisement

Log in

Vermicompost acts as bio-modulator for plants under stress and non-stress conditions

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Vermicompost is being used as a component of organic farming, making it imperative to study the role and impact of vermicompost on the growth of different plants species. The response of each plant species is unique at varied doses and application modes of vermicompost. Under normal non-stress conditions, many studies have been conducted to know the impact of various application doses and combinations with vermicompost. Compilation of studies in the foresaid arena is very tedious due to diverse experimental designs and plant species used. The main aim of this study is know the mechanisms of the impact of vermicompost on plant growth and other agronomic parameters with or without any environmental stress. An effort has also been made to demonstrate the role of vermicompost as bio-modulator on agronomics parameters under stress and non-stress conditions. The literature search was done from various databases using various keywords and appropriate studies were screened out and relevant ones were used. Studies that establish the role of vermicompost to alleviate the negative impact of stress on the plants have also been compiled. To understand the underlying mechanisms of vermicompost production, its interaction with soil and plants and after vermicompost application to plants has also been correlated. These interrelated mechanisms are otherwise scattered in the literature. The present study reveals the interaction and interplay of earthworm’s gut microbes, soil microbes, and plants’ growth regulators, humic acid and enzymatic actions in soil. It has been brought to light that vermicompost has the potential to positively impact most of the plant species and can be a dependable organic alternative to fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbey, L., Young, C., Teitel-Payne, R., & Howe, K. (2012). Evaluation of proportions of vermicompost and coir in a medium for container-grown Swiss chard. International Journal of Vegetable Science., 18, 109–120. https://doi.org/10.1080/19315260.2011.585702

    Article  Google Scholar 

  • Abduli, M. A., Amiri, L., Madadian, E., Gitipour, S., & Sedighian, S. (2013). Efficiency of vermicompost on quantitative and qualitative growth of tomato plants. International Journal of Environment Research, 7, 467–472. https://doi.org/10.22059/IJER.2013.625

    Article  Google Scholar 

  • Acosta Durán, C., Vázquez Benítez, N., Villegas Torres, O., Vence, L. B., & Acosta Peñaloza, D. (2014). Vermicompost as a substrate component in Ageratum houstonianum Mill. and Petunia hybrida E. Vilm in container culture. Bioagro, 26, 107–114.

    Google Scholar 

  • Agatonovic-Kustrin, S., Babazadeh Ortakand, D., Morton, D. W., & Yusof, A. P. (2015). Rapid evaluation and comparison of natural products and antioxidant activity in calendula, fever few, and German chamomile extracts. Journal of Chromatography A, 1385, 103–110. https://doi.org/10.1016/j.chroma.2015.01.067

    Article  CAS  Google Scholar 

  • Aghamohammadi, Z., Etesami, H., & Alikhani, H. A. (2016). Vermiwash allows reduced application rates of acaricide azocyclotin for the control of two spotted spider mite, Tetranychus urticae Koch, on bean plant (Phaseolus vulgaris L.). Ecological Engineering, 93, 234–241. https://doi.org/10.1016/j.ecoleng.2016.05.041.

    Article  Google Scholar 

  • Aguilar G., Peña-Valdivia, C.B., Castro-Rivera, R.J.P. Lara-Ávila, Cruz-Crespo, E., & Rojas-Velázquez, A.N. (2017).Vermicompost and water stress effects on dry beans (Phaseolus vulgaris L.): Productive parameters and water relations.FYTON,86,28–39.

  • Ahmad, R., Azeem, M., & Ahmed, N. (2009). Productivity of ginger (Zingiber officinale) by amendment of vermicompost and biogas slurry in saline soils. Pakistan Journal of Botany, 41, 3107–3116.

    Google Scholar 

  • Ahmad, A., Aslam, Z., Bellitürk, K., Iqbal, N., Naeem, S., Idrees, M., Kaleem, Z., Nawaz, M. Y., Nawaz, M., Sajjad, M., Rehman, M. U., Ramzan, H. N., Waqas, M., Akram, Y., Jamal, M. A., Ibrahim, M. U., Baig, H. A. T., & Kamal, A. (2021). Vermicomposting methods from different wastes: An environment friendly, economically viable and socially acceptable approach for crop nutrition: A review. International Journal of Food Science and Agriculture, 5(1), 58–68. https://doi.org/10.26855/ijfsa.2021.03.009

    Article  Google Scholar 

  • Aira, M., Monroy, F., & Dominguez, J. (2007). Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during Vermicomposting independently of the application rates of pig slurry. Science of the Total Environment, 385, 252–261. https://doi.org/10.1016/j.scitotenv.2007.06.031

    Article  CAS  Google Scholar 

  • Akhzari, D., Attaeian, B., Arami, A., Mahmoodi, F., & Aslani, F. (2015). Effects of vermicompost and arbuscular mycorrhizal fungi on soil properties and growth of Medicago polymorpha L. Compost Science & Utilization, 23(3), 142–153. https://doi.org/10.1080/1065657X.2015.1013585

    Article  CAS  Google Scholar 

  • Akhzari, D., & Pessarakli, M. (2017). Effects of vermicompost and urea fertilizers on qualitative and quantitative characteristics of Vetiveria zizanioides stapf. grown under drought stress conditions. Journal of Plant Nutrition, 40(14), 2063–2075. https://doi.org/10.1080/01904167.2017.1346126

    Article  CAS  Google Scholar 

  • Aksakal, E. L., Sari, S., & Angin, I. (2016). Effects of vermicompost application on soil aggregation and certain physical properties. Land Degradation & Development, 27, 983–995. https://doi.org/10.1002/ldr.2350

    Article  Google Scholar 

  • Al-Dahmani, J. H., Abbasi, P. A., Miller, S. A., & Hoitink, H. (2003). Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Disease, 87(8), 913–919. https://doi.org/10.1094/PDIS.2003.87.8.913

    Article  Google Scholar 

  • Alhajhoj, M. R. (2017). Effects of different types of vermicompost on the growth and rooting characteristics of three rose rootstocks. Journal of Food Agriculture and Environment, 15, 22–27.

    Google Scholar 

  • Alsina, I., Dubova, L., Steinberga, V., & Gmizo, G. (2013). Effect of vermicompost on the growth of Radish” ISHS Acta Horticulturae 1013: international symposium on growing media. Composting and Substrate Analysis. https://doi.org/10.17660/ActaHortic.2013.1013.44

    Article  Google Scholar 

  • Alwaneen, W. S. (2016). Effect of cow manure vermicompost on some growth parameters of Alfalfa and Vinca rosa plants. Asian Journal of Plant Science, 15, 81–85. https://doi.org/10.3923/ajps.2016.81.85

    Article  Google Scholar 

  • Amiri, H., Ismaili, A., & Hosseinzadeh, S. R. (2017). Influence of vermicompost fertilizer and water deficit stress on morpho-physiological features of chickpea Cicer arietinum L. cv. Karaj. Compost Science & Utilization, 25(3), 152–165. https://doi.org/10.1080/1065657X.2016.1249313

    Article  CAS  Google Scholar 

  • Amooaghaie, R., & Golmohammadi, S. (2017). Effect of vermicompost on growth, essential oil, and health of Thymus Vulgaris. Compost Science & Utilization, 25(3), 166–177. https://doi.org/10.1080/1065657X.2016.1249314

    Article  CAS  Google Scholar 

  • Amouei, A. I., Yousefi, Z., & Khosravi, T. (2017). Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes. Journal of Environmental Health Science and Engineering, 15(5), 1–6. https://doi.org/10.1186/s40201-017-0269-z

    Article  CAS  Google Scholar 

  • Angin, I., Aslantas, R., Kose, M., Karakurt, H., & Ozkan, G. (2012). Changes in chemical properties of soil and sour cherry as a result of sewage sludge application. Horticultural Science, (Prague), 39, 61–66. https://doi.org/10.17221/4/2011-HORTSCI

    Article  CAS  Google Scholar 

  • Ansari, A. A., & Sukhraj, K. (2010). Effect of vermiwash and vermicompost on soil parameters and productivity of Okra (Abelmoschus esculentus) in Guyana. African Journal of Agricultural Research, 5, 1794–1798. https://doi.org/10.5897/AJAR09.107

    Article  Google Scholar 

  • Arancon, N. Q., Edwards, C. A., Babenko, A., Cannon, J., Galvis, P., & Metzger, J. D. (2008). Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of Petunias in the greenhouse. Journal of Applied Ecology, 39(1), 91–99. https://doi.org/10.1016/j.apsoil.2007.11.010

    Article  Google Scholar 

  • Arancon, N. Q., Galvis, P., Edwards, C. A., & Yardim, E. (2003). The trophic diversity of nematode communities in soils treated with vermicompost. Pedobiología, 47, 736–740. https://doi.org/10.1163/15685411-bja10094

    Article  CAS  Google Scholar 

  • Arancon, N. Q., Edwards, C. A., Atiyeh, R., & Metzger, J. D. (2004). Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresource Technology, 93(2), 139–44. https://doi.org/10.1016/j.biortech.2003.10.015

    Article  CAS  Google Scholar 

  • Arancon, N. Q., Edwards, C. I., & Bierman, P. (2006a). Influences of vermicomposts on field strawberries-2: Effects on soil microbiological and chemical properties. Bioresource Technology, 97, 831–840. https://doi.org/10.1016/j.biortech.2005.04.016

    Article  CAS  Google Scholar 

  • Arancon, N. Q., Edwards, C. A., Bierman, P., Metzger, J. D., & Lucht, C. (2005). Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia, 49, 297–306. https://doi.org/10.1016/j.pedobi.2005.02.001

    Article  CAS  Google Scholar 

  • Arancon, N. Q., Edwards, C. A., & Bierman, P. (2006b). Influences of vermicomposts on field strawberries: Part 2. Effects on soil microbiological and chemical properties. Bioresource Technology, 97, 831–840. https://doi.org/10.1016/j.biortech.2005.04.016

    Article  CAS  Google Scholar 

  • Aremu, A. O., Masondo, N. A., & Van Staden, J. (2014). Physiological and phytochemical responses of three nutrient-stressed bulbous plants subjected to vermicompost leachate treatment. Acta Physiologiae Plantarum, 36(3), 721–731. https://doi.org/10.1007/s11738-013-1450-3

    Article  CAS  Google Scholar 

  • Argüello, J.A., Seisdedos, L., Díaz Goldfarb, M.C., Fabio, E.A., Núñez, S.B., & Ledesma, A. (2013).Anatomophysiological modifications induced by solid agricultural waste (vermicompost) in Lettuce seedlings (Lactuca sativa L). 82: 289–295.

  • Asami, D. K., Hong, Y. J., Barrett, D. M., & Mitchel, A. E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air dried Marionberry, strawberry, and corn using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51, 1237–1241. https://doi.org/10.1021/jf020635c

    Article  CAS  Google Scholar 

  • Asgharipour, M. R. (2012). Effect of vermicompost produced from municipal solid waste on growth and yield of Isabgol (Plantago ovata Forsk) and Cumin (Cuminum cyminum). Journal of Medicinal Plants Research., 6(9), 1612–1618. https://doi.org/10.5897/JMPR11.1263

    Article  Google Scholar 

  • Aslam, Z., & Ahmad, A. (2020). Effects of vermicompost, vermi-tea and chemical fertilizer on morpho-physiological characteristics of maize (Zea mays L.) in Suleymanpasa District, Tekirdag of Turkey. Journal of Innovative Sciences, 6(1), 41–46.

    Article  CAS  Google Scholar 

  • Aslam, Z., Ahmad, A., Idrees, M., Iqbal, N., Akbar, G., Ali, U., Ibrahim, M. U., Bellitürk, K., Naeem, S., Nawaz, M., Nadeem, M., Waqas, M., Rehman, W. U., & Sajjad, M. (2020). Comparative analysis of nutritional sources on the morpho-physiological characteristics of mung bean (Vigna radiata). International Journal of Agriculture and Food Science, 4(3), 314–322.

    Article  Google Scholar 

  • Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q., & Metzger, J. D. (2002). The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology, 84, 7–14. https://doi.org/10.1016/s0960-8524(02)00017-2

    Article  CAS  Google Scholar 

  • Atmaca, L., Tüzel, Y., & Öztekin, G. B. (2014). Influences of vermicompost as a seedling growth medium on organic greenhouse cucumber production. Acta Horticultrae, 1041, 37–46. https://doi.org/10.17660/ActaHortic.2014.1041.2

    Article  Google Scholar 

  • Ayyobi, H., Olfati, J. A., & Peyvast, G. A. (2014). The effects of cow manure vermicompost and municipal solid waste compost on peppermint (Mentha piperita L.) in Torbat-e-Jam and Rasht regions of Iran. International Journal of Recycling of Organic Waste in Agriculture, 3, 147–153. https://doi.org/10.1007/s40093-014-0077-8

    Article  Google Scholar 

  • Azarmi, R., Giglou, M. T., & Hajieghrari, B. (2009). The effect of sheep-manure vermicompost on quantitative and qualitative properties of cucumber (Cucumis sativus L.) grown in the greenhouse. African Journal of Biotechnology, 8(19), 4953–4957. https://doi.org/10.4314/ajb.v8i19.65198

    Article  Google Scholar 

  • Babu, S., Singh, R., Avasthe, R.K., Yadav, G.S., Chettri, T.K., & Rajkhowa, D.J. (2016). Productivity, profitability and energetics of buckwheat (Fagopyrum sp.) cultivars as influenced by varying levels of vermicompost in acidic soils of Sikkim Himalayas, India. Indian Journal of Agricultural Science, 86, 844–852. URL : http://epubs.icar.org.in/.../59726.

  • Baca, M. T., Fornasier, F., & de Nobili, M. (1992). Mineralization and humification pathways in two composting processes applied to cotton wastes. Journal of Fermentation and Bioengineering, 74, 179–184. https://doi.org/10.1016/0922-338X(92)90080-E

    Article  CAS  Google Scholar 

  • Baghel, B., Sahu, R., & Pandey, D. (2018). Vermicomposting an economical enterprise for nutrient and waste management for rural agriculture. International Journal of Current Microbiology and Applied Sciences, 7, 3754–3758. https://doi.org/10.20546/ijcmas.2018.702.444.

    Article  CAS  Google Scholar 

  • Bajeli, J., Tripathi, S., Kumar, A., & Upadhyay, R. K. (2016). Organic manures a convincing source for quality production of Japanese mint (Mentha arvensis L.). Industrial Crops and Products, 83, 603–606. https://doi.org/10.1016/j.indcrop.2015.12.064

    Article  Google Scholar 

  • Baldotto, L. E. B., Silva, L. G., Jr., Canellas, L. P., Olivares, F. L., & Baldotto, M. A. (2012). Initial growth of maize in response to application of rock phosphate, vermicompost and endophytic bacteria. Revista Ceres, 59, 262–270.

    Article  Google Scholar 

  • Batham, M., Arya, R., & Tiwari, A. (2014). Time efficient co-composting of water hyacinth and industrial wastes by microbial degradation and subsequent vermicomposting. Journal of Bioremediation & Biodegradation, 5(3), 222. https://doi.org/10.4172/2155-6199.1000222

    Article  CAS  Google Scholar 

  • Beykkhormizi, A., Abrishamchi, P., Ganjeali, A., & Parsa, M. (2016). Effect of vermicompost on some morphological, physiological and biochemical traits of bean (Phaseolus vulgaris L.) under salinity stress. Journal of Plant Nutrition, 39, 883–893. https://doi.org/10.1080/01904167.2015.1109104

    Article  CAS  Google Scholar 

  • Bhadauria, T., Kumar, P., Maikhuri, R., & Saxena, K. G. (2014). Effect of Application of vermicompost and conventional compost derived from different residues on pea crop production and soil faunal diversity in agricultural system in garhwal himalayas India. Natural Science, 6, 433–446. https://doi.org/10.4236/ns.2014.66042

    Article  Google Scholar 

  • Bhattacharyya, R., Ghosh, B. N., Mishra, P. K., Mandal, B., Rao, C. S., Sarkar, D., Das, K., Anil, M., Lalitha, K. S., Hati, K. M., & Franzluebbers, A. J. (2015). Soil degradation in India: Challenges and potential solutions. Sustainability, 7, 3528–3570. https://doi.org/10.3390/su7043528

    Article  Google Scholar 

  • Bidabadi, S. S., Dehghanipoodeh, S., & Wright, G. C. (2017). Vermicompost leachate reduces some negative effects of salt stress in pomegranate. International Journal of Recycling of Organic Waste in Agriculture, 6, 255–263. https://doi.org/10.1007/s40093-017-0173-7

    Article  Google Scholar 

  • Blouin, M., Barrere, J., Meyer, N., Lartigue, S., Barot, S., & Mathieu, J. (2019). Vermicompost significantly affects plant growth A meta-analysis. Agronomy for Sustainable Development., 6, 87. https://doi.org/10.1007/s13593-019-0579-x

    Article  CAS  Google Scholar 

  • Broz, A., Verma, P., Appel, C., Yost, J., Stubler, C., & Hurley, S. (2017). Nitrogen dynamics of strawberry cultivation in vermicompost-amended systems. Compost Science & Utilization, 25(3), 194–205. https://doi.org/10.1080/1065657X.2016.1277806

    Article  CAS  Google Scholar 

  • Buckerfield, J. C., Flavel, T. C., Lee, K. E., & Webster, K. A. (1999). Earthworms and waste management-vermicompost in solid and liquid forms as a plant-growth promoter. Pedobiologia, 43, 753–759.

    Google Scholar 

  • Cai, F., Liao, Z., Zhang, J., Kong, W., & He, C. (2003). Effect of ecological organic fertilizer on tomato bacterial wilt and soil microbial diversities. Chinese Journal of Applied Ecology, 14(3), 349–353.

    Google Scholar 

  • Canellas, L. P., Olivares, F. L., Okorokova-Façanha, A. L., & Façanha, A. R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiology, 130(4), 1951–1957. https://doi.org/10.1104/pp.007088

    Article  CAS  Google Scholar 

  • Canfora, L., Malusà, E., Salvati, L., Renzi, G., Petrarulo, M., & Benedetti, A. (2015). Short-term impact of two liquid organic fertilizers on Solanum lycopersicum L. rhizosphere Eubacteria and Archaea diversity. Applied Soil Ecology, 88, 50–59. https://doi.org/10.1016/j.apsoil.2014.11.017

    Article  Google Scholar 

  • Cardoza, Y., & Buhler, W. G. (2012). Soil organic amendment impacts on corn resistance to Helicoverpa zea: Constitutive or induced? Pedobiologia, 55(6), 343–347. https://doi.org/10.1016/j.pedobi.2012.08.002

    Article  Google Scholar 

  • Cardoza, Y. J. (2011). Arabidopsis thaliana resistance to insects, mediated by an earthworm-produced organic soil amendment. Pest Management Science, 67, 233–238. https://doi.org/10.1002/ps.2059

    Article  CAS  Google Scholar 

  • Castellanos, J. Z., Cano-Ríos, P., García-Carrillo, E. M., Olalde-Portugal, V., Preciado-Rangel, P., Ríos-Plaza, J. L., & García-Hernández, J. L. (2017). Hot Pepper (Capsicum annuum L.) growth, fruit yield, and quality using organic sources of nutrients. Compost science & Utilization, 25(sup1), S70–S77. https://doi.org/10.1080/1065657X.2017.1362673

    Article  CAS  Google Scholar 

  • Castillo, J. M., Beguet, J., Martin-Laurent, F., & Romero, E. (2016). Multidisciplinary assessment of pesticide mitigation in soil amended with vermicomposted agroindustrial wastes. Journal of Hazardous Materials, 304, 379–387. https://doi.org/10.1016/j.jhazmat.2015.10.056

    Article  CAS  Google Scholar 

  • Castoldi, G., Freiberger, M. B., Pivetta, L. A., Pivetta, L. G., & Echer, M. D. M. (2014). Alternative substrates in the production of Lettuce seedlings and their productivity in the field. Revista Ciência Agronomica, 45, 299–304. https://doi.org/10.1590/S1806-66902014000200010

    Article  Google Scholar 

  • Chamani, E., Yoyce, D. C., & Reihanttabar, A. (2008). Vermicompost effects on growth and flowering of Petunia hybrid ‘Dream Neon Rose. American-Eurasian Journal of Agricultural and Environmental Science, 3, 206–512.

    Google Scholar 

  • Chaher, N. E. H., Nassour, A., Hamdi, M., & Nelles, M. (2021). Digestate post-treatment and upcycling: unconventional moisturizing agent for food waste in-vessel composting. Waste and Biomass Valorization, 6, 1–15.

    Google Scholar 

  • Chaoui, H., Edwards, C.A., Brickner, M., Lee,S., & Arancon, N. (2002). Suppression of the plant diseases, Pythium (damping off), Rhizoctonia (root rot) and Verticillum (wilt) by Vermicomposts. In: Proceedings of Brighton Crop Protection Conference- Pests and Diseases, 18–21 November 2002, Brighton, U.K., vol. II, 8B-3,pp.711–716.

  • Chellachamy, V., & Dinakaran, G. (2015). A comparative study on vermicomposting of epicarp of fruits (Pomegranate and Sathukudi) using earthworm Eisenia foetida. International Journal of Recent Scientific Research, 6(3), 3125–3129.

    Google Scholar 

  • Chinsamy, M., Kulkarni, M. G., & Staden, J. V. (2013). Garden-waste-vermicompost leachate alleviates salinity stress in tomato seedlings by mobilizing salt tolerance mechanisms. Plant Growth Regulation, 71, 41–47.

    Article  CAS  Google Scholar 

  • Chinsamy, M., Kulkarni, M. G., & Staden, J. V. (2014). Vermicompost leachate reduces temperature and water stress effects in Tomato seedlings. HortScience, 49(9), 1183–1187. https://doi.org/10.21273/HORTSCI.49.9.1183

    Article  Google Scholar 

  • Coria-Cayupán, Y. S., De Pinto, M. I. S., & Nazareno, M. A. (2009). Variations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L) cultivated in soils with different fertilization treatments. Journal of Agricultural and Food Chemistry, 57(21), 10122–10129. https://doi.org/10.1021/jf903019d

    Article  CAS  Google Scholar 

  • Dadkhah, A., Dashti, M., Rassam, Gh., & Fatem, F. (2017). Effect of organic and biological fertilizers on growth, yield, and essential oil of Salvia leriifolia. Zeitschrift fur Arznei- und Gewurzpflanzen, ERLING Verlag GmbH & Co. KG. 22(1), 9–13.

  • Das, S., Teja, K. C., Duary, B., Agrawal, P. K., & Bhattacharya, S. S. (2016). Impact of nutrient management, soil type and location on the accumulation of capsaicin in Capsicum chinense (Jacq.): One of the hottest Chili in the world. Scientia Horticulturae, 213, 354–366. https://doi.org/10.1016/j.scienta.2016.10.041

    Article  CAS  Google Scholar 

  • Demir, Z. (2020). Alleviation of adverse effects of sodium on soil physicochemical properties by application of vermicompost. Compost Science & Utilization, 28(2), 100–116. https://doi.org/10.1080/1065657X.2020.1789011

    Article  CAS  Google Scholar 

  • Densilin, D. M., Srinivasan, S., Manju, P., & Sudha, S. (2011). Effect of individual and combined application of biofertilizers, inorganic fertilizer and vermicompost on the biochemical constituents of chilli (Ns - 1701). Journal of Biofertilizers & Biopesticides, 2, 106. https://doi.org/10.4172/2155-6202.1000106

    Article  Google Scholar 

  • Dinani, E. T., Asghari, H. R., Gholami, A., & Masoumi, A. (2014). Replacement of vermicompost for nitrogen fertilizer as a source of nitrogen on two cultivars of coriander (Coriandrum sativum). Acta Horticulturae, 1018, 343–350. https://doi.org/10.17660/ActaHortic.2014.1018.36

    Article  Google Scholar 

  • Dinesh, R., Srinivasan, V., Hamza, S., & Manjusha, A. (2010). Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresource Technology, 101, 4697–4702. https://doi.org/10.1016/j.biortech.2010.01.108

    Article  CAS  Google Scholar 

  • Doan, T. T., Henry-des-Tureaux, T., Rumpel, C., Janeau, J. L., & Jouquet, P. (2015). Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three-year mesocosm experiment. Science of Total Environment, 514, 147–154. https://doi.org/10.1016/j.scitotenv.2015.02.005 Epub 2015 Feb 5.

    Article  CAS  Google Scholar 

  • Dominguez, J., Aira, M., Kolbe, A. R., Gomez-Brandon, M., & Perez-Losada, M. (2019). Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost. Scientific Reports, 9, 9657. https://doi.org/10.1038/s41598-019-46018-w.

    Article  CAS  Google Scholar 

  • Dong, W., Zhang, X., Wang, H., Dai, X., Sun, X., Qiu, W., & Yang, F. (2012). Effect of different fertilizerapplication on the soil fertility of paddy soils in red soil region of southern China. PLoS ONE, 7(9), e44504. https://doi.org/10.1371/journal.pone.0044504

    Article  CAS  Google Scholar 

  • Duggan, T., & Jones, P. (2016). Lettuce (Lactuca sativa ’Webb’s Wonderful’) shoot and root growth in different grades of compost and vermicomposted compost. Acta Horticulturae, 1146, 33–40.

    Article  Google Scholar 

  • Edwards, C. A., & Burrows, I. (1988). The potential of earthworm composts as plant growth media. In C. A. Edwards & E. Neuhauser (Eds.), Earthworms in waste and environmental management (pp. 21–32). SPB Academic Press.

    Google Scholar 

  • Edwards, C. A., Arancon, N. Q., Vasko-Bennett, M., Askar, A., Keeney, G., & Little, B. (2009). Suppression of green peach aphid (Myzus persicae) (Sulz.), citrus mealy bug (Planococcus citri) (Risso), and two spotted spider mite (Tetranychus urticae) (Koch.) attacks on tomatoes and cucumbers by aqueous extracts from vermicomposts. Crop Protection, 29(1), 80–93. https://doi.org/10.1016/j.cropro.2009.08.011

    Article  Google Scholar 

  • Edwards, C.A., Norman, Q.A., & Sherman, R. (2011). Vermiculture Technology, Earthworms, Organic Waste and Environmental Management; CRC Press: Boca Raton, FL, USA, 17–19.

  • Erdal, I., & Ekinci, K. (2017). Effects of vermicomposts obtained from rose oil processing wastes, dairy manure, municipal open market wastes and straw on plant growth, mineral nutrition, and nutrient uptake of corn. Journal of Plant Nutrition, 40, 2200–2208. https://doi.org/10.1080/01904167.2017.1346677

    Article  CAS  Google Scholar 

  • Erdal, I., & Ekinci, K. (2020). Effects of composts and vermicomposts obtained from forced aerated and mechanically turned composting method on growth, mineral nutrition and nutrient uptake of wheat. Journal of Plant Nutrition, 43(9), 1343–1355. https://doi.org/10.1080/01904167.2020.1727506

    Article  CAS  Google Scholar 

  • Ersahin, Y. S., Haktanir, K., & Yanar, Y. (2009). Vermicompost suppresses Rhizoctonia solani Kühn in Cucumber seedlings. Journal of Plant Diseases and Protection, 116, 182–188. https://doi.org/10.1007/BF03356308

    Article  CAS  Google Scholar 

  • Esakkiammal, B., Lakshmibai, L., & Sornalatha, S. (2015). Studies on the combined effect of vermicompost and vermiwash prepared from organic wastes by earthworms on the growth and yield parameters of Dolichous lab lab Asian. Journal of Pharmaceutical Science Technology, 5(4), 246–252.

    Google Scholar 

  • Esmaielpour, B., Rahmanian, M., Heidarpour, O., & Shahriari, M. K. (2017). Effect of vermicompost and spent mushroom compost on the nutrient and essential oil composition of basil (Ocimum basilicum L.). Journal of Essential Oil Bearing Plants, 20(5), 1283–1292. https://doi.org/10.1080/0972060X.2017.1396931

    Article  CAS  Google Scholar 

  • Frederickson, J., Howell, G., & Hobson, A. M. (2007). Effect of pre-composting and vermicomposting on compost characteristics. European Journal of Soil Biology, 43, S320–S326. https://doi.org/10.1016/J.EJSOBI.2007.08.032

    Article  CAS  Google Scholar 

  • Ganapathi, T., & Dharmatti, P. R. (2018). Effect of integrated nutrient modules on growth, yield and quality parameters of banana cv. grand naine. International Journal of Current Microbiology and Applied Sciences, 7(1), 1974–1984. https://doi.org/10.20546/ijcmas.2018.701.239

    Article  CAS  Google Scholar 

  • Gandhi, M., Sangwan, V., Kapoor, K. K., & Dilbaghi, N. (1997). Composting of household wastes with and without earthworms. Environment and Ecology, 15, 432–434. https://doi.org/10.4236/aces.2018.84019

    Article  CAS  Google Scholar 

  • Ganjali, A., & Kaykhaii, M. (2017). Investigating the essential oil composition of Rosmarinus officinalis before and after fertilizing with vermicompost. Journal of Essential Oil Bearing Plants, 20(5), 1413–1417. https://doi.org/10.1080/0972060X.2017.1383189

    Article  CAS  Google Scholar 

  • Geethakarthi, A. (2021). Novel approaches towards sustainable management of an agricultural residue-the rice husk. Nature Environment & Pollution Technology, 20(1), 349–355.

    Article  CAS  Google Scholar 

  • George, S., Giraddi, R. S., & Patil, R. H. (2007). Utility of vermiwash for the management of Thrips and Mites on chilli (Capsicum annuum L.) amended with soil organics. Karnataka Journal of Agricultural Science., 20, 657–659.

    Google Scholar 

  • Gholami, H., Saharkhiza, M. J., & Nadafa, F. R. F. A. G. F. (2018). Humic acid and vermicompost increased bioactive components, antioxidant activity and herb yield of Chicory (Cichorium intybus L.). Biocatalysis and Agricultural Biotechnology, 14, 286–292.

    Article  Google Scholar 

  • Giraddi, R. S., Smitha, M. S.& Channappagoudar, B. B.(2003). Organic amendments for the management of chilli (cv. Byadagi kaddi) insect pests and their influence on crop vigour. Proceedings of National Seminar on Perspective in Spices, Medicinal and Aromatic Plants, ICAR Complex, Goa,27–29 November, 2003.

  • Giuffré, L., Giardina, E., Ciarlo, E., Ríos, P., & Vella, L. (2015). A Study on the effect of soil amendments and environmental conditions of stevia rebaudiana In Urban Soils of Buenos Aires. Argentina. Current Agriculture Research Journal, 3(1), 2321–9971.

    Google Scholar 

  • Gómez, J., Archila, M., Maldonado, J., Saenz, S., León, H., Valdiviezo, V., & Miceli, F. (2017). Vermicompost and vermiwash minimized the influence of salinity stress on growth parameters in potato plants. Compost Science & Utilization, 25(4), 282–287. https://doi.org/10.1080/1065657X.2017.1333932

    Article  Google Scholar 

  • Goswami, L., Nath, A., Sutradhar, S., Bhattacharya, S. S., Kalamdhad, A., Vellingiri, K., & Kim, K. H. (2017). Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. Journal of Environmental Management, 200, 243–252. https://doi.org/10.1016/j.jenvman.2017.05.073

    Article  Google Scholar 

  • Govindappa, M., Rajan, S., & Manoharan, A. (2015). Importance of application of vermicompost and cultural practices on growth and development of young arabica coffee (Coffee arabica). International Journal of Scientific Research and Education., 3(1), 2778–2787.

    Google Scholar 

  • Guo, L., Wu, G., Li, Y., Li, C., Liu, W., Meng, J., Liu, H., Yu, X., & Jiang, G. (2016). Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat-maize rotation system in Eastern China. Soil Tillage Research, 156, 140–147. https://doi.org/10.1016/j.still.2015.10.010

    Article  Google Scholar 

  • Gupta, R., Yadav, A., & Garg, V. K. (2014). Influence of vermicompost application in potting media on growth and flowering of marigold crop. International Journal of Recycling of Organic Waste in Agriculture, 3, 47. https://doi.org/10.1007/s40093-014-0047-1

    Article  Google Scholar 

  • Gutiérrez-Miceli, F. A., Santiago-Borraz, J., Molina, J. A. M., Nafate, C. C., Abud- Archila, M., Llaven, M. A. O., Rincón-Rosales, R., & Dendooven, L. (2007). Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, 98(15), 2781–2786.

    Article  Google Scholar 

  • Hadi, M., Darz, M.T., Ghandehari, Z., & Riazi, G. (2011). Effects of vermicompost and amino acids on the flower yield and essential oil production from Matricaria chamomile L. Journal of Medicinal Plants Research, 5, 5611–5617. http://www.academicjournals.org/JMPR

  • Hameeda, B., Harini, G., Rupela, O. P., & Reddy, G. (2007). Effect of composts or vermicomposts on sorghum growth and Mycorrhizal colonization. African Journal of Biotechnology, 6, 9–12.

    Google Scholar 

  • Hawkins, H., & Lewis, O. A. M. (1993). Effect of NaCl salinity, nitrogen form, calcium and potassium concentration on nitrogen uptake and kinetics in Triticum aestivum L Cv. Gametos. New Phytologist, 124(1), 171–177. https://doi.org/10.1111/j.1469-8137.1993.tb03806.x

    Article  CAS  Google Scholar 

  • Herencia, J. F., Ruiz, J. C., Melero, S., Garcia-Galavis, P. A., & Maqueda, C. (2007). A short- term comparison of organic v. conventional agriculture in a silty loam soil using two organic amendments. Journal of Agricultural Science, 146, 677–687. https://doi.org/10.1017/S0021859608008071

    Article  CAS  Google Scholar 

  • Hilhorst, H.W.M., & Karssen, C.M. (2000). Effect of chemical environment on seed germination. In Seeds: The Ecology of Regeneration in Plant Communities; Fenner, M., Ed.; CABI publishing: Wallingford, UK. pp. 293–310.

  • Hossain, A., Bhatt, R., Sarkar, S., Barman, M., Majumder, D., Saha, S., ... & Meena, R. S. (2021). Cost-Effective and Eco-Friendly Agricultural Technologies in Rice-Wheat Cropping Systems for Food and Environmental Security. In Sustainable Intensification for Agroecosystem Services and Management (pp. 69–96). Springer, Singapore.

  • Hossaini, S. M., Aghaalikhani, M., Sefidkon, F., & Ghalavand, A. (2016). Effect of vermicompost and planting pattern. On oil production in Satureja sahendica L. under competition with pigweed (Amaranthus retroflexus L.). Journal of Essential Oil-Bearing Plants, 19, 606–615. https://doi.org/10.1080/0972060X.2014.971070

    Article  CAS  Google Scholar 

  • Hosseinzadeh S.R., & Ahmadpour, R. (2018). Evaluation of vermicompost fertilizer application on growth, nutrient uptake and photosynthetic pigments of lentil (Lens culinaris Medik.) under moisture deficiency conditions. Compost Science & Utilization., 25, Issue sup: 2015 International Composting Conference, Beijing, China. 1276–1284.

  • Hosseinzadeh, S. R., Amiri, H., & Ismail, A. (2017). Nutrition and biochemical responses of Chickpea (Cicer arietinum L.) to vermicompost fertilizer and water deficit stress. Journal of Plant Nutrition, 40, 2259–2268. https://doi.org/10.1080/01904167.2016.1262412

    Article  CAS  Google Scholar 

  • Hussain, N., Abbasi, T., & Abbasi, S. A. (2017a). Detoxification of Parthenium (Parthenium hysterophorus) and its metamorphosis into an organic fertilizer and biopesticide. Bioresources and Bioprocessing, 4, 26. https://doi.org/10.1186/s40643-017-0156-6

    Article  Google Scholar 

  • Hussain, N., Abbasi, T., & Abbasi, S. A. (2017b). Enhancement in the productivity of ladies finger (Abelmoschus esculentus) with concomitant pest control by the vermicompost of the weed Salvinia (Salvinia molesta, Mitchell). International Journal of Recycling Organic Waste Agriculture, 6(4), 335–343. https://doi.org/10.1007/s40093-017-0181-7

    Article  Google Scholar 

  • Hussain, N., Abbasi, T., & Abbasi, S. A. (2016). Vermicomposting-mediated conversion of the toxic and allelopathic weed Ipomoea into a potent fertilizer. Process Safety Environment Protection, 103, 97–106. https://doi.org/10.1016/j.jenvman.2016.05.013

    Article  CAS  Google Scholar 

  • Hussain, N., & Abbasi, S. A. (2018). Efficacy of the vermicomposts of different organic wastes as ‘‘Clean” Fertilizers: State-of-the-Art. Sustainability, 10, 1–63. https://doi.org/10.3390/su10041205

    Article  CAS  Google Scholar 

  • Ibrahim, M. M., Mahmoud, E. K., & Ibrahim, D. A. (2015). Effects of vermicompost and water treatment residuals on soil physical properties and wheat yield. International Agrophysics, 29, 157–164. https://doi.org/10.1515/intag-2015-0029

    Article  CAS  Google Scholar 

  • Indikumari Devi, T., Haripriya, K., & Rajeswari, R. (2016). Effect of organic nutrients and biostimulants on yield characters of beetroot (Beta vulgaris L.). Plant Archives, 2016, 399–402.

    Google Scholar 

  • Jabeen, N., & Ahmad, R. (2017). Growth response and nitrogen metabolism of sunflower (Helianthus annuus L.) to vermicompost and biogas slurry under salinity stress. Journal of Plant Nutrition, 40(1), 104–114. https://doi.org/10.1080/01904167.2016.1201495

    Article  CAS  Google Scholar 

  • Jaikishun, S., Hunte, N., Ansari, A. A., & Gomathinayagam, S. (2014). Effect of vermiwash from different sources (Bagasse, Neem, Paddy Straw in different combinations) in controlling fungal diseases and growth of tomato (Lycopersicon esculentum) Fruits in Guyana. Online Journal of Biological Sciences, 14(8), 501–507.

    Article  CAS  Google Scholar 

  • Javanmardi, J., & Ghorbani, E. (2012). Effects of chicken manure and vermicompost teas on herb yield, secondary metabolites and antioxidant activity of lemon basil (Ocimum x citriodorum Vis.). Advances in Horticultural Science, 26, 151–157. https://doi.org/10.13128/ahs-22670

    Article  Google Scholar 

  • Jindo, K., Chocano, C., De Aguilar, J. M., Gonzalez, D., Hernandez, T., & Garcia, C. (2016). Impact of compost application during 5 years on crop production, soil microbial activity, carbon fraction, and humification process. Communications in Soil Science and Plant Analysis, 47, 1907–1919. https://doi.org/10.1080/00103624.2016.1206922

    Article  CAS  Google Scholar 

  • Joshi, R., Singh, J., & Vig, A. P. (2013). Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Reviews in Environmental Science and Biotechnology, 14, 137–159. https://doi.org/10.1007/s11157-014-9347-1

    Article  CAS  Google Scholar 

  • K¨onigshofer, H., & L¨oppert, H. G. (2015). Regulation of invertase activity in different root zones of wheat (Triticum aestivum L.) seedlings in the course of osmotic adjustment under water deficit conditions. Journal of Plant Physiology, 183, 130–137. https://doi.org/10.1016/j.jplph.2015.06.005

    Article  CAS  Google Scholar 

  • Kadam, D., & Pathade, G. (2014). Effect of tendu (Diospyros melanoxylon RoxB.) leaf vermicompost on growth and yield of French bean (Phaseolus vulgaris L.). International Journal on Recycling of Organic Waste in Agriculture, 44(3), 1–7. https://doi.org/10.1007/s40093-014-0044-4

    Article  Google Scholar 

  • Kalantari, S., Ardalan, M. M., Alikhani, H. A., & Shorafa, M. (2011). Comparison of compost and vermicompost of yard leaf manure and inorganic fertilizer on yield of corn. Communications in Soil Science and Plant Analysis, 42, 123–131. https://doi.org/10.1080/00103624.2011.535063

    Article  CAS  Google Scholar 

  • Kangmin, Li., Peizhen, Li., & Hongtao, Li. (2010). Earthworms helping economy, improving ecology and protecting health. Int. J. of global environmental issues; In Rajiv K. Sinha et al. (Eds.), Special issue on “Vermiculture Tecnology”,10, 354–365. DOI:https://doi.org/10.1504/IJGENVI.2010.037276.

  • Karagöz, F. P., Dursun, A., Tekiner, N., Kul, R., & Kotan, R. (2019). Efficacy of vermicompost and/or plant growth promoting bacteria on the plant growth and development in gladiolus. Ornamental Horticulture. https://doi.org/10.14295/oh.v25i2.2023

    Article  Google Scholar 

  • Karlsons, A., Osvalde, A., Andersone Ozola, U., & Ievinsh, G. (2016). Vermicompost from municipal sewage sludge affects growth and mineral nutrition of winter rye (Secale cereale) plants. Journal of Plant Nutrition, 39, 765–780.

    Article  CAS  Google Scholar 

  • Karthikeyan, M., Hussain, N., Gajalakshmi, S., & Abbasi, S. A. (2014). Effect of vermicast generated form an allelopathic weed Lantana (Lantana camara) on seed germination, plant growth, and yield of cluster bean (Cyamopsis tetragonoloba). Environmental Science and Pollution Research, 21, 12539–12548. https://doi.org/10.1007/s11356-014-3103-5

    Article  CAS  Google Scholar 

  • Keutgen, A. J., & Pawelzik, E. (2008). Quality and nutritional value of strawberry fruit under long term salt stress. Food Chemistry, 107(4), 1413–1420. https://doi.org/10.1016/j.foodchem.2007.09.071

    Article  CAS  Google Scholar 

  • Khan, K., Pankaj, U., Verma, S. K., Gupta, A. K., Singh, R. P., & Verma, R. K. (2015). Bio-inoculants and vermicompost influence on yield, quality of Andrographis paniculata, and soil properties. Industrial Crops and Products, 70, 404–409.

    Article  Google Scholar 

  • Khosravi, A., Zarei, M., & Ronaghi, A. (2018). Effect of PGPR, Phosphate sources and vermicompost on growth and nutrients uptake by Lettuce in a calcareous soil. Journal of Plant Nutrition, 41(1), 80–89. https://doi.org/10.1080/01904167.2017.1381727

    Article  CAS  Google Scholar 

  • Khurmizi, A. B., Abrishamchi, P., Ganjeali, A., & Parsa, M. (2016). The Effect of vermicompost on salt tolerance of bean seedlings (Phaseolus vulgaris L.). Agroecology., 2(3), 474–485.

    Google Scholar 

  • Koul, O. (2008). Phytochemicals and insect control: An antifeedant approach. Critical Reviews in Plant Sciences, 27, 1–24. https://doi.org/10.1080/07352680802053908

    Article  CAS  Google Scholar 

  • Kumar, A., & Gupta, R. K. (2018). The effects of vermicompost on growth and yield parameters of vegetable crop radish (Raphnus sativus). Journal of Pharmacognosy and Phytochemistry, 7(2), 589–592.

    CAS  Google Scholar 

  • Kumar, R., Singh, M. K., Kumar, V., Verma, R. K., Kushwah, J. K., & Pal, M. (2015). Effect of nutrient supplementation through organic sources on growth, yield and quality of coriander (Coriandrum sativum L.). Indian Journal of Agricultural Research, 49, 278–281. https://doi.org/10.5958/0976-058X.2015.00045.1

    Article  Google Scholar 

  • Lazcano, C., Gómez-Brandón, M., & Domínguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72, 1013–1019. https://doi.org/10.1016/j.chemosphere.2008.04.016

    Article  CAS  Google Scholar 

  • León-Anzueto, E., Abud-Archila, M., Dendooven, L., Ventura-Canseco, L.M.C., & Gutiérrez-Miceli, F.A. (2011). Effect of vermicompost, worm-bed leachate and arbuscular mycorrizal fungi on Lemongrass (Cymbopogon citrates (DC) stapf.) growth and composition of its essential oil. Electronic Journal of Biotechnology, North America, 1424 10 2011. DOI: https://doi.org/10.2225/vol14-issue6-fulltext-9.

  • Li, S. Q., Ling, L., & Li, S. X. (2000). Review on the factors affecting soil microbial biomass nitrogen. Soil Environment, 9(2), 158–16.

    Google Scholar 

  • López-Gómez, B. F., Lara-Herrera, A., Bravo-Lozano, A. G., Lozano-Gutiérrez, J., Avelar-Mejía, J. J., Luna-Flores, M., & Llamas-Llamas, J. J. (2012). Improvement of plant growth and yield in pepper by vermicompost application, in greenhouse conditions. Acta Horticulturae, 947, 313–318. https://doi.org/10.17660/ActaHortic.2012.947.40

    Article  Google Scholar 

  • Luján-Hidalgo, M. C., PérezGómez, L. E., AbudArchila, M., MezaGordillo, R., RuizValdiviezo, V. M., Dendooven, L., & GutiérrezMiceli, F. A. (2015). Growth, phenolic content and antioxidant activity in chincuya (annona purpurea moc and sesse ex dunal) cultivated with vermicompost and phosphate rock. Compost Science & Utilization, 23, 276–283. https://doi.org/10.1080/1065657X.2015.1046617

    Article  CAS  Google Scholar 

  • Lv, Z., & Ma, Y. (2005). Effect of vermicompost on soil fertility and cabbage growth and Quality. Chinese Agricultural Science Bulletin, 12, 236–240. (in Chinese with English abstract).

    Google Scholar 

  • Mackay, A., Syers, J., Springett, J., & Gregg, P. (1982). Plant availability of phosphorus in superphosphate and a phosphate rock as influenced by earthworms. Soil Biology and Biochemistry, 14, 281–287. https://doi.org/10.1016/0038-0717(82)90038-4

    Article  Google Scholar 

  • Mafakheri, S., Hajivand, S., Zarrabi, M. M., & Arvane, A. (2016). Effect of bio and chemical fertilizers on the essential oil content and constituents of Melissa officinalis (Lemon Balm). Journal of Essential Oil Bearing Plant, 19, 1277–1285. https://doi.org/10.1080/0972060X.2014.983995

    Article  Google Scholar 

  • Mafakheri, S., Omidbaigi, R., Sefidkon, F., & Rejali, F. (2013). Effect of biofertilizers, vermicompost, azotobacter and biophosphate on the growth, nutrient uptake and essential oil content of dragonhead (Dracocephalum moldavica L.). Acta Horticulturae, 1013, 395–402. https://doi.org/10.17660/ActaHortic.2013.1013.49

    Article  Google Scholar 

  • Mahanta, K., Jha, D. K., Rajkhowa, D. J., & Kumar, M. (2012). Microbial enrichment of vermicompost prepared from different plant biomasses and their effect on rice (Oryza sativa L.) growth and soil fertility. Biological Agriculture and Horticulturae, 28, 241–250. https://doi.org/10.1080/01448765.2012.738556

    Article  Google Scholar 

  • Mahmoud, E. K., & Ibrahim, M. M. (2012). Effect of vermicompost and its mixtures with water treatment residuals on soil chemical properties and barley growth. Journal of Soil Science and Plant Nutrition, 12, 431–440. https://doi.org/10.4067/S0718-95162012005000005

    Article  Google Scholar 

  • Maie Mohsen, M. A., Abo Kora, H. A., & Abeer Kassem, H. M. (2016). Effect of vermicompost and calcium silicate to reduce the soil salinity on growth and oil determinations of marjoram plant. International Journal of ChemTech Research, 9, 235–262.

    Google Scholar 

  • Maji, D., Misra, P., Singh, S., & Kalra, A. (2017). Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Applied Soil Ecology, 110, 97–108. https://doi.org/10.1016/j.apsoil.2016.10.008

    Article  Google Scholar 

  • Makkar, C., Singh, J., & Parkash, C. (2017). Vermicompost and vermiwash as supplement to improve seedling, plant growth and yield in Linum usitassimum L. for organic agriculture. International Journal of Recycling of Organic Waste and Agriculture, 6, 203–218. https://doi.org/10.1007/s40093-017-0168-4

    Article  Google Scholar 

  • Makkar, C., Singh, J., & Parkash, C. (2018). Comparative response of two varieties of Linum usitassimum L. to Vermicompost, Vermiwash and INM. International Journal of Research in Advent Technology., 6(8), 2095–2104.

    Google Scholar 

  • Maltas, A., Tavali, I., Uz, I., & Kaplan, M. (2017). Vermicompost application in red cabbage (Brassica oleracea var. capitata f. rubra) cultivation. Mediterranean agricultural sciences, 30(2), 155–161.

    Google Scholar 

  • Manikandan, T., Arun, M., Meyyappan, P., & Kathiravan, C. (2018). An Experimental study to assess vermicomposting by using vegetable waste and fruit waste. International Research Journal of Engineering and Technology, 5(3), 216–220.

    Google Scholar 

  • Manivannan, K., & Selvamani, P. (2014). Influence of organic inputs on the yield and quality of fruits in banana cultivar ‘Poovan’ (syn. Mysore AAB). Acta Horticulturae, 1018, 139–148. https://doi.org/10.17660/ActaHortic.2014.1018.12

    Article  Google Scholar 

  • Marathe, R. A., Sharma, J., Murkute, A. A., & Babu, D. K. (2017). Response of nutrient supplementation through organics on growth, yield and quality of pomegranate. Scientia Horticulturae, 214, 114–121. https://doi.org/10.1016/j.scienta.2016.11.024

    Article  CAS  Google Scholar 

  • Marinari, S., Masciandaro, G., Ceccanti, B., & Grego, S. (2000). Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresource Technology, 72, 9–17. https://doi.org/10.1016/S0960-8524(99)00094-2

    Article  CAS  Google Scholar 

  • Mashur, M., Bilad, M. R., Hunaepi, H., Huda, N., & Roslan, J. (2021). Formulation of organic wastes as growth media for cultivation of earthworm nutrient-rich eisenia foetida. Sustainability, 13(18), 10322.

    Article  CAS  Google Scholar 

  • Mir, M., Sharma, S. D., & Kumar, P. (2015). Nutrient dynamics: Effect on cropping behaviour, Nutrient profile and quality attributes of Pomegranate (Punica Granatum L.) under rainfed agroclimatic conditions. Journal of Plant Nutrition, 38, 83–95. https://doi.org/10.1080/01904167.2014.920380

    Article  CAS  Google Scholar 

  • Moghadam, A. L., Ardebili, Z. O., & Saidi, F. (2012). Vermicompost induced changes in growth and development of Lilium Asiatic hybrid var Navona. African Journal of Agricultural Research, 7(17), 2609–2621. https://doi.org/10.5897/AJAR11.1806

    Article  Google Scholar 

  • Mohamadi, P., Razmjou, J., Naseri, B., & Hassanpour, M. (2017). Humic fertilizer and vermicompost applied to the soil can positively affect population growth parameters of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) on eggs of Tuta absoluta (Lepidoptera: Gelechiidae). Neotropical Entomology, 46, 678–684. https://doi.org/10.1007/s13744-017-0536-9

    Article  CAS  Google Scholar 

  • Mohammad, R. A. (2012). Effect of vermicompost produced from municipal solid waste on growth and yield of isabgol (Plantago ovata Forsk) and cumin (Cuminum cyminum). Journal of Medicinal Plants Research, 6(9), 1612–1618.

    Google Scholar 

  • Mondal, T., Datta, J. K., & Mondal, N. K. (2015). Influence of indigenous inputs on the properties of old alluvial soil in a mustard cropping system. Archives of Agronomy and Soil Science., 61, 1319–1332. https://doi.org/10.1080/03650340.2014.1000877

    Article  Google Scholar 

  • Moreno-Reséndez, A., & Solís-Morales, G. (2014). Development of Huizache (Acacia farnesiana) seedlings in substrates with vermicompost. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 20, 55–62. https://doi.org/10.21149/8414

    Article  Google Scholar 

  • Muktamar, Z., Sudjatmiko, S., Chozin, M., Setyowati, N., & Fahrurrozi, F. (2017). Sweet corn performance and its major nutrient uptake following application of vermicompost supplemented with liquid organic fertilizer. International Journal on Advanced Science Engineering and Information Technology, 7, 602–608.

    Article  Google Scholar 

  • Munnoli, P.M., Da Silva J.A.T., & Saroj, B. (2010). Dynamics of the soil-earthworm-plant relationship: a review, Dynamic soil, Dynamic plant.Special issue ll, vol 4, 1–21.

  • Mupambwa, H. A., Lukashe, N. S., & Mnkeni, P. N. S. (2016). Suitability of fly ash vermicompost as a component of pine bark growing media: Effects on media physicochemical properties and ornamental marigold (Tagetes spp.) growth and flowering. Compost Science and Utilization, 25(1), 48–61. https://doi.org/10.1080/1065657X.2016.1180270

    Article  CAS  Google Scholar 

  • Muscolo, A., Bovalo, F., Gionfriddo, F., & Nardi, S. (1999). Earthworm humic matter produces auxin-like effect on Daucus carota cell growth and nitrate metabolism. Soil Biology and Biochemistry, 31, 1303–1311.

    Article  CAS  Google Scholar 

  • Najar, I. A., Khan, A. B., & Hai, A. (2015). Effect of macrophyte vermicompost on growth and productivity of brinjal (Solanum melongena) under field conditions. International Journal of Recycling of Organic Waste Agriculture, 4, 73–83. https://doi.org/10.1007/s40093-015-0087-1

    Article  Google Scholar 

  • Nasab, M. V., Mobasser, H. R., & Ganjali, H. R. (2015). Effect of different levels of vermicompost on yield and quality of maize varieties. Biological forum An international journal, 7(1), 856–860.

    Google Scholar 

  • Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health, 148(4), 871.

    Google Scholar 

  • Nguyen, V. T., & Wang, C. H. (2017). Use of organic materials as growing media for honeydew melon seedlings in organic agriculture. Communications in Soil Science and Plant Analysis, 48(18), 2137–2147. https://doi.org/10.1080/00103624.2017.1407431

    Article  CAS  Google Scholar 

  • Niloofar, D., Sharafzadeh, S., & Bazrafshan, F. (2014). Influence of cow manure vermicompost on growth characteristics of German Chamomile. Cibtech Journal of Zoology, 3(1), 58–61.

    Google Scholar 

  • Nouriyani, H. (2018). Effect of vermicompost on morpho-physiological characteristics and yield of green bean (phaseolus vulgaris l) under drought stress condition. Journal of Agricultural Science and Sustainable Production, 28(1), 51–63.

    Google Scholar 

  • Oliveira, M. S., Campos, M. A., & Silva, F. S. (2015). Arbuscular Mycorrhizal fungi and vermicompost to maximize the production of foliar bio molecules in Passiflora alata Curtis seedlings. Journal of the Science of Food Agriculture, 95(3), 522–528. https://doi.org/10.1002/jsfa.6767

    Article  CAS  Google Scholar 

  • Omar, N. F., Hassan, S. A., Yusoff, U. K., Abdullah, N. A. P., Wahab, P. E. M., & Sinniah, U. R. (2012). Phenolics, flavonoids, antioxidant activity and cyanogenic glycosides of organic and mineral-base fertilized cassava tubers. Molecules, 17, 2378–2387. https://doi.org/10.3390/molecules17032378

    Article  CAS  Google Scholar 

  • Orsini, F., Maggio, A., Rouphael, Y., & Pascale, S. D. (2016). “Physiological quality” of organically grown vegetables. Scientia Horticulturae, 208, 131–139. https://doi.org/10.1016/j.scienta.2016.01.033

    Article  CAS  Google Scholar 

  • Packialakshmi, N., & Mahalakshmi, C. (2014). Effect of earthworm vermicompost and coelomic fluid treating on unfertile soil. Research Journal of Pharmaceutial, Biological and Chemical Sciences, 5, 1630–1636.

    Google Scholar 

  • Pandey, V., Patel, A., & Patra, D. D. (2015). Amelioration of mineral nutrition, productivity, antioxidant activity and aroma profile in marigold (Tagetes minuta L.) with organic and chemical fertilization. Industrial Crops and Products, 76, 378–385.

    Article  CAS  Google Scholar 

  • Pandey, V., Patel, A., & Patra, D. D. (2016). Integrated nutrient regimes ameliorate crop productivity, nutritive value, antioxidant activity and volatiles in basil (Ocimum basilicum L.). Industrial Crops and Products, 87, 124–131.

    Article  CAS  Google Scholar 

  • Papathanasiou, F., Papadopoulos, I., Tsakiris, I., & Tamoutsidis, E. (2013). Vermicompost as a soil supplement to improve growth, yield and quality of Lettuce (Lactuca sativa L.)” Journal of Food. Agriculture and Environment, 10, 677–682.

    Google Scholar 

  • Patel, D., & Saraf, M. (2013). Influence of soil ameliorants and microflora on induction of antioxidant enzymes and growth promotion of Jatropha curcas L. under saline condition. European Journal of Soil Biology, 55, 47–54. https://doi.org/10.1016/j.ejsobi.2012.12.004

    Article  CAS  Google Scholar 

  • Pathak, R.K., & Ram, R.A. (2004). Manual on Jaivik Krishi, Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kokari,Lucknow-227107, 24, 31–32.

  • Pawlin, V. J., (2019). Efficacy of Different Substrates on Vermicompost Production: A Biochemical Analysis. DOI: https://doi.org/10.5772/intechopen.86187

  • Pérez, M. A., Luqueño, F., Hernandez, F., Flores Cotera, L. B., & Dendooven, L. (2011). Cultivation of beans (Phaseolus vulgaris L.) in limed or unlimed wastewater sludge, vermicompost or inorganic amended soil. Scientia Horticulturae, 128(4), 380–387. https://doi.org/10.1016/j.scienta.2011.01.016

    Article  CAS  Google Scholar 

  • Perumal, K., Praveena, K., Stalin, V., & Janarthanam, B. (2006). Assessment of selected organic manure as plant growth hormones and their impact on the growth attributes of Alium cepa. Current Science, 8, 46–51. https://doi.org/10.20546/ijcmas.2017.610.195

    Article  CAS  Google Scholar 

  • Peyvast, G., Olfati, J. A., Madeni, S., & Forghani, A. (2008). Effect of vermicompost on the growth and yield of spinach (Spinacia oleracea L.). Journal of Food Agriculture and Environment, 6, 110–113.

    Google Scholar 

  • Pireh, P., Yadavi, A., & Balouchi, H. (2016). Effect of cadmium chloride on soybean in presence of Arbuscular mycorrhiza and vermicompost. Legume Research-an International Journal, 40, 63–68. https://doi.org/10.18805/lr.v0iOF.3770

    Article  Google Scholar 

  • Pramanik, P., Ghosh, G. K., & Chung, Y. R. (2010). Changes in nutrient content, enzymatic activities and microbial properties of lateritic soil due to application of different vermicomposts: A comparative study of ergosterol and chitin to determine fungal biomass in soil. Soil Use Management, 26, 508–515. https://doi.org/10.1111/j.1475-2743.2010.00304.x

    Article  Google Scholar 

  • Rajiv, P., Rajeshwari, S., & Rajendran, V. (2014). Impact of Parthenium weeds on earthworms (Eudrilus eugeniae) during vermicomposting. Environmental Science and Pollution Research, 21(21), 12364–12371. https://doi.org/10.1007/s11356-014-3149-4

    Article  CAS  Google Scholar 

  • Rajiv, P., & Vanathi, P. (2018). Effect of Parthenium based vermicompost and zinc oxide nanoparticles on growth and yield of Arachis hypogaea L. in zinc deficient soil. Biocatalysis and Agricultural Biotechnology, 13, 251–257.

    Article  Google Scholar 

  • Ravindran, B., Contreras-Ramos, S. M., & Sekaran, G. (2015). Changes in earthworm gut associated enzymes and microbial diversity on the treatment of fermented tannery waste using epigeic earthworm.Eudrilus eugeniae. Ecological Engineering, 74, 394–401. https://doi.org/10.1016/j.ecoleng.2014.10.014

    Article  Google Scholar 

  • Razmjou, J., Vorburger, C., Mohammadi, M., & Hassanpour, M. (2012). Influence of vermicompost and cucumber cultivar on population growth of Aphis gossypii Glover. Journal of Applied Entomology, 136, 568–575. https://doi.org/10.1111/j.1439-0418.2012.01710.x

    Article  Google Scholar 

  • Rehman, S. U., Aslam, Z., Bellitürk, K., Ahmad, A., Nadeem, M., & Waqas, M. (2020). Vermicomposting in Pakistan: Current Scenario and Future Prospectives. Modern Concepts and Development in Agronomy, 6(1), 617–619. https://doi.org/10.31031/MCDA.2020.06.000629

    Article  Google Scholar 

  • Rout, P. K., Nannaware, A. D., Prakash, O., & Rajasekharan, R. (2014). Depolymerization of cellulose and synthesis of hexitols from cellulose using heterogeneous catalysts. ChemBioEng Reviews, 1, 96–116. https://doi.org/10.1002/cben.201300004

    Article  CAS  Google Scholar 

  • Saberi, M., Nezhad, F. M., & Etemadi, N. (2015). Interactive effects of vermicompost and salicylic acid on chlorophyll and carotenoid contents of petunia hybrid under drought stress year. Journal of Earth, Environment and Health Sciences, 1(2), 52–57. https://doi.org/10.4103/2423-7752.170580

    Article  Google Scholar 

  • Sahni, S., Sarma, B. K., Singh, D. P., Singh, H. B., & Singh, K. P. (2008). Vermicompost enhances performance of plant growth-promoting rhizobacteria in Cicer arietinum rhizosphere against Sclerotium rolfsii. Crop Protection, 27, 369–376. https://doi.org/10.1016/j.cropro.2007.07.001

    Article  CAS  Google Scholar 

  • Sainz, M. J., Taboada-Castro, M. T., & Vilarino, A. (1998). Growth, mineral nutrition and mycorrhizal colonization of red clover and cucumber plants grown in soil amended with composted urban wastes. Plant and Soil, 205, 85–92. https://doi.org/10.1023/A:1004357330318

    Article  CAS  Google Scholar 

  • Salehi, A., Tasdighi, H., & Gholamhoseini, M. (2016). Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments Asian Pacific. Journal of Tropical Biomedicine, 6, 886–891. https://doi.org/10.1016/j.apjtb.2016.08.009

    Article  CAS  Google Scholar 

  • Sarma, B., & Gogoi, N. (2015). Germination and seedling growth of Okra (Abelmoschus esculentlus L.) as influenced by organic amendments. Cogent Food and Agriculture, 1, 1030906. https://doi.org/10.1080/23311932.2015.1030906

    Article  CAS  Google Scholar 

  • Sasikala, P., Intarak, R., & Reddy, M. V. B. (2016). Impact of vermicompost on lemon grass (Cymbopogan flexuosus) production and oil contents. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7, 870–877.

    Google Scholar 

  • Sekhohola, L. M., Igbinigie, E. E., & Cowan, A. K. (2013). Biological degradation and solubilization of coal. Biodegradation, 24(3), 305–318. https://doi.org/10.1007/s10532-012-9594-1

    Article  CAS  Google Scholar 

  • Shivran, A. C., Jat, N. L., Singh, D., Rajput, S. S., & Mittal, G. K. (2016). Effect of integrated nutrient management on productivity and economics of fenugreek (Trigonella foenum-graecum). Legume Research, 39(2), 279–283. https://doi.org/10.18805/lr.v0iOF.9438

    Article  Google Scholar 

  • Shi-wei, Z., & Fu-zhen, H. (1991). The nitrogen uptake efficiency from 15N labeled chemical fertilizer in the presence of earthworm manure (cast). In G. K. Vereresh, D. Rajagopal, & C. A. Viraktamath (Eds.), Advances in management and conservation of soil fauna (pp. 539–542). Oxford and IBH Publishing.

    Google Scholar 

  • Singh, R., Sharma, R. R., Kumar, S., Gupta, R. K., & Patil, R. T. (2008). Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresource Technology, 99, 8507–8511. https://doi.org/10.1016/j.biortech.2008.03.034

    Article  CAS  Google Scholar 

  • Singh, B. K., Pathak, K. A., Boopathi, T., & Deka, B. C. (2010). Vermicompost and NPK fertilizer effects on morpho-physiological traits of plants, yield and quality of tomato fruits (Solanum lycopersicum) L. Vegetable Crops Research Bulletin, 73, 77–86. https://doi.org/10.2478/v10032-010-0020-0

    Article  Google Scholar 

  • Singh, B., Pathak, K. A., Verma, A. K., & Verma, V. (2011). Effects of Vermicompost, Fertilizer and Mulch on Plant Growth, Nodulation and Pod Yield of French Bean (Phaseolus vulgaris L.). Vegetable Crops Research Bulletin, 74, 153–165. https://doi.org/10.2478/v10032-011-0013-7

    Article  Google Scholar 

  • Singh, R., Divya, S., Awasthi, A., & Kalra, A. (2012a). Technology for efficient and successful delivery of vermicompost colonized bioinoculants in Pogostemon cablin (patchouli) Benth. World Journal of Microbiology and Biotechnology, 28, 323–333. https://doi.org/10.1007/s11274-011-0823-2

    Article  Google Scholar 

  • Singh, R., Soni, S. K., Awasthi, A., & Kalra, A. (2012b). Evaluation of vermicompost doses for management of root-rot disease complex in Coleus forskohlii under organic field conditions. Australasian Plant Pathology, 41, 397–403. https://doi.org/10.1007/s13313-012-0134-6

    Article  Google Scholar 

  • Singh, A., Jain, A., Sarma, B. K., Abhilash, P. C., & Singh, H. B. (2013). Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida. Waste Management, 33, 1113–1118. https://doi.org/10.1016/j.wasman.2013.01.022

    Article  CAS  Google Scholar 

  • Singh, R., Singh, M., Srinivas, A., Rao, E. P., & Puttanna, K. (2015). Assessment of organic and inorganic fertilizers for growth, yield and essential oil quality of industrially important plant patchouli (Pogostemon cablin) (Blanco)” Benth. Journal of Essential Oil Bearing Plant, 18, 1–10. https://doi.org/10.1080/0972060X.2014.929043

    Article  CAS  Google Scholar 

  • Singh, K., Chand, S., Yaseen, M., & Yaseen, M. (2014). Integrated nutrient management in Indian basil (Ocimum basilicum). Industrial Crops and Products, 55, 225–229. https://doi.org/10.1016/j.indcrop.2014.02.009

    Article  CAS  Google Scholar 

  • Sinha, A., Vaish, A., Shukla, N. S., & Tewari, S. K. (2011). Influence of earthworm culture on fertilization potential and biological activities of vermicomposts prepared from different plant wastes. Journal of Plant Nutrition and Soil Science, 174, 420–429. https://doi.org/10.1002/jpln.201000174

    Article  CAS  Google Scholar 

  • Sinha, R.K., & Valani, D. (2011). Vermiculture Revolution: The Technological Revival of Charles Darwin’s Unheralded Soldier’s of Mankind; NOVA Science Publication, NY, USA; ISBN 978–1–61122–035–3; p.328. DOI: https://doi.org/10.4236/ti.2010.13019.

  • Sobha, S., Sushama Kumari, S., Thanseem, I., Rekha, K., Jayashree, R., Kala, R. G., Kumari Jayasree, P., Asokan, M. P., Sethuraj, M. R., Dandekar, A. M., & Thulaseedharan, A. (2003). Genetic transformation of Hevea brasiliensis with the gene coding for superoxide dismutase with FMV 34 S promoter. Current Science, 5, 1767–1773.

    Google Scholar 

  • Song, X., Liu, M., Wu, D., Griffiths, B. S., Jiao, J., Li, H., & Hu, F. (2015). Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology, 89, 25–34. https://doi.org/10.1016/j.apsoil.2015.01.005

    Article  Google Scholar 

  • Soobhany, N. (2019). Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: A review. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118413

    Article  Google Scholar 

  • Soobhany, N., Mohee, R., & Garg, V. K. (2017). A comparative analysis of composts and vermicomposts derived from municipal solid waste for the growth and yield of green bean (Phaseolus vulgaris)”. Environmental Science and Pollution Research, 24, 11228–11239. https://doi.org/10.1007/s11356-017-8774-2

    Article  CAS  Google Scholar 

  • Srivastava, P. K., Gupta, M., Upadhyay, R. K., Sharma, S., Shikha, N., Tewari, S. K., & Singh, B. (2012). Effects of combined application of vermicompost and mineral fertilizer on the growth of Allium cepa L. and soil fertility. Journal of Plant Nutrition and Soil Science, 175, 101–107. https://doi.org/10.1002/jpln.201000390

    Article  CAS  Google Scholar 

  • Sujatha, S., & Bhat, R. (2016). Impact of organic and inorganic nutrition on soil–plant nutrient balance in areca nut (Areca catechu L.) on a laterite soil. Journal of Plant Nutrition, 39(5), 714–726. https://doi.org/10.1080/01904167.2015.1087561

    Article  CAS  Google Scholar 

  • Suthar, S., & Sharma, P. (2013). Vermicomposting of toxic weed Lantana camara biomass: Chemical and microbial properties changes and assessment of toxicity of end product using seed bioassay. Ecotoxicology and Environment Safety, 95, 179–187. https://doi.org/10.1016/j.ecoenv.2013.05.034

    Article  CAS  Google Scholar 

  • Szczech, M. M. (1999). Suppressiveness of Vermicomposts against Fusarium wilt of tomato. Journal of Phytopathology, 147, 155–161. https://doi.org/10.1046/j.1439-0434.1999.147003155.x

    Article  CAS  Google Scholar 

  • Tallini, M., Bertoni, L. A., & Traversim, M. L. (1991). Effect of humic acids on growth and biomass partitioning of container growth olive plants. Acta Horticulturae, 294, 75–80. https://doi.org/10.17660/ActaHortic.1991.294.7

    Article  Google Scholar 

  • Tejada, M., & Benitez, C. (2011). Organic amendment based on vermicompost and compost: Differences on soil properties and maize yield. Waste Management and Research, 29, 1185–1196. https://doi.org/10.1177/0734242X10383622

    Article  CAS  Google Scholar 

  • Tejada, M., & Gonzalez, J. L. (2008). Influence of two organic amendments on the soil physical properties, soil losses, sediments and runoff water quality. Geoderma, 145, 325–334. https://doi.org/10.1016/j.geoderma.2008.03.020

    Article  CAS  Google Scholar 

  • Tejada, M., García-Martínez, A. M., & Parrado, J. (2009). Effects of a vermicompost composted with beet vinasse on soil properties. Soil Losses and Soil Restoration., 77, 238–247. https://doi.org/10.1016/j.catena.2009.01.004

    Article  CAS  Google Scholar 

  • Tejada, M., Gonzalez, J. L., García-Martínez, A. M., & Parrado, J. (2008). Effects of different green manures on soil biological properties and maize yield. Bioresource Technology, 99, 1758–1767. https://doi.org/10.1016/j.biortech.2007.03.052

    Article  CAS  Google Scholar 

  • Toksha, B., Sonawale, V. A. M., Vanarase, A., Bornare, D., Tonde, S., Hazra, C., & Chatterjee, A. (2021). Nanofertilizers: A review on synthesis and impact of their use on crop yield and environment. Environmental Technology & Innovation. https://doi.org/10.1016/j.eti.2021.101986

    Article  Google Scholar 

  • Tomati, U., Grapppelli, A., & Galli, E. (1988). The hormone-like effect of earthworm casts on plant growth. Biology and Fertility of Soils, 5, 288–294. https://doi.org/10.1007/BF00262133

    Article  CAS  Google Scholar 

  • Trivedi, P., Singh, K., Pankaj, U., Verma, S. K., Verma, R. K., & Patra, D. D. (2017). Effect of organic amendments and microbial application on sodic soil properties and growth of an aromatic crop. Ecological Engineering, 102, 127–136. https://doi.org/10.1016/j.ecoleng.2017.01.046

    Article  Google Scholar 

  • Truong, H. D., & Wang, C. H. (2015). Effects of different combination of vermicompost on growth, yield, and fruit quality of two tomato varieties under greenhouse conditions. Journal of Agricultural Science, 7(11), 216–224. https://doi.org/10.5539/jas.v7n11p216

    Article  Google Scholar 

  • Valdrighi, M. M., Pera, A. M., Frassineti, S., Lunardi, D., & Vallini, G. (1996). Effect of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus) – soil system: A comparative study. Agriculture, Ecosystems & Environment, 58, 133–144. https://doi.org/10.1016/0167-8809(96)01031-6

    Article  Google Scholar 

  • Varghese, S. M., & Prabha, M. L. (2014). Biochemical characterization of vermiwash and its effect on growth of Capsicum frutescens. Malaya Journal of Biosciences, 1(2), 86–91.

    CAS  Google Scholar 

  • Verma, S. K., Pankaj, U., Khan, K., Singh, R., & Verma, R. K. (2016). Bioinoculants and vermicompost improve Ocimum basilicum yield and soil health in a sustainable production system”. Clean: Soil, Air, Water, 44, 686–693. https://doi.org/10.1002/clen.201400639

    Article  CAS  Google Scholar 

  • Verma, R. K., Verma, R. S., Rahman, L. U., Yadav, A., Patra, D. D., & Kalra, A. (2014). Utilization of distillation waste-based vermicompost and other organic and inorganic fertilizers on improving production potential in geranium and soil health. Communications in Soil Science and Plant Analysis, 45(2), 141–152. https://doi.org/10.1080/00103624.2013.854803

    Article  CAS  Google Scholar 

  • Wang, D., Shi, Q., Wang, X., Wei, M., Hu, J., Liu, J., & Yang, F. (2010). Influence of cow manure vermicompost on the growth metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp. Chinensis). Biology and Fertility of Soils, 46, 689–696. https://doi.org/10.1007/s00374-010-0473-9

    Article  Google Scholar 

  • Wang, K. H., Radovich, T., Pant, A., & Cheng, Z. (2014). Integration of cover crops and vermicompost tea for soil and plant health management in a short-term vegetable cropping system. Applied Soil Ecology, 82, 26–37. https://doi.org/10.1016/j.apsoil.2014.05.003

    Article  Google Scholar 

  • Wang, X. X., Zhao, F., Zhang, G., Zhang, Y., & Yang, L. (2017). Vermicompost improves tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study. Frontiers in Plant Science, 8, 1978. https://doi.org/10.3389/fpls.2017.01978

    Article  Google Scholar 

  • Wen, S., Yan, X. M., & Jian, Y. (2015). Research progress of sludge Vermicomposting. Environmental Engineering, 33(10), 90–94.

    Google Scholar 

  • Xiao, Z., Liu, M., Jiang, L., Chen, X., Griffiths, B. S., Li, H., & Hu, F. (2016). Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Applied Soil Ecology, 105, 177–186.

    Article  Google Scholar 

  • Xu, C., & Mou, B. (2016). Vermicompost affects soil properties and spinach growth, physiology, and nutritional value. HortScience, 51, 847–855. https://doi.org/10.21273/HORTSCI.51.7.847

    Article  CAS  Google Scholar 

  • Xu, L., Yan, D., Ren, X., Wei, Y., Zhou, J., Zhao, H., & Liang, M. (2016). Vermicompost improves the physiological and biochemical responses of blessed thistle (Silybum marianum Gaertn.) and peppermint (Mentha haplocalyx Briq) to salinity stress. Industrial Crops and Products, 94, 574–585. https://doi.org/10.1016/j.indcrop.2016.09.023

    Article  CAS  Google Scholar 

  • Xu, Y., Wang, C., Bi, Y., Zhang, Y., Cheng, W., Sun, Z., Zhang, J., Lv, Z., & Guo, X. (2014). Influence of cow manure vermicompost soil mixtures on two flowers seedling cultivation. Acta Horticulturae, 1018, 583–588.

    Google Scholar 

  • Yadav, A., & Garg, V. K. (2015). Influence of vermifortification on Chickpea (Cicer arietinum L.) growth and photosynthetic pigments. International Journal of Recycling Organic Waste Agriculture, 4, 299–305. https://doi.org/10.1007/s40093-015-0109-z

    Article  Google Scholar 

  • Yardim, E. N., Arancon, N. Q., Edwards, C. A., & Oliver, T. J. (2006). Suppression of tomato hornworm (Manduca quinquemaculata) and cucumber beetles (Acalymma vittatum and Diabotrica undecimpunctata) populations and damage by vermicomposts. Pedobiologia, 50, 23–29. https://doi.org/10.1016/j.pedobi.2005.09.001

    Article  Google Scholar 

  • Yuvaraj, A., Thangaraj, R., Ravindran, B., Chang, S. W., & Karmegam, N. (2021). Centrality of cattle solid wastes in vermicomposting technology–A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environmental Pollution, 268, 115688. https://doi.org/10.1016/j.envpol.2020.115688

    Article  CAS  Google Scholar 

  • Zacarías-Toledo, R., González-Mendoza, D., Rodriguez Mendiola, M. A., Villalobos-Maldonado, J. J., Gutiérrez-Oliva, V. F., Dendooven, L., Abud-Archila, M., Arias-Castro, C., & Gutiérrez-Miceli, F. A. (2016). Plant growth and sugars content of Agave americanaL. cultivated with vermicompost and rock phosphate and inoculated with Penicillium sp. and Glomus fasciculatum. Compost Science & Utilization, 24, 259–265. https://doi.org/10.1080/1065657X.2016.1155512

    Article  Google Scholar 

  • Zaller, J. G. (2007). Vermicompost as a substitute for peat in potting media: Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Scientia Horticulturae, 112, 191–199. https://doi.org/10.1016/j.scienta.2006.12.023

    Article  Google Scholar 

  • Zhang, J., Xu, Y., & Li, F. (2009). Influence of cow manure vermicompost on plant growth and microbes in rhizosphere on iron tailing” In Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2009), Beijing, China, 11–13 June 2009.

  • Zhang, J. E., Liu, W. G., & Hu, G. (2002). The relationship between quantity index of soil microorganisms and soil fertility of different land use systems. Soil and Environmental Science, 11(2), 140–143.

    Google Scholar 

  • Zhang, N., Ren, Y., Shi, Q., Wang, X., Wei, M., & Yang, F. (2011). Effects of vermicompost on quality and yield of watermelon” China Veg. 6, pp. 76–79. (in Chinese with English abstract

  • Zhao, H. T., Li, T. P., Zhang, Y., Hu, J., Bai, Y. C., Shan, Y. H., & Ke, F. (2017). Effects of vermicompost amendment as a basal fertilizer on soil properties and cucumber yield and quality under continuous cropping conditions in a greenhouse. Journal of Soils and Sediments., 17, 2718–2730. https://doi.org/10.1007/s11368-017-1744-y

    Article  CAS  Google Scholar 

  • Zhou, Q., & Yu, B. J. (2009). Accumulation of inorganic and organic osmolytes and their role in osmotic adjustment in NaCl-stressed Vetiver grass seedlings. Russian Journal of Plant Physiology, 56, 678–685. https://doi.org/10.1134/S1021443709050148

    Article  CAS  Google Scholar 

  • Zucco, M. A., Walters, S. A., Chong, S. K., Klubek, B. P., & Masabni, J. G. (2015). Effect of soil type and vermicompost applications on tomato growth. International Journal of Recycling Organic Wastes in Agriculture, 4, 135–141. https://doi.org/10.1007/s40093-015-0093-3

    Article  Google Scholar 

  • Zuo, Y., Zhang, J., Zhao, R., Dai, H., & Zhang, Z. (2018). Application of vermicompost improves strawberry growth and quality through increased photosynthesis rate, free radical scavenging and soil enzymatic activity. Scientia Horticulturae, 233, 132–140.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Department of Applied Sciences, I.K.G. Punjab Technical University, Kapurthala, Punjab (India), and Department of Zoology, Khalsa College, Amritsar (India). We also acknowledge the Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar and Department of Soil Science, Punjab Agricultural University, Ludhiana. We are also thankful to two anonymous reviewers for their constructive comments which improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CM executed the literature review and drafted the manuscript; JS and CP did the literature analysis; SS elaborated the manuscript; APV and SSD provided the inputs of their knowledge regarding the manuscript. All authors read, revised and approved the final manuscript.

Corresponding author

Correspondence to Jaswinder Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makkar, C., Singh, J., Parkash, C. et al. Vermicompost acts as bio-modulator for plants under stress and non-stress conditions. Environ Dev Sustain 25, 2006–2057 (2023). https://doi.org/10.1007/s10668-022-02132-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02132-w

Keywords

Navigation