Skip to main content

Advertisement

Log in

Dual-channel recycling e-waste pricing decision under the impact of recyclers’ loss aversion and consumers’ bargaining power

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The issue of e-waste recycling is imminent. With the continuous enhancement of Internet technology and people's awareness of sustainable development, the dual-channel reverse supply chain management combining online and offline becomes particularly important. In order to promote the sustainable development of dual-channel reverse supply chain recycling, this paper uses Stackelberg game and Rubinstein alternating offers bargaining game, and builds a dual-channel reverse supply chain model under the influence of loss aversion of recyclers and bargaining power of consumers. The purpose of this paper is to explore the recycling pricing decision of dual-channel reverse supply chain under the dual impact of loss aversion of recyclers and bargaining power of consumers. The results show that the increase in loss aversion of recyclers makes the recycling price of dual-channel recyclers decrease, but it increases their profits; the enhanced bargaining power of consumers raises the recycling price of products and increases the profits of members; the competition of recycling channels helps to improve the recycling price and profit of each member of the reverse supply chain. The results of this study provide theoretical basis for the members of dual-channel reverse supply chain to make optimal decisions in the case of bounded rationality, thereby promoting the sustainable development of reverse supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Benartzi, S., & Thaler, R. H. (1995). Myopic loss aversion and the equity premium puzzle. The Quarterly Journal of Economics, 110(1), 73–92.

    Article  Google Scholar 

  • Chen, D. Q., Ignatius, J., Sun, D. Z., Zhan, S. L., Zhou, C. Y., Marra, M., & Demirbag, M. (2019). Reverse logistics pricing strategy for a green supply chain: A view of customers’ environmental awareness. International Journal of Production Economics, 217, 197–210. https://doi.org/10.1016/j.ijpe.2018.08.031

    Article  Google Scholar 

  • Chen, J. H., Wu, D., & Li, P. (2018). Research on the pricing model of the dual-channel reverse supply chain considering logistics costs and consumers' awareness of sustainability based on regional differences. Sustainability, 10(7). https://doi.org/10.3390/su10072229.

  • Driesen, B., Perea, A., & Peters, H. (2012). Alternating offers bargaining with loss aversion. Mathematical Social Sciences, 64(2), 103–118. https://doi.org/10.1016/j.mathsocsci.2011.10.010

    Article  Google Scholar 

  • Du, S., Zhu, Y., Nie, T., & Yu, H. (2018). Loss-averse preferences in a two-echelon supply chain with yield risk and demand uncertainty. Operational Research, 18(2), 361–388.

    Article  Google Scholar 

  • Feng, Z. W., & Tan, C. Q. (2019). Pricing, green degree and coordination decisions in a green supply chain with loss aversion. Mathematics, 7(3). https://doi.org/10.3390/math7030239.

  • Fiegenbaum, A., & Thomas, H. (1988). Attitudes toward risk and the risk–return paradox: Prospect theory explanations. Academy of Management Journal, 31(1), 85–106.

    Google Scholar 

  • Gu, B. J., Fu, Y. F., & Li, Y. L. (2018). Fresh-keeping effort and channel performance in a fresh product supply chain with loss-averse consumers’ returns. Mathematical Problems in Engineering. https://doi.org/10.1155/2018/4717094

    Article  Google Scholar 

  • He, R., Xiong, Y., & Lin, Z. (2016). Carbon emissions in a dual channel closed loop supply chain: The impact of consumer free riding behavior. Journal of Cleaner Production, 134, 384–394. https://doi.org/10.1016/j.jclepro.2016.02.142

    Article  Google Scholar 

  • Hosseini-Motlagh, S. M., Nouri-Harzvili, M., Choi, T. M., & Ebrahimi, S. (2019). Reverse supply chain systems optimization with dual channel and demand disruptions: Sustainability, CSR investment and pricing coordination. Information Sciences, 503, 606–634. https://doi.org/10.1016/j.ins.2019.07.021

    Article  Google Scholar 

  • Hu, S., Dai, Y., Ma, Z.-J., & Ye, Y.-S. (2016). Designing contracts for a reverse supply chain with strategic recycling behavior of consumers. International Journal of Production Economics, 180, 16–24. https://doi.org/10.1016/j.ijpe.2016.06.015

    Article  Google Scholar 

  • Huang, Y., & Wang, Z. (2019). Pricing and production decisions in a closed-loop supply chain considering strategic consumers and technology licensing. International Journal of Production Research, 57(9), 2847–2866. https://doi.org/10.1080/00207543.2018.1530470

    Article  Google Scholar 

  • Larsen, J. E., & Coleman, J. W. (2014). Senior citizen's bargaining power in residential real estate markets. International Journal of Housing Markets and Analysis.

  • Li, C. F., Feng, L. P., & Luo, S. Y. (2019). Strategic introduction of an online recycling channel in the reverse supply chain with a random demand. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.117683

    Article  Google Scholar 

  • Li, T., Yan, D. Y., & Sui, S. X. (2020). Research on the complexity of game model about recovery pricing in reverse supply chain considering fairness concerns. Complexity. https://doi.org/10.1155/2020/9621782

    Article  Google Scholar 

  • Li, T., & Yu, M. (2017). Coordinating a supply chain when facing strategic consumers. Decision Sciences, 48(2), 336–355. https://doi.org/10.1111/deci.12224

    Article  Google Scholar 

  • Lin, J. H., Lee, T. R., & Jen, W. (2008). Assessing asymmetric response effect of behavioral intention to service quality in an integrated psychological decision-making process model of intercity bus passengers: A case of Taiwan. Transportation, 35(1), 129–144.

    Article  Google Scholar 

  • Liu, C., Lee, C. K. M., & Leung, K. H. (2019). Pricing strategy in dual-channel supply chains with loss-averse consumers. Asia-Pacific Journal of Operational Research, 36(5). https://doi.org/10.1142/s0217595919500271.

  • Liu, L. W., Wang, Z. J., Xu, L., Hong, X. P., & Govindan, K. (2017). Collection effort and reverse channel choices in a closed-loop supply chain. Journal of Cleaner Production, 144, 492–500. https://doi.org/10.1016/j.jclepro.2016.12.126

    Article  Google Scholar 

  • Liu, W., Song, S. J., Qiao, Y., & Zhao, H. (2020). Supply chain coordination with a loss-averse retailer and combined contract. Mathematics, 8(4). https://doi.org/10.3390/math8040586.

  • Ma, J. H., & Ren, H. (2018). Influence of government regulation on the stability of dual-channel recycling model based on customer expectation. Nonlinear Dynamics, 94(3), 1775–1790. https://doi.org/10.1007/s11071-018-4456-y

    Article  Google Scholar 

  • Matsui, K. (2020). Optimal bargaining timing of a wholesale price for a manufacturer with a retailer in a dual-channel supply chain. European Journal of Operational Research, 287(1), 225–236.

    Article  Google Scholar 

  • Pu, X., Gong, L., & Han, X. (2017). Consumer free riding: Coordinating sales effort in a dual-channel supply chain. Electronic Commerce Research and Applications, 22, 1–12. https://doi.org/10.1016/j.elerap.2016.11.002

    Article  Google Scholar 

  • Rabin, M. (1998). Psychology and economics. Journal of Economic Literature, 36(1), 11–46.

    Google Scholar 

  • Taleizadeh, A. A., & Sadeghi, R. (2019). Pricing strategies in the competitive reverse supply chains with traditional and e-channels: A game theoretic approach. International Journal of Production Economics, 215, 48–60. https://doi.org/10.1016/j.ijpe.2018.06.011

    Article  Google Scholar 

  • Tian, Y., Ma, J., & Lou, W. (2018). Research on supply chain stability driven by consumer’s channel preference based on complexity theory. Complexity. https://doi.org/10.1155/2018/7812784

    Article  Google Scholar 

  • Tversky, K. A. J. E. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.

    Article  Google Scholar 

  • Vanessa Forti, C. P. B., Ruediger, K., & Garam, B. (2020). Theglobal E-waste monitor, p. 13.

  • Wang, Z., Huo, J. Z., & Duan, Y. R. (2019). Impact of government subsidies on pricing strategies in reverse supply chains of waste electrical and electronic equipment. Waste Management, 95, 440–449. https://doi.org/10.1016/j.wasman.2019.06.006

    Article  Google Scholar 

  • Wongkitrungrueng, A., Hildebrand, D., Sen, S., & Nuttavuthisit, K. (2020). Is salesperson attractiveness a boon or a bane? The moderating role of perceived labor cost-to-price ratio in retail bargaining. Journal of Consumer Psychology, 30(3), 447–465.

    Article  Google Scholar 

  • Xu, X. S., Chan, F. T. S., & Chan, C. K. (2019). Optimal option purchase decision of a loss-averse retailer under emergent replenishment. International Journal of Production Research, 57(14), 4594–4620. https://doi.org/10.1080/00207543.2019.1579935

    Article  Google Scholar 

  • Yan, N. N., Jin, X. Y., Zhong, H. C., & Xu, X. (2020). Loss-averse retailers' financial offerings to capital-constrained suppliers: Loan versus investment. International Journal of Production Economics, 227. https://doi.org/10.1016/j.ijpe.2020.107665.

  • Yang, D., & Xiao, T. (2017). Coordination of a supply chain with loss-averse consumers in service quality. International Journal of Production Research, 55(12), 3411–3430. https://doi.org/10.1080/00207543.2016.1241444

    Article  Google Scholar 

  • Zhai, J., & Yu, H. (2019). Robust coordination of supply chain with loss aversion. Journal of Ambient Intelligence and Humanized Computing, 10(9), 3693–3707. https://doi.org/10.1007/s12652-018-1094-7

    Article  Google Scholar 

  • Zhang, J., & Li, K. J. (2020). Quality disclosure under consumer loss aversion. Management Science. https://doi.org/10.1287/mnsc.2020.3745

    Article  Google Scholar 

  • Zhao, J., Wei, J., & Li, M. Y. (2017). Collecting channel choice and optimal decisions on pricing and collecting in a remanufacturing supply chain. Journal of Cleaner Production, 167, 530–544. https://doi.org/10.1016/j.jclepro.2017.07.254

    Article  Google Scholar 

  • Zheng, B. R., Yang, C., Yang, J., & Zhang, M. (2017). Pricing, collecting and contract design in a reverse supply chain with incomplete information. Computers & Industrial Engineering, 111, 109–122. https://doi.org/10.1016/j.cie.2017.07.004

    Article  Google Scholar 

  • Zheng, S., Sun, Y., Li, B., Qi, B., Shi, K., Li, Y., & Du, Y. (2020). Bargaining-based cooperative game among multi-aggregators with overlapping consumers in incentive-based demand response. IET Generation, Transmission & Distribution, 14(6), 1077–1090.

    Article  Google Scholar 

  • Zhu, X. D., Wang, J., & Tang, J. (2017). Recycling pricing and coordination of WEEE dual-channel closed-loop supply chain considering consumers' bargaining. International Journal of Environmental Research and Public Health, 14(12). https://doi.org/10.3390/ijerph14121578.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The bargaining game process between the loss-averse online recycler and the loss-neutral remanufacturer is described as follows. At some point in \(t \in T_{odd} = \left\{ {1,3 \ldots } \right\}\), the remanufacturer makes offer \(\pi^{o} = (\pi_{M}^{o} ,\pi_{a}^{o} )\) and the online recycler decides whether to accept the offer or not. At some point in \(t \in T_{even} = \left\{ {2,4 \ldots } \right\}\), the online recycler makes offer \(\pi^{e} = (\pi_{M}^{e} ,\pi_{a}^{e} )\), and the remanufacturer decides whether to accept the online recycler's price offer. If the proposal \(\pi^{*} = (\pi_{M}^{*} ,\pi_{a}^{*} )\) (\(\pi_{M}^{*} + \pi_{a}^{*} = \pi_{SC}\)) is accepted, the subgame process ends. If the offer is rejected, the game continues at the discount rate of \(\delta (0 < \delta < 1)\) and ends with the probability of \(1 - \delta\).

At the time of \(t \in T_{odd}\), in order to make the online recycler accept the remanufacturer's proposal, the utility of the online recycler at the time of \(t\) is required to be greater than or equal to the utility at the time of \(t + 1\), namely:

$$(1 + \lambda_{a} )\pi_{a}^{o} - \lambda_{a} \max \left\{ {v_{a} ,\pi_{a}^{o} } \right\} \ge \delta \left[ {(1 + \lambda_{a} )\pi_{a}^{e} - \lambda_{a} \max \left\{ {\pi_{a}^{e} ,\max \left\{ {v_{a} ,\pi_{a}^{o} } \right\}} \right\}} \right] - (1 - \delta )\lambda_{a} \max \left\{ {v_{a} ,\pi_{a}^{o} } \right\}$$
(10)

At the time \(t \in T_{even}\), in order for the remanufacturer to accept the recycler's proposal, the utility of the remanufacturer at the time t is required to be greater than or equal to the utility at the time \(t + 1\), namely:

$$\pi_{M}^{e} \ge \delta \pi_{M}^{o}$$
(11)

For the loss aversion reference point \(\lambda_{a}\), we assume that the initial reference point is 0. At any time t, the reference point is the highest historical transaction price, namely \(v_{a}^{t} = \max \left\{ {0,\pi_{a}^{n} |n = 1,3 \ldots \le t} \right\}\).

In order to construct the perfect equilibrium point of the subgame, we assume that (10) and (11) are equations, and construct the three cases of (11):

(A) \(v_{a} > \pi_{a}^{e} > \pi_{a}^{o}\), \(\delta \pi_{a}^{e} = \pi_{a}^{o}\).

(B) \(\pi_{a}^{e} \ge v_{a} > \pi_{a}^{o}\), \(\delta \pi_{a}^{e} = (1 + \lambda_{a} )\pi_{a}^{o} - \delta \lambda_{a} v_{a}\).

(C) \(\pi_{a}^{e} > \pi_{a}^{o} > v_{a}\),\(\delta \pi_{a}^{e} = \left[ {1 + (1 - \delta )\lambda_{a} } \right]\pi_{a}^{o}\).

In the 11-A, \(\pi^{o} = \left( {\frac{{\delta \pi_{sc} }}{\delta + 1},\frac{{\pi_{sc} }}{\delta + 1}} \right)\),\(\pi^{e} = \left( {\frac{{\pi_{sc} }}{\delta + 1},\frac{{\delta \pi_{sc} }}{\delta + 1}} \right)\);In the 11-B,

$$\pi^{o} = \left( {\frac{{\delta (1 - \delta )\pi_{sc} + \delta \lambda_{a} v_{a} }}{{1 + \lambda_{a} - \delta^{2} }},\frac{{(1 + \lambda_{a} - \delta )\pi_{sc} - \delta \lambda_{a} v_{a} }}{{1 + \lambda_{a} - \delta^{2} }}} \right)$$
$$\pi^{e} = \left( {\frac{{(1 - \delta )(1 + \lambda_{a} )\pi_{sc} + \delta^{2} \lambda_{a} v_{a} }}{{1 + \lambda_{a} - \delta^{2} }},\frac{{\delta (1 + \lambda_{a} - \delta )\pi_{sc} - \delta^{2} \lambda_{a} v_{a} }}{{1 + \lambda_{a} - \delta^{2} }}} \right)$$

In the 11-C,\(\pi^{o} = \left( {\frac{{\delta \pi_{sc} }}{{1 + \lambda_{a} + \delta }},\frac{{(1 + \lambda_{a} )\pi_{sc} }}{{1 + \lambda_{a} + \delta }}} \right)\)\(\pi^{e} = \left( {\frac{{\left[ {1 + (1 - \delta )\lambda_{a} } \right]\pi_{sc} }}{{1 + \lambda_{a} + \delta }},\frac{{\delta (1 + \lambda_{a} )\pi_{sc} }}{{1 + \lambda_{a} + \delta }}} \right)\).

The equilibrium result in 11-A is the same as the result in classic Rubinstein's that both sides of the game are risk neutral. As for the equilibrium result in 11-B, the reference point of loss aversion is taken as the influence factor, indicating that this equilibrium point is not unique. Therefore, neither 11-A nor 11-B can be regarded as loss aversion reference points for online recyclers. The equilibrium point of 11-B is unique, so the perfect equilibrium point of the subgame is \(\pi^{e} = \left( {\frac{{\left[ {1 + (1 - \delta )\lambda_{a} } \right]\pi_{sc} }}{{1 + \lambda_{a} + \delta }},\frac{{\delta (1 + \lambda_{a} )\pi_{sc} }}{{1 + \lambda_{a} + \delta }}} \right)\). The reference point for the online recycler is \(v_{a}^{*} = \frac{{\delta (1 + \lambda_{a} )\pi_{SC}^{a} }}{{1 + \lambda_{a} + \delta }}\).

Similarly, we can get the perfect equilibrium point of the subgame of offline recyclers is \(\pi^{e} = \left( {\frac{{\left[ {1 + (1 - \delta )\lambda_{b} } \right]\pi_{sc} }}{{1 + \lambda_{b} + \delta }},\frac{{\delta (1 + \lambda_{b} )\pi_{sc} }}{{1 + \lambda_{b} + \delta }}} \right)\).The reference point of offline recyclers is \(v_{b}^{*} = \frac{{\delta (1 + \lambda_{b} )\pi_{SC}^{b} }}{{1 + \lambda_{b} + \delta }}\).

Appendix B

2.1 Proof of Proposition 1

Since \(0 < l < 1,\beta > 0\), we get \(\frac{{\partial^{2} \pi_{sc}^{a} }}{{\partial^{2} p_{a} }} = - 2\left( {l + \beta } \right) < 0\), indicating that \(\pi_{SC}^{a}\) is a concave function about the variable \(p_{a}\), and there is a unique solution. And because \(0 < \rho < 1\), then \(\frac{{\partial^{2} \pi_{sc}^{b} }}{{\partial^{2} p_{b} }} = - 2\left( {l + \beta } \right)\left( {1 + \rho } \right) < 0\), indicating that \(\pi_{SC}^{b}\) is a concave function about the variable \(p_{b}\), and there is a unique solution.

2.2 Proof of Proposition 2

From \(0 < \delta < 1\) and \(0 < \lambda_{i} < 2(i = a,b)\), it can be seen \(\frac{{\partial v_{a}^{*} }}{{\partial \lambda_{a} }} = \frac{{\delta^{2} \pi_{SC}^{a} }}{{\left( {1 + \delta + \lambda_{a} } \right)^{2} }} > 0\) \(\frac{{\partial v_{a}^{*} }}{\partial \delta } = \frac{{\pi_{SC}^{a} \left( {1 + \lambda_{a} } \right)^{2} }}{{\left( {1 + \delta + \lambda_{a} } \right)^{2} }} > 0\) \(\frac{{\partial v_{b}^{*} }}{{\partial \lambda_{b} }} = \frac{{\delta^{2} \pi_{SC}^{b} }}{{\left( {1 + \delta + \lambda_{b} } \right)^{2} }} > 0\) \(\frac{{\partial v_{b}^{*} }}{\partial \delta } = \frac{{\pi_{SC}^{b} \left( {1 + \lambda_{b} } \right)^{2} }}{{\left( {1 + \delta + \lambda_{b} } \right)^{2} }} > 0\).

2.3 Proof of Proposition 3

According to Eqs. (4) and (5), the first-order derivative of the recovery price is obtained.\(\frac{{\partial \pi_{a} }}{{\partial p_{a} }} = - \alpha - \left( {l + \beta } \right)c_{a} - 2\left( {l + \beta } \right)p_{a} + lp_{b} + lp_{t} + \beta p_{t}\) \(\frac{{\partial \pi_{b} }}{{\partial p_{b} }} = - \alpha + l\left( {1 + \rho } \right)\left( {p_{a} - p_{b} } \right) - \beta \left( {1 + \rho } \right)p_{b} - \left( {l + \beta } \right)\left( {1 + \rho } \right)\left( {c_{b} + p_{b} - p_{t} } \right)\).

In combination with \(\frac{{\partial \pi_{a} }}{{\partial p_{a} }}{ = }0\),\(\frac{{\partial \pi_{b} }}{{\partial p_{b} }}{ = }0\) we get

$$\left\{ {\begin{array}{*{20}l} {p_{a} = - \frac{\begin{gathered} - \left( { - l\left( {1 + \rho } \right) - \beta \left( {1 + \rho } \right) - \left( {l + \beta } \right)\left( {1 + \rho } \right)} \right)\left( { - \alpha - \left( {l + \beta } \right)c_{a} + lp_{t} + \beta p_{t} } \right) \hfill \\ + l\left( { - \alpha - \left( {l + \beta } \right)\left( {1 + \rho } \right)c_{b} + \left( {l + \beta } \right)\left( {1 + \rho } \right)p_{t} } \right) \hfill \\ \end{gathered} }{{ - 3l^{2} - 8l\beta - 4\beta^{2} - 3l^{2} \rho - 8l\beta \rho - 4\beta^{2} \rho }}} \hfill \\ {p_{b} = - \frac{\begin{gathered} 3l\alpha + 2\alpha \beta + l\alpha \rho + l^{2} c_{a} + l\beta c_{a} + l^{2} \rho c_{a} + l\beta \rho c_{a} + 2l^{2} c_{b} + 4l\beta c_{b} + 2\beta^{2} c_{b} \hfill \\ + 2l^{2} \rho c_{b} + 4l\beta \rho c_{b} + 2\beta^{2} \rho c_{b} - 3l^{2} p_{t} - 5l\beta p_{t} - 2\beta^{2} p_{t} - 3l^{2} \rho p_{t} - 5l\beta \rho p_{t} - 2\beta^{2} \rho p_{t} \hfill \\ \end{gathered} }{{\left( {3l^{2} + 8l\beta + 4\beta^{2} } \right)\left( {1 + \rho } \right)}}} \hfill \\ \end{array} } \right.$$
(12)

Substitute (12) into Eq. (1), and

$$\pi_{M} = - \frac{\begin{gathered} \left( {H - p_{t} } \right)( - 2\alpha \left( {l + 2\beta } \right)\left( {3l + 2\beta } \right)\left( {1 + \rho } \right) + \left( {\beta - l\rho } \right)(2\left( {l + \beta } \right)\left( {1 + \rho } \right) \hfill \\ \left( {\alpha + \left( {l + \beta } \right)\left( {c_{a} - p_{t} } \right)} \right) + l\left( {\alpha + \left( {l + \beta } \right)\left( {1 + \rho } \right)\left( {c_{b} - p_{t} } \right)} \right)) \hfill \\ + \left( {\beta + l\rho + \beta \rho } \right)\left( {\alpha \left( {2\beta + l\left( {3 + \rho } \right)} \right) + \left( {l + \beta } \right)\left( {1 + \rho } \right)\left( {lc_{a} + 2\left( {l + \beta } \right)c_{b} - \left( {3l + 2\beta } \right)p_{t} } \right)} \right)) \hfill \\ \end{gathered} }{{\left( {l + 2\beta } \right)\left( {3l + 2\beta } \right)\left( {1 + \rho } \right)}}$$
(13)

Set \(\frac{{\partial \pi_{M} }}{{\partial p_{t} }}{ = }0\) to obtain the optimal recovery transfer price of the remanufacturer

$$p_{t}^{N} = \frac{\begin{gathered} 2\beta \left( {1 + \rho } \right)\left( { - 2\alpha + H\beta \left( {2 + \rho } \right)} \right) + l\left( {3H\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) - \alpha \left( {6 + \rho \left( {6 + \rho } \right)} \right)} \right) \hfill \\ - \left( {1 + \rho } \right)\left( { - \beta \left( {3l + 2\beta } \right) + l\left( {l + \beta } \right)\rho } \right)c_{a} + \left( {1 + \rho } \right)\left( {l^{2} \rho + 2\beta^{2} \left( {1 + \rho } \right) + l\beta \left( {3 + 4\rho } \right)} \right)c_{b} \hfill \\ \end{gathered} }{{2\beta \left( {3l + 2\beta } \right)\left( {1 + \rho } \right)\left( {2 + \rho } \right)}}$$
(14)

Substitute \(p_{t}^{N}\) into Eq. (12) to obtain the optimal online and offline recovery prices, respectively, as follows:

$$p_{a}^{N} = \frac{\begin{gathered} - 2\beta^{2} \left( {1 + \rho } \right)\left( { - H\beta \left( {2 + \rho } \right) + 2\alpha \left( {3 + \rho } \right)} \right) + l^{2} \left( \begin{gathered} 3H\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) \hfill \\ - \alpha \left( {6 + \rho \left( {6 + \rho } \right)} \right) \hfill \\ \end{gathered} \right) \hfill \\ + l\beta \left( {5H\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) - \alpha \left( {22 + \rho \left( {24 + 5\rho } \right)} \right)} \right) - \left( {l + \beta } \right)\left( {1 + \rho } \right) \hfill \\ \left( {\left( {\beta \left( {5l + 6\beta } \right) + \left( {l + \beta } \right)\left( {l + 4\beta } \right)\rho } \right)c_{a} - \left( {l^{2} \rho + 2\beta^{2} \left( {1 + \rho } \right) + l\beta \left( { - 1 + 2\rho } \right)} \right)c_{b} } \right) \hfill \\ \end{gathered} }{{2\beta \left( {l + 2\beta } \right)\left( {3l + 2\beta } \right)\left( {1 + \rho } \right)\left( {2 + \rho } \right)}}$$
(15)
$$p_{b}^{N} = - \frac{\begin{gathered} 2\alpha \beta \left( {2 + \rho } \right)\left( {2\beta + l\left( {3 + \rho } \right)} \right) + \left( {l + \beta } \right)( - 2\beta \left( {1 + \rho } \right)\left( { - 2\alpha + H\beta \left( {2 + \rho } \right)} \right) \hfill \\ + l\left( { - 3H\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) + \alpha \left( {6 + \rho \left( {6 + \rho } \right)} \right)} \right) \hfill \\ + \left( {1 + \rho } \right)\left( {\left( {\left( {l - 2\beta } \right)\beta + l\left( {l + 3\beta } \right)\rho } \right)c_{a} + \left( {5l\beta - l^{2} \rho + 2\beta^{2} \left( {3 + \rho } \right)} \right)c_{b} } \right)) \hfill \\ \end{gathered} }{{2\beta \left( {l + 2\beta } \right)\left( {3l + 2\beta } \right)\left( {1 + \rho } \right)\left( {2 + \rho } \right)}}$$
(16)

At this point, the optimal recovery profits of online and offline recyclers are, respectively

$$\pi_{a}^{N} = \frac{\begin{gathered} \left( {l + \beta } \right)(2\beta \left( {1 + \rho } \right)\left( {2\alpha \left( {1 + \rho } \right) + H\beta \left( {2 + \rho } \right)} \right) + l\left( \begin{gathered} 3H\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) \hfill \\ + \alpha \left( {6 + \rho \left( {8 + 3\rho } \right)} \right) \hfill \\ \end{gathered} \right) \hfill \\ - \left( {1 + \rho } \right)\left( {2\beta^{2} \left( {3 + 2\rho } \right) + l^{2} \left( {4 + 3\rho } \right) + l\beta \left( {13 + 9\rho } \right)} \right)c_{a} \hfill \\ + \left( {1 + \rho } \right)\left( {2\beta^{2} \left( {1 + \rho } \right) + l^{2} \left( {4 + 3\rho } \right) + l\beta \left( {7 + 6\rho } \right)} \right)c_{b} )^{2} \hfill \\ \end{gathered} }{{4\left( {l + 2\beta } \right)^{2} \left( {3l + 2\beta } \right)^{2} \left( {1 + \rho } \right)^{2} \left( {2 + \rho } \right)^{2} }}$$
(17)
$$\pi_{b}^{N} = \frac{{\left( {l + \beta } \right)\left( \begin{gathered} 4\alpha \beta + 3Hl\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) + 2H\beta^{2} \left( {1 + \rho } \right)\left( {2 + \rho } \right) \hfill \\ + l\alpha \left( {6 + \rho \left( {4 + \rho } \right)} \right) + \left( {1 + \rho } \right)\left( \begin{gathered} \left( {2\beta^{2} + l^{2} \left( {4 + \rho } \right) + l\beta \left( {7 + \rho } \right)} \right)c_{a} \hfill \\ - \left( {2\beta^{2} \left( {3 + \rho } \right) + l^{2} \left( {4 + \rho } \right) + l\beta \left( {13 + 4\rho } \right)} \right)c_{b} \hfill \\ \end{gathered} \right) \hfill \\ \end{gathered} \right)^{2} }}{{4\left( {l + 2\beta } \right)^{2} \left( {3l + 2\beta } \right)^{2} \left( {1 + \rho } \right)\left( {2 + \rho } \right)^{2} }}$$
(18)

2.4 Proof of Proposition 4

From \(0 < \delta < 1\), we get \(- 1 - \delta < 0, - 1 + \delta < 0\).

It can be seen that \(\frac{{\partial^{2} U_{a} }}{{\partial^{2} p_{a} }}{ = }\frac{{2\left( {l + \beta } \right)\left( {1 + \lambda_{a} } \right)\left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{a} } \right)}}{{1 + \delta + \lambda_{a} }} < 0\), indicating that \(U_{a}\) is a concave function about the variable \(p_{a}\), and there is a unique solution.

2.5 Proof of Proposition 5

By substituting \(p_{t}^{N}\) and \(p_{b}^{N}\) into Eq. (8) from Proposition 3 and 4, let \(\frac{{\partial U_{a} }}{{\partial p_{a} }}{ = }0\), and the solution is obtained

$$p_{a}^{*} = \frac{A}{{4\beta \left( {l + 2\beta } \right)\left( {3l + 2\beta } \right)\left( {1 + \rho } \right)\left( {2 + \rho } \right)\left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{a} } \right)}},$$
$$\pi_{a}^{*} = - \frac{{\left( {l + \beta } \right)\left( {1 + \lambda_{a} } \right)B^{2} }}{{16\beta^{2} \left( {l + 2\beta } \right)^{2} \left( {3l + 2\beta } \right)^{2} \left( {1 + \rho } \right)^{2} \left( {2 + \rho } \right)^{2} \left( {1 + \delta + \lambda_{a} } \right)\left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{a} } \right)}}$$

Here the simplification for A and B are as follows:

$$\begin{aligned} A = & 2\left( {1 + \delta } \right)\left( \begin{gathered} - 2\beta^{2} \left( {1 + \rho } \right)\left( {H\beta \left( {2 + \rho } \right) - 2\alpha \left( {3 + \rho } \right)} \right) + l^{2} \left( { - 3H\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) + \alpha \left( {6 + \rho \left( {6 + \rho } \right)} \right)} \right) \hfill \\ + l\beta \left( { - 5H\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) + \alpha \left( {22 + \rho \left( {24 + 5\rho } \right)} \right)} \right) \hfill \\ \end{gathered} \right) \\ & + (4\beta^{2} \left( {1 + \rho } \right)\left( {H\beta \left( { - 1 + 2\delta } \right)\left( {2 + \rho } \right) + 2\alpha \left( {3 + \rho - \delta \left( {2 + \rho } \right)} \right)} \right) + l^{2} \left( \begin{gathered} 3H\beta \left( { - 2 + 3\delta } \right)\left( {1 + \rho } \right) \hfill \\ \left( {2 + \rho } \right) - \alpha \left( { - 2 + \delta } \right)\left( {6 + \rho \left( {6 + \rho } \right)} \right) \hfill \\ \end{gathered} \right) \\ & + 2l\beta \left( {H\beta \left( { - 5 + 9\delta } \right)\left( {1 + \rho } \right)\left( {2 + \rho } \right) + \alpha \left( {22 + \rho \left( {24 + 5\rho } \right) - 2\delta \left( {7 + 2\rho \left( {4 + \rho } \right)} \right)} \right)} \right))\lambda_{a} \\ & + \left( {1 + \rho } \right)c_{b} \left( \begin{gathered} - 2\left( {l + \beta } \right)\left( {1 + \delta } \right)\left( {l^{2} \rho + 2\beta^{2} \left( {1 + \rho } \right) + l\beta \left( { - 1 + 2\rho } \right)} \right) \hfill \\ + \left( {l^{2} \beta \left( {2 - 5\delta - 6\rho } \right) + l^{3} \left( { - 2 + \delta } \right)\rho - 4\beta^{3} \left( {1 + \rho } \right) - 2l\beta^{2} \left( {1 + 3\delta + \left( {4 + \delta } \right)\rho } \right)} \right)\lambda_{a} \hfill \\ \end{gathered} \right) + \left( {1 + \rho } \right)c_{a} \\ & \left( {2\left( {l + \beta } \right)\left( {1 + \delta } \right)\left( {\beta \left( {5l + 6\beta } \right) + \left( {l + \beta } \right)\left( {l + 4\beta } \right)\rho } \right) + \left( \begin{gathered} - l^{3} \left( { - 2 + \delta } \right)\rho + l^{2} \beta \left( {10 - 13\delta + 12\rho - 9\delta \rho } \right) + 2l\beta^{2} \hfill \\ \left( {11 - 15\delta + 9\rho - 8\delta \rho } \right) + 4\beta^{3} \left( {3 + 2\rho - 2\delta \left( {2 + \rho } \right)} \right) \hfill \\ \end{gathered} \right)\lambda_{a} } \right) \\ \end{aligned}$$

\(\begin{aligned} B = & 12l\alpha \beta + 12Hl\beta ^{2} + 8\alpha \beta ^{2} + 8H\beta ^{3} + 12l\alpha \beta \delta + 12Hl\beta ^{2} \delta + 8\alpha \beta ^{2} \delta + 8H\beta ^{3} \delta + 16l\alpha \beta \rho + 18Hl\beta ^{2} \rho \\ & + 16\alpha \beta ^{2} \rho + 12H\beta ^{3} \rho + 16l\alpha \beta \delta \rho + 18Hl\beta ^{2} \delta \rho + 16\alpha \beta ^{2} \delta \rho + 12H\beta ^{3} \delta \rho + 6l\alpha \beta \rho ^{2} + 6Hl\beta ^{2} \rho ^{2} + 8\alpha \beta ^{2} \rho ^{2} \\ & + 4H\beta ^{3} \rho ^{2} + 6l\alpha \beta \delta \rho ^{2} + 6Hl\beta ^{2} \delta \rho ^{2} + 8\alpha \beta ^{2} \delta \rho ^{2} + 4H\beta ^{3} \delta \rho ^{2} + 12l\alpha \beta \lambda _{a} + 12Hl\beta ^{2} \lambda _{a} + 8\alpha \beta ^{2} \lambda _{a} + 8H\beta ^{3} \lambda _{a} \\ & - 6l^{2} \alpha \delta \lambda _{a} - 6Hl^{2} \beta \delta \lambda _{a} - 28l\alpha \beta \delta \lambda _{a} - 28Hl\beta ^{2} \delta \lambda _{a} - 16\alpha \beta ^{2} \delta \lambda _{a} - 16H\beta ^{3} \delta \lambda _{a} + 16l\alpha \beta \rho \lambda _{a} + 18Hl\beta ^{2} \rho \lambda _{a} \\ & + 16\alpha \beta ^{2} \rho \lambda _{a} + 12H\beta ^{3} \rho \lambda _{a} - 6l^{2} \alpha \delta \rho \lambda _{a} - 9Hl^{2} \beta \delta \rho \lambda _{a} - 32l\alpha \beta \delta \rho \lambda _{a} - 42Hl\beta ^{2} \delta \rho \lambda _{a} - 24\alpha \beta ^{2} \delta \rho \lambda _{a} - 24H\beta ^{3} \delta \rho \lambda _{a} \\ & + 6l\alpha \beta \rho ^{2} \lambda _{a} + 6Hl\beta ^{2} \rho ^{2} \lambda _{a} + 8\alpha \beta ^{2} \rho ^{2} \lambda _{a} + 4H\beta ^{3} \rho ^{2} \lambda _{a} - l^{2} \alpha \delta \rho ^{2} \lambda _{a} - 3Hl^{2} \beta \delta \rho ^{2} \lambda _{a} - 8l\alpha \beta \delta \rho ^{2} \lambda _{a} - 14Hl\beta ^{2} \delta \rho ^{2} \lambda _{a} \\ & - 8\alpha \beta ^{2} \delta \rho ^{2} \lambda _{a} - 8H\beta ^{3} \delta \rho ^{2} \lambda _{a} + \left( {1 + \rho } \right)c_{b} \\ & *\left( \begin{gathered} 2\beta \left( {1 + \delta } \right)\left( {2\beta ^{2} \left( {1 + \rho } \right) + l^{2} \left( {4 + 3\rho } \right) + l\beta \left( {7 + 6\rho } \right)} \right) \hfill \\ + \left( {l^{3} \delta \rho + 4\beta ^{3} \left( {1 + \rho } \right) + l^{2} \beta \left( {8 - 5\delta + 6\rho } \right) - 2l\beta ^{2} \left( { - 7 - 6\rho + \delta \left( {3 + \rho } \right)} \right)} \right)\lambda _{a} \hfill \\ \end{gathered} \right) \\ & - \left( {1 + \rho } \right)c_{a} (2\beta \left( {1 + \delta } \right)\left( {2\beta ^{2} \left( {3 + 2\rho } \right) + l^{2} \left( {4 + 3\rho } \right) + l\beta \left( {13 + 9\rho } \right)} \right) + (l^{3} \delta \rho + 4\beta ^{3} \left( {3 + 2\rho - 2\delta \left( {2 + \rho } \right)} \right) \\ & + l^{2} \beta \left( {8 + 6\rho - \delta \left( {11 + 3\rho } \right)} \right) - 2l\beta ^{2} \left( { - 13 - 9\rho + \delta \left( {17 + 8\rho } \right)} \right))\lambda _{a} ) \\ \end{aligned}\)

2.6 Proof of Proposition 6

We can see from proposition 4 that \(\frac{{\partial^{2} U_{b} }}{{\partial^{2} p_{b} }} = \frac{{2\left( {l + \beta } \right)\left( {1 + \rho } \right)\left( {1 + \lambda_{b} } \right)\left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{b} } \right)}}{{1 + \delta + \lambda_{b} }} < 0\), indicating that \(U_{b}\) is a concave function about the variable \(p_{b}\), and there is a unique solution.

2.7 Proof of Proposition 7

Substitute \(p_{t}^{N}\) and \(p_{b}^{N}\) into Eq. (9), and let \(\frac{{\partial U_{b} }}{{\partial p_{b} }}{ = }0\) to obtain the optimal solution of the offline recycler:

$$p_{b}^{*} = - \frac{C}{{4\beta \left( {l + 2\beta } \right)\left( {3l + 2\beta } \right)\left( {1 + \rho } \right)\left( {2 + \rho } \right)\left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{b} } \right)}}$$
$$\pi_{b}^{*} = - \frac{{\left( {l + \beta } \right)\left( {1 + \lambda_{b} } \right)D^{2} }}{{16\beta^{2} \left( {l + 2\beta } \right)^{2} \left( {3l + 2\beta } \right)^{2} \left( {1 + \rho } \right)\left( {2 + \rho } \right)^{2} \left( {1 + \delta + \lambda_{b} } \right)\left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{b} } \right)}}$$

Here the simplification for C and D are as follows:

$$\begin{aligned} C = & 2\left( {1 + \delta } \right)\left( \begin{gathered} 2\beta^{2} \left( {H\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) - 2\alpha \left( {3 + 2\rho } \right)} \right) + l^{2} \left( {3H\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) - \alpha \left( {6 + \rho \left( {6 + \rho } \right)} \right)} \right) \hfill \\ + l\beta \left( {5H\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) - \alpha \left( {22 + \rho \left( {20 + 3\rho } \right)} \right)} \right) \hfill \\ \end{gathered} \right) \\ & + ( - 4\beta^{2} \left( {H\beta \left( { - 1 + 2\delta } \right)\left( {1 + \rho } \right)\left( {2 + \rho } \right) + \alpha \left( {6 + 4\rho - 2\delta \left( {2 + \rho } \right)} \right)} \right) + l^{2} \left( \begin{gathered} - 3H\beta \left( { - 2 + 3\delta } \right)\left( {1 + \rho } \right)\left( {2 + \rho } \right) \hfill \\ + \alpha \left( { - 2 + \delta } \right)\left( {6 + \rho \left( {6 + \rho } \right)} \right) \hfill \\ \end{gathered} \right) \\ & + 2l\beta \left( { - H\beta \left( { - 5 + 9\delta } \right)\left( {1 + \rho } \right)\left( {2 + \rho } \right) + \alpha \left( { - 22 - \rho \left( {20 + 3\rho } \right) + 2\delta \left( {7 + \rho \left( {6 + \rho } \right)} \right)} \right)} \right))\lambda_{b} + \left( {1 + \rho } \right)c_{a} \\ & \left( { - 2\left( {l + \beta } \right)\left( {1 + \delta } \right)\left( {\left( {l - 2\beta } \right)\beta + l\left( {l + 3\beta } \right)\rho } \right) + \left( \begin{gathered} \beta \left( {4\beta^{2} + l^{2} \left( { - 2 + 5\delta } \right) + 2l\left( {\beta + 3\beta \delta } \right)} \right) \hfill \\ + l\left( {l + \beta } \right)\left( { - 6\beta + l\left( { - 2 + \delta } \right) + 4\beta \delta } \right)\rho \hfill \\ \end{gathered} \right)\lambda_{b} } \right) + \left( {1 + \rho } \right)c_{b} \\ & \left( {2\left( {l + \beta } \right)\left( {1 + \delta } \right)\left( { - 5l\beta + l^{2} \rho - 2\beta^{2} \left( {3 + \rho } \right)} \right) + \left( \begin{gathered} - l^{3} \left( { - 2 + \delta } \right)\rho + l^{2} \beta \left( { - 10 + 13\delta + 2\rho + 4\delta \rho } \right) \hfill \\ + 2l\beta^{2} \left( { - 11 + 15\delta - 2\rho + 7\delta \rho } \right) + 4\beta^{3} \left( { - 3 - \rho + 2\delta \left( {2 + \rho } \right)} \right) \hfill \\ \end{gathered} \right)\lambda_{b} } \right) \\ \end{aligned}$$
$$\begin{aligned} D = & 12l\alpha \beta + 12Hl\beta^{2} + 8\alpha \beta^{2} + 8H\beta^{3} + 12l\alpha \beta \delta + 12Hl\beta^{2} \delta + 8\alpha \beta^{2} \delta + 8H\beta^{3} \delta + 8l\alpha \beta \rho + 18Hl\beta^{2} \rho + 12H\beta^{3} \rho \\ & + 8l\alpha \beta \delta \rho + 18Hl\beta^{2} \delta \rho + 12H\beta^{3} \delta \rho + 2l\alpha \beta \rho^{2} + 6Hl\beta^{2} \rho^{2} + 4H\beta^{3} \rho^{2} + 2l\alpha \beta \delta \rho^{2} + 6Hl\beta^{2} \delta \rho^{2} + 4H\beta^{3} \delta \rho^{2} \\ & + 12l\alpha \beta \lambda_{b} + 12Hl\beta^{2} \lambda_{b} + 8\alpha \beta^{2} \lambda_{b} + 8H\beta^{3} \lambda_{b} - 6l^{2} \alpha \delta \lambda_{b} - 6Hl^{2} \beta \delta \lambda_{b} - 28l\alpha \beta \delta \lambda_{b} - 28Hl\beta^{2} \delta \lambda_{b} - 16\alpha \beta^{2} \delta \lambda_{b} \\ & - 16H\beta^{3} \delta \lambda_{b} + 8l\alpha \beta \rho \lambda_{b} + 18Hl\beta^{2} \rho \lambda_{b} + 12H\beta^{3} \rho \lambda_{b} - 6l^{2} \alpha \delta \rho \lambda_{b} - 9Hl^{2} \beta \delta \rho \lambda_{b} - 24l\alpha \beta \delta \rho \lambda_{b} - 42Hl\beta^{2} \delta \rho \lambda_{b} \\ & - 8\alpha \beta^{2} \delta \rho \lambda_{b} - 24H\beta^{3} \delta \rho \lambda_{b} + 2l\alpha \beta \rho^{2} \lambda_{b} + 6Hl\beta^{2} \rho^{2} \lambda_{b} + 4H\beta^{3} \rho^{2} \lambda_{b} - l^{2} \alpha \delta \rho^{2} \lambda_{b} - 3Hl^{2} \beta \delta \rho^{2} \lambda_{b} - 4l\alpha \beta \delta \rho^{2} \lambda_{b} \\ & - 14Hl\beta^{2} \delta \rho^{2} \lambda_{b} - 8H\beta^{3} \delta \rho^{2} \lambda_{b} - \left( {1 + \rho } \right)c_{a} ( - 2\beta \left( {1 + \delta } \right)\left( {2\beta^{2} + l^{2} \left( {4 + \rho } \right) + l\beta \left( {7 + \rho } \right)} \right) \\ & + \left( { - 4\beta^{3} + l^{3} \delta \rho + l^{2} \beta \left( {5\delta \left( {1 + \rho } \right) - 2\left( {4 + \rho } \right)} \right) + 2l\beta^{2} \left( { - 7 - \rho + \delta \left( {3 + 2\rho } \right)} \right)} \right)\lambda_{b} ) + \left( {1 + \rho } \right)c_{b} ( - 2\beta \left( {1 + \delta } \right) \\ & \left( {2\beta^{2} \left( {3 + \rho } \right) + l^{2} \left( {4 + \rho } \right) + l\beta \left( {13 + 4\rho } \right)} \right) + \left( \begin{gathered} l^{3} \delta \rho + 4\beta^{3} \left( { - 3 - \rho + 2\delta \left( {2 + \rho } \right)} \right) + l^{2} \beta \hfill \\ \left( { - 2\left( {4 + \rho } \right) + \delta \left( {11 + 8\rho } \right)} \right) + 2l\beta^{2} \left( { - 13 - 4\rho + \delta \left( {17 + 9\rho } \right)} \right) \hfill \\ \end{gathered} \right)\lambda_{b} ) \\ \end{aligned}$$

2.8 Proof of Conclusion 1

From \(0 < c_{a} < c_{b} < H\), we get

\(\frac{{\partial p_{a} }}{{\partial \lambda_{a} }} = \frac{{\partial p_{b} }}{{\partial \lambda_{b} }} = - \frac{\begin{gathered} \delta \left( {1 + \delta } \right)(6l\alpha + 6Hl\beta + 4\alpha \beta + 4H\beta^{2} + 6l\alpha \rho + 9Hl\beta \rho + 4\alpha \beta \rho \hfill \\ + 6H\beta^{2} \rho + l\alpha \rho^{2} + 3Hl\beta \rho^{2} + 2H\beta^{2} \rho^{2} + \left( {1 + \rho } \right)\left( { - 2\beta^{2} + l\beta \left( { - 3 + \rho } \right) + l^{2} \rho } \right)c_{a} \hfill \\ - \left( {1 + \rho } \right)\left( {l^{2} \rho + 2\beta^{2} \left( {1 + \rho } \right) + l\beta \left( {3 + 4\rho } \right)} \right)c_{b} ) \hfill \\ \end{gathered} }{{4\beta \left( {3l + 2\beta } \right)\left( {1 + \rho } \right)\left( {2 + \rho } \right)\left( {1 + \delta - \left( { - 1 + \delta } \right)\lambda_{a} } \right)^{2} }} < 0\).

Since \(- 2 < - 2 + \delta < - 1\) and \(- 1 - \delta < 0, - 1 + \delta < 0\), we get

$$\frac{{\partial p_{a} }}{\partial \rho } = \frac{\begin{gathered} \left( {2l^{2} + 5l\beta + 2\beta^{2} } \right)\left( {1 + \rho } \right)^{2} \left( { - 2\left( {l + \beta } \right)\left( {1 + \delta } \right) + \left( { - 2\beta + l\left( { - 2 + \delta } \right)} \right)\lambda_{a} } \right)(c_{b} - c_{a} ) \hfill \\ + \alpha \left( \begin{gathered} - 2\left( {1 + \delta } \right)\left( {4\beta^{2} \left( {1 + \rho } \right)^{2} + l^{2} \left( {6 + 8\rho + 3\rho^{2} } \right) + 3l\beta \left( {6 + 8\rho + 3\rho^{2} } \right)} \right) \hfill \\ + \left( { - 8\beta^{2} \left( {1 + \rho } \right)^{2} + 4l\beta \delta \left( {5 + 6\rho + 2\rho^{2} } \right) - 6l\beta \left( {6 + 8\rho + 3\rho^{2} } \right) + l^{2} \left( { - 2 + \delta } \right)\left( {6 + 8\rho + 3\rho^{2} } \right)} \right)\lambda_{a} \hfill \\ \end{gathered} \right) \hfill \\ \end{gathered} }{{4\beta \left( {l + 2\beta } \right)\left( {3l + 2\beta } \right)\left( {1 + \rho } \right)^{2} \left( {2 + \rho } \right)^{2} \left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{a} } \right)}} > 0$$

\(\frac{{\partial p_{b} }}{\partial \rho } = \frac{\begin{gathered} \left( {2l^{2} + 5l\beta + 2\beta^{2} } \right)\left( {1 + \rho } \right)^{2} \left( { - 2\left( {l + \beta } \right)\left( {1 + \delta } \right) + \left( { - 2\beta + l\left( { - 2 + \delta } \right)} \right)\lambda_{b} } \right)(c_{b} - c_{a} ) \hfill \\ + \alpha ( - 2\left( {1 + \delta } \right)\left( {4\beta^{2} \left( {5 + 6\rho + 2\rho^{2} } \right) + l^{2} \left( {6 + 8\rho + 3\rho^{2} } \right) + l\beta \left( {26 + 32\rho + 11\rho^{2} } \right)} \right) \hfill \\ + \left( \begin{gathered} l^{2} \left( { - 2 + \delta } \right)\left( {6 + 8\rho + 3\rho^{2} } \right) + 8\beta^{2} \left( { - 5 - 6\rho - 2\rho^{2} + \delta \left( {2 + \rho } \right)^{2} } \right) \hfill \\ + 2l\beta \left( { - 26 - 32\rho - 11\rho^{2} + 2\delta \left( {9 + 10\rho + 3\rho^{2} } \right)} \right) \hfill \\ \end{gathered} \right)\lambda_{b} ) \hfill \\ \end{gathered} }{{4\beta \left( {l + 2\beta } \right)\left( {3l + 2\beta } \right)\left( {1 + \rho } \right)^{2} \left( {2 + \rho } \right)^{2} \left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{b} } \right)}} > 0\).

2.9 Proof of Conclusion 2

Set \(X = 2\beta \left( {1 + \rho } \right)\left( {2\alpha \left( {1 + \rho } \right) + H\beta \left( {2 + \rho } \right)} \right) + l\left( {3H\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) + \alpha \left( {6 + \rho \left( {8 + 3\rho } \right)} \right)} \right) - \left( {1 + \rho } \right)\left( {2\beta^{2} \left( {3 + 2\rho } \right) + l^{2} \left( {4 + 3\rho } \right) + l\beta \left( {13 + 9\rho } \right)} \right)c_{a} + \left( {1 + \rho } \right)\left( {2\beta^{2} \left( {1 + \rho } \right) + l^{2} \left( {4 + 3\rho } \right) + l\beta \left( {7 + 6\rho } \right)} \right)c_{b}\) \(Y = 4\alpha \beta + 3Hl\beta \left( {1 + \rho } \right)\left( {2 + \rho } \right) + 2H\beta^{2} \left( {1 + \rho } \right)\left( {2 + \rho } \right) + l\alpha \left( {6 + \rho \left( {4 + \rho } \right)} \right) + \left( {1 + \rho } \right)(\left( {2\beta^{2} + l^{2} \left( {4 + \rho } \right) + l\beta \left( {7 + \rho } \right)} \right)c_{a} - \left( {2\beta^{2} \left( {3 + \rho } \right) + l^{2} \left( {4 + \rho } \right) + l\beta \left( {13 + 4\rho } \right)} \right)c_{b} )\),

from the simplification B and D in Proposition 5 and 7, we can get

$$\pi_{a}^{*} - \pi_{a}^{N} = \frac{{\left( {l + \beta } \right)( - 4\beta^{2} X^{2} \left( {1 + \delta + \lambda_{a} } \right)\left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{a} } \right) - \left( {1 + \lambda_{a} } \right)B^{2} )}}{{16\beta^{2} \left( {l + 2\beta } \right)^{2} \left( {3l + 2\beta } \right)^{2} \left( {1 + \rho } \right)^{2} \left( {2 + \rho } \right)^{2} \left( {1 + \delta + \lambda_{a} } \right)\left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{a} } \right))}} > 0$$

\(\pi_{b}^{*} - \pi_{b}^{N} = \frac{{\left( {l + \beta } \right)( - 4\beta^{2} Y^{2} \left( {1 + \delta + \lambda_{b} } \right)\left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{b} } \right) - \left( {1 + \lambda_{b} } \right)D^{2} )}}{{16\beta^{2} \left( {l + 2\beta } \right)^{2} \left( {3l + 2\beta } \right)^{2} \left( {1 + \rho } \right)\left( {2 + \rho } \right)^{2} \left( {1 + \delta + \lambda_{b} } \right)\left( { - 1 - \delta + \left( { - 1 + \delta } \right)\lambda_{b} } \right))}} > 0\).

2.10 Proof of Conclusion 3

When \(\lambda_{a} { = }\lambda_{b}\), we get \(p_{a}^{*} - p_{b}^{*} = \frac{{ - \alpha \rho - \left( {l + \beta } \right)\left( {1 + \rho } \right)(c_{a} - c_{b} )}}{{\left( {3l + 2\beta } \right)\left( {1 + \rho } \right)}}\).

So it can be seen that when \(\beta > - 1 - \frac{\alpha \rho }{{(1 + \rho )(c_{a} - c_{b} )}}\) we get \(p_{a}^{*} - p_{b}^{*} > 0\), namely \(p_{a}^{*} > p_{b}^{*}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhao, J. & Meng, Q. Dual-channel recycling e-waste pricing decision under the impact of recyclers’ loss aversion and consumers’ bargaining power. Environ Dev Sustain 24, 11697–11720 (2022). https://doi.org/10.1007/s10668-021-01916-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01916-w

Keywords

Navigation