Skip to main content
Log in

Loss-averse preferences in a two-echelon supply chain with yield risk and demand uncertainty

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

We consider a one-period two-echelon supply chain composed of a loss-averse supplier with yield randomness and a loss-averse retailer with demand uncertainty. At the beginning of the selling season, the retailer orders from the supplier via the wholesale price contract, and then the supplier makes his production decision. We derive the loss-averse retailer’s optimal ordering policy and the loss-averse supplier’s optimal production policy under these conditions. In addition, we discuss the effect of loss aversion on both parties’ decision making and show how loss aversion contributes to decision bias. Furthermore, we find that the loss-averse retailer’s optimal order quantity may increase in wholesale price and decrease in retail price which is differ from the risk-neutral case where the optimal order quantity is always decreasing in wholesale price and increasing in retail price. Finally, numerical examples are presented to illustrate how loss aversion and yield variance contribute to the supply chain performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The well-known “double marginalization” is discovered by Spengler (1950) and explain such a phenomenon that each party in the supply chain independently seeks high-profit margins, and as a result, the price is higher and sales volume and profits are lower than that of a vertically integrated channel.

References

  • Arrow KJ (1958) Studies in the mathematical theory of inventory and production. No. 1. Stanford University Press, Stanford, California

  • Barberis N, Huang M, Santos T (1999) Prospect theory and asset prices. Tech. rep, National Bureau of Economic Research

  • Bollapragada S, Morton TE (1999) Myopic heuristics for the random yield problem. Oper Res 47(5):713–722

    Article  Google Scholar 

  • Buzacott JA, Shanthikumar JG (1993) Stochastic models of manufacturing systems, vol 4. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Cachon GP (2003) Supply chain coordination with contracts. Handb Oper Res Manag Sci 11:227–339

    Google Scholar 

  • Eeckhoudt L, Gollier C, Schlesinger H (1995) The risk-averse (and prudent) newsboy. Manag Sci 41(5):786–794

    Article  Google Scholar 

  • Feng T, Keller LR, Zheng X (2011) Decision making in the newsvendor problem: a cross-national laboratory study. Omega 39(1):41–50

    Article  Google Scholar 

  • Fisher M, Raman A (1996) Reducing the cost of demand uncertainty through accurate response to early sales. Oper Res 44(1):87–99

    Article  Google Scholar 

  • Goto JH (1999) A markov decision process model for airline meal provisioning. Ph.D. thesis, University of British Columbia

  • Grosfeld-Nir A, Gerchak Y, He Q-M (2000) Manufacturing to order with random yield and costly inspection. Oper Res 48(5):761–767

    Article  Google Scholar 

  • Güler MG, Bilgiç T (2009) On coordinating an assembly system under random yield and random demand. Eur J Oper Res 196(1):342–350

    Article  Google Scholar 

  • Gurnani H, Akella R, Lehoczky J (2000) Supply management in assembly systems with random yield and random demand. IIE Trans 32(8):701–714

    Google Scholar 

  • Gurnani H, Gerchak Y (2007) Coordination in decentralized assembly systems with uncertain component yields. Eur J Oper Res 176(3):1559–1576

    Article  Google Scholar 

  • He Y, Zhang J (2008) Random yield risk sharing in a two-level supply chain. Int J Prod Econ 112(2):769–781

    Article  Google Scholar 

  • He Y, Zhang J (2010) Random yield supply chain with a yield dependent secondary market. Eur J Oper Res 206(1):221–230

    Article  Google Scholar 

  • Hillier F (1963) Reject allowances for job lot orders. J Ind Eng 14(3):1

    Google Scholar 

  • Hsu A, Bassok Y (1999) Random yield and random demand in a production system with downward substitution. Oper Res 47(2):277–290

    Article  Google Scholar 

  • Inderfurth K (2004) Optimal policies in hybrid manufacturing/remanufacturing systems with product substitution. Int J Prod Econ 90(3):325–343

    Article  Google Scholar 

  • Inderfurth K (2009) How to protect against demand and yield risks in mrp systems. Int J Prod Econ 121(2):474–481

    Article  Google Scholar 

  • Inderfurth K, Transchel S (2007) Technical note-note on myopic heuristics for the random yield problem. Oper Res 55(6):1183–1186

    Article  Google Scholar 

  • Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica xlvii:263–291. doi:10.2307/1914185

    Article  Google Scholar 

  • Keren B (2009) The single-period inventory problem: extension to random yield from the perspective of the supply chain. Omega 37(4):801–810

    Article  Google Scholar 

  • Khouja M (1999) The single-period (news-vendor) problem: literature review and suggestions for future research. Omega 27(5):537–553

    Article  Google Scholar 

  • Kulkarni SS (2006) The impact of uncertain yield on capacity acquisition in process plant networks. Math Comput Model 43(7):704–717

    Article  Google Scholar 

  • Kurtulus I, Pentico D (1988) Materials requirement planning when there is scrap loss. Prod Inventory Manag J 29(2):18–21

    Google Scholar 

  • Lee HL, Nahmias S (1993) Single-product, single-location models. Handb Oper Res Manag Sci 4:3–55

    Google Scholar 

  • Levitan R (1960) The optimum reject allowance problem. Manag Sci 6(2):172–186

    Article  Google Scholar 

  • Li Q, Zheng S (2006) Joint inventory replenishment and pricing control for systems with uncertain yield and demand. Oper Res 54(4):696–705

    Article  Google Scholar 

  • Lindholm A, Johnsson C (2013) Plant-wide utility disturbance management in the process industry. Comput Chem Eng 49:146–157

    Article  Google Scholar 

  • Lu M, Huang S, Shen Z-JM (2011) Product substitution and dual sourcing under random supply failures. Transp Res B Methodol 45(8):1251–1265

    Article  Google Scholar 

  • Masih-Tehrani B, Xu SH, Kumara S, Li H (2011) A single-period analysis of a two-echelon inventory system with dependent supply uncertainty. Transp Res B Methodol 45(8):1128–1151

    Article  Google Scholar 

  • Nahmias S (2008) Production and operations analysis, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Pal B, Sana SS, Chaudhuri K (2013) Maximising profits for an epq model with unreliable machine and rework of random defective items. Int J Syst Sci 44(3):582–594

    Article  Google Scholar 

  • Rekik Y, Sahin E, Dallery Y (2007) A comprehensive analysis of the newsvendor model with unreliable supply. OR Spectr 29(2):207–233

    Article  Google Scholar 

  • Sana SS (2010) A production-inventory model in an imperfect production process. Eur J Oper Res 200(2):451–464

    Article  Google Scholar 

  • Schweitzer ME, Cachon GP (2000) Decision bias in the newsvendor problem with a known demand distribution: experimental evidence. Manag Sci 46(3):404–420

    Article  Google Scholar 

  • Snyder LV, Atan Z, Peng P, Rong Y, Schmitt AJ, Sinsoysal B (2012) OR/MS models for supply chain disruptions: a review. Available at SSRN 1689882

  • Song D-P (2012) Optimal control and optimization of stochastic supply chain systems. Springer Science & Business Media, Berlin

    Google Scholar 

  • Song D-P, Sun Y-X (1998) Optimal service control of a serial production line with unreliable workstations and random demand. Automatica 34(9):1047–1060

    Article  Google Scholar 

  • Spengler JJ (1950) Vertical integration and antitrust policy. J Polit Econ 58(4):347–352

    Article  Google Scholar 

  • Suo H, Wang J, Jin Y (2004) Coordinating a loss-averse newsvendor with vendor managed inventory. In: 2004 IEEE international conference on systems, man and cybernetics, vol 7. IEEE, pp 6026–6030

  • Tom SM, Fox CR, Trepel C, Poldrack RA (2007) The neural basis of loss aversion in decision-making under risk. Science 315(5811):515–518

    Article  Google Scholar 

  • Tversky A, Kahneman D (1991) Loss aversion in riskless choice:a reference-dependent model. Q J Econ 106(4):1039–1061

    Article  Google Scholar 

  • Wang CX, Webster S (2007) Channel coordination for a supply chain with a risk-neutral manufacturer and a loss-averse retailer*. Decis Sci 38(3):361–389

    Article  Google Scholar 

  • Wang CX, Webster S (2009) The loss-averse newsvendor problem. Omega 37(1):93–105

    Article  Google Scholar 

  • Wu J, Wang S, Chao X, Ng C, Cheng T (2010) Impact of risk aversion on optimal decisions in supply contracts. Int J Prod Econ 128(2):569–576

    Article  Google Scholar 

  • Xing Y, Li L, Bi Z, Wilamowska-Korsak M, Zhang L (2013) Operations research (or) in service industries: a comprehensive review. Syst Res Behav Sci 30(3):300–353

    Article  Google Scholar 

  • Yano CA, Lee HL (1995) Lot sizing with random yields: a review. Oper Res 43(2):311–334

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (Grant Nos. 71571171, 71271199, 71601175), Program for New Century Excellent Talents in University (Grant No. NCET-13-0538), Key International (Regional) Joint Research Program (Grant No. 7152107002) and the Fundamental Research Funds for the Central Universities of China (Grant Nos. WK2040160008, WK2040160016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengfei Nie.

Appendices

Appendix A

Proof of Theorem 3.2

(1) From Eq. (3), we obtain

$$\begin{aligned} \frac{{dE\left[ {U\left( {{\Pi ^S}(Q)} \right) } \right] }}{{dQ}}= \,& {} \left( {w + {\beta _s} + {h_s}} \right) \int _0^{q/Q} {uf\left( u \right) du - } {h_s}\mu - c + \left( {{\lambda _s} - 1} \right) \nonumber \\&\times \left( {\int _0^{{S_1}(Q)} {\left( {\left( {w + {\beta _s}} \right) u - c} \right) f\left( u \right) du - \int _{{S_2}(Q)}^\infty {\left( {{h_s}u + c} \right) f\left( u \right) } du} } \right) \end{aligned}$$

and

$$\begin{aligned} \frac{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q)} \right) } \right] }}{{d{Q^2}}}= \,& {} - \left( {w + {\beta _s} + {h_s}} \right) \frac{{{q^2}}}{{{Q^3}}}f\left( {\frac{q}{Q}} \right) \nonumber \\&- \left( {{\lambda _s} - 1} \right) \left( {\frac{{\beta _s^2{q^2}}}{{\left( {w + {\beta _s}} \right) {Q^3}}}f\left( {{S_1}(Q)} \right) + \frac{{{{\left( {w + {h_s}} \right) }^2}{q^2}}}{{{h_s}{Q^3}}}f\left( {{S_2}(Q)} \right) } \right) < 0 \end{aligned}$$

Hence, there exists a unique optimal order quantity that satisfies the first-order condition Eq. (4).

(2) From the first-order condition Eq. (4), we can find that \(Q_\lambda ^*\) is related to the retailer’s ordered quantity q. Therefore, by the implicit function theorem,

$$\begin{aligned} \frac{{dQ_\lambda ^*}}{{dq}} = - \frac{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /dQdq}}{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /d{Q^2}}} = \frac{{Q_\lambda ^*}}{q} > 0 \end{aligned}$$

and

$$\begin{aligned} \frac{{{d^2}Q_\lambda ^*}}{{d{q^2}}} = \left( {\frac{{dQ_\lambda ^*}}{{dq}}q - Q_\lambda ^*} \right) /{q^2} = 0 \end{aligned}$$

We can prove that \(Q_\lambda ^*\) is a linear function on the retailer’s ordered quantity q, denoted as \(Q_\lambda ^*(q) = Kq\). \(\square \)

Proof of Theorem 3.3

After substituting \(Q_1^*\) into \(dE\left[ {U\left( {{\Pi ^S}(Q)} \right) } \right] /dQ\), we get

$$\begin{aligned}&dE\left[ {U\left( {{\Pi ^S}(Q_1^*)} \right) } \right] /dQ\\&\quad = \left( {w + {\beta _s} + {h_s}} \right) \int _0^{q/Q_1^*} {uf\left( u \right) du - } {h_s}\mu - c + \left( {{\lambda _s} - 1} \right) \nonumber \\&\qquad \times \left( {\int _0^{{S_1}(Q_1^*)} {\left( {\left( {w + {\beta _s}} \right) u - c} \right) f\left( u \right) du - \int _{{S_2}(Q_1^*)}^\infty {\left( {{h_s}u + c} \right) f\left( u \right) } du} } \right) \end{aligned}$$

According to Eq. (5), \(dE\left[ {U\left( {{\Pi ^S}(Q_1^*)} \right) } \right] /dQ\) reduces to

$$\begin{aligned}&dE\left[ {U\left( {{\Pi ^S}(Q_1^*)} \right) } \right] /dQ\nonumber \\&\quad = \left( {{\lambda _s} - 1} \right) \left( {\int _0^{{S_1}(Q_1^*)} {\left( {\left( {w + {\beta _s}} \right) u - c} \right) f\left( u \right) du - \int _{{S_2}(Q_1^*)}^\infty {\left( {{h_s}u + c} \right) f\left( u \right) } du} } \right) \end{aligned}$$

Therefore, if \({L_1}(Q_1^*) > {L_2}(Q_1^*)\), then \(dE\left[ {U\left( {{\Pi ^S}(Q_1^*)} \right) } \right] /dQ > 0\). Since \(E\left[ {U\left( {{\Pi ^S}(Q)} \right) } \right] \) is concave, so \(Q_\lambda ^* > Q_1^*\), which in turn implies \(\left( {w + {\beta _s} + {h_s}} \right) \int _0^{q/Q_\lambda ^*} {uf\left( u \right) du - } {h_s}\mu - c < 0\) based on Eq. (5). Thus, from the first-order condition Eq. (4),

$$\begin{aligned} \int _0^{{S_1}(Q_\lambda ^*)} {\left( {\left( {w + {\beta _s}} \right) u - c} \right) f\left( u \right) du - \int _{{S_2}(Q_\lambda ^*)}^\infty {\left( {{h_s}u + c} \right) f\left( u \right) } du} > 0 \end{aligned}$$

Therefore, by the implicit function theorem,

$$\begin{aligned} \frac{{dQ_\lambda ^*}}{{d{\lambda _s}}}= \,& {} - \frac{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /dQd{\lambda _s}}}{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /d{Q^2}}}\nonumber \\= \,& {} \frac{{\int _0^{{S_1}(Q_\lambda ^*)} {\left( {\left( {w + {\beta _s}} \right) u - c} \right) f\left( u \right) du - \int _{{S_2}(Q_\lambda ^*)}^\infty {\left( {{h_s}u + c} \right) f\left( u \right) } du} }}{{ - {d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /d{Q^2}}} > 0 \end{aligned}$$

Furthermore, as

$$\begin{aligned} \frac{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q)} \right) } \right] }}{{dQdK}}= \,& {} - \left( {w + {\beta _s} + {h_s}} \right) \frac{1}{{{K^3}}}f\left( {\frac{1}{K}} \right) \nonumber \\&- \left( {{\lambda _s} - 1} \right) \left( {\frac{{Q\beta _s^2}}{{{{\left( {w + {\beta _s}} \right) }^2}{K^3}}}f\left( {{S_1}(Q)} \right) + \frac{{{{\left( {w + {h_s}} \right) }^2}{q^2}}}{{Qh_s^2{K^2}}}f\left( {{S_2}(Q)} \right) } \right) < 0 \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{{dK}}{{d{\lambda _s}}}= \,& {} - \frac{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /dQd{\lambda _s}}}{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /dQdK}}\nonumber \\= \,& {} \frac{{\int _0^{{S_1}(Q_\lambda ^*)} {\left( {\left( {w + {\beta _s}} \right) u - c} \right) f\left( u \right) du - \int _{{S_2}(Q_\lambda ^*)}^\infty {\left( {{h_s}u + c} \right) f\left( u \right) } du} }}{{ - {d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /dQdK}} > 0 \end{aligned}$$

Similarly, we can prove that if \({L_1}(Q_1^*) \le {L_2}(Q_1^*)\), then \(Q_\lambda ^* \le Q_1^*\), \(dQ_\lambda ^*/d{\lambda _s} \le 0\) and \(dK/d{\lambda _s} \le 0\). \(\square \)

Proof of Theorem 3.4

(1) According to the implicit function theorem,

$$\begin{aligned} \frac{{dQ_\lambda ^*}}{{d{\beta _s}}} = - \frac{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /dQd{\beta _s}}}{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /d{Q^2}}} \end{aligned}$$

where,

$$\begin{aligned}&{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /dQd{\beta _s} \\&\quad = \int _0^{q/Q_\lambda ^*} {uf\left( u \right) du + \left( {{\lambda _s} - 1} \right) \left( {\int _0^{{S_1}(Q_\lambda ^*)} {uf\left( u \right) } du + \frac{{{\beta _s}q\left( {wq - cQ_\lambda ^*} \right) }}{{{{\left( {w + {\beta _s}} \right) }^2}{{\left( {Q_\lambda ^*} \right) }^2}}}f\left( {{S_1}(Q_\lambda ^*)} \right) } \right) } \\&\quad > 0 \end{aligned}$$

So, \(dQ_\lambda ^*/d{\beta _s} > 0\).

(2) According to the implicit function theorem,

$$\begin{aligned} \frac{{dQ_\lambda ^*}}{{d{h_s}}} = - \frac{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /dQd{h_s}}}{{{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /d{Q^2}}} \end{aligned}$$

where,

$$\begin{aligned}&{d^2}E\left[ {U\left( {{\Pi ^S}(Q_\lambda ^*)} \right) } \right] /dQd{h_s} \nonumber \\&\quad = \int _0^{q/Q_\lambda ^*} {uf\left( u \right) du - \mu - \left( {{\lambda _s} - 1} \right) \left( {\int _{{S_2}(Q_\lambda ^*)}^\infty {uf\left( u \right) } du + \frac{{\left( {w + {h_s}} \right) q\left( {wq - cQ_\lambda ^*} \right) }}{{h_s^2{{\left( {Q_\lambda ^*} \right) }^2}}}f\left( {{S_2}(Q_\lambda ^*)} \right) } \right) } \nonumber \\&< 0 \end{aligned}$$

So, \(dQ_\lambda ^*/d{h_s} < 0\). \(\square \)

Proof of Theorem 3.6

From Eq. (8), we get

$$\begin{aligned}&\frac{{dE\left[ {U\left( {{\Pi ^R}(q)} \right) } \right] }}{{dq}}\\&\quad =\int _0^{1/K} {\left[ {\left( {p - w + {\beta _r}} \right) uK - \left( {p + {h_r} + {\beta _r}} \right) uK\int _0^{uKq_\lambda ^*} {g\left( x \right) dx} } \right] f\left( u \right) du} \nonumber \\&\qquad + \int _{1/K}^\infty {\left[ {\left( {p - w + {\beta _r}} \right) - \left( {p + {h_r} + {\beta _r}} \right) \int _0^{q_\lambda ^*} {g\left( x \right) dx} } \right] f\left( u \right) du} \nonumber \\&\qquad + \left( {{\lambda _r} - 1} \right) \int _0^{1/K} {\left[ {uK\left( {\left( {p - w + {\beta _r}} \right) \int _{{R_4}(q_\lambda ^*)}^\infty {g\left( x \right) dx} - \left( {w + {h_r}} \right) \int _0^{{R_3}(q_\lambda ^*)} {g\left( x \right) } dx} \right) } \right] f\left( u \right) du} \nonumber \\&\qquad + \left( {{\lambda _r} - 1} \right) \int _{1/K}^\infty {\left[ {\left( {p - w + {\beta _r}} \right) \int _{{R_2}(q_\lambda ^*)}^\infty {g\left( x \right) dx} - \left( {w + {h_r}} \right) \int _0^{{R_1}(q_\lambda ^*)} {g\left( x \right) } dx} \right] f\left( u \right) du} \end{aligned}$$

and

$$\begin{aligned}&\frac{{{d^2}E\left[ {U\left( {{\Pi ^R}(q)} \right) } \right] }}{{d{q^2}}}\\&\quad = - \int _{1/K}^\infty {\left[ {\left( {p + {h_r} + {\beta _r}} \right) g\left( q \right) } \right] f\left( u \right) du} \nonumber \\&\qquad - \int _0^{1/K} {\left[ {\left( {p + {h_r} + {\beta _r}} \right) {{\left( {uK} \right) }^2}g\left( {uKq} \right) } \right] f\left( u \right) du} \nonumber \\&\qquad - \left( {{\lambda _r} - 1} \right) \int _{1/K}^\infty {\left[ {\left( {p - w + {\beta _r}} \right) g\left( {{R_2}(q)} \right) R_2^{'}(q) + \left( {w + {h_r}} \right) g\left( {{R_1}(q)} \right) R_1^{'}(q)} \right] f\left( u \right) du} \nonumber \\&\qquad - \left( {{\lambda _r} - 1} \right) \int _0^{1/K} {uK\left[ {\left( {p - w + {\beta _r}} \right) g\left( {{R_4}(q)} \right) R_4^{'}(q) + \left( {w + {h_r}} \right) g\left( {{R_3}(q)} \right) R_3^{'}(q)} \right] f\left( u \right) du} \nonumber \\&\quad < 0 \end{aligned}$$

Hence, there exists a unique optimal order quantity \(q_\lambda ^*\) that satisfies the first-order condition Eq. (9). \(\square \)

Proof of Theorem 3.8

Proof is similar to the proof of Theorem 3.3.

After substituting \(q_1^*\) into \(dE\left[ {U\left( {{\Pi ^R}(q)} \right) } \right] /dq\), we get

$$\begin{aligned}&dE\left[ {U\left( {{\Pi ^R}(q_1^*)} \right) } \right] /dq\\&\quad = \int _0^{1/K} {\left[ {\left( {p - w + {\beta _r}} \right) uK - \left( {p + {h_r} + {\beta _r}} \right) uK\int _0^{uKq_1^*} {g\left( x \right) dx} } \right] f\left( u \right) du} \\&\qquad + \int _{1/K}^\infty {\left[ {\left( {p - w + {\beta _r}} \right) - \left( {p + {h_r} + {\beta _r}} \right) \int _0^{q_1^*} {g\left( x \right) dx} } \right] f\left( u \right) du} \\&\qquad + \left( {{\lambda _r} - 1} \right) \int _0^{1/K} {\left[ {uK\left( {\left( {p - w + {\beta _r}} \right) \int _{{R_4}(q_1^*)}^\infty {g\left( x \right) dx} - \left( {w + {h_r}} \right) \int _0^{{R_3}(q_1^*)} {g\left( x \right) } dx} \right) } \right] f\left( u \right) du} \\&\qquad + \left( {{\lambda _r} - 1} \right) \int _{1/K}^\infty {\left[ {\left( {p - w + {\beta _r}} \right) \int _{{R_2}(q_1^*)}^\infty {g\left( x \right) dx} - \left( {w + {h_r}} \right) \int _0^{{R_1}(q_1^*)} {g\left( x \right) } dx} \right] f\left( u \right) du} \end{aligned}$$

According to Eq. (10), \(dE\left[ {U\left( {{\Pi ^R}(q_1^*)} \right) } \right] /dq\) reduces to

$$\begin{aligned}&dE\left[ {U\left( {{\Pi ^R}(q_1^*)} \right) } \right] /dq\\&\quad = \left( {{\lambda _r} - 1} \right) \int _0^{1/K} {\left[ {uK\left( {\left( {p - w + {\beta _r}} \right) \int _{{R_4}(q_1^*)}^\infty {g\left( x \right) dx} - \left( {w + {h_r}} \right) \int _0^{{R_3}(q_1^*)} {g\left( x \right) } dx} \right) } \right] f\left( u \right) du} \\&\qquad + \left( {{\lambda _r} - 1} \right) \int _{1/K}^\infty {\left[ {\left( {p - w + {\beta _r}} \right) \int _{{R_2}(q_1^*)}^\infty {g\left( x \right) dx} - \left( {w + {h_r}} \right) \int _0^{{R_1}(q_1^*)} {g\left( x \right) } dx} \right] f\left( u \right) du} \end{aligned}$$

Therefore, if \({l_1}(q_1^*) > {l_2}(q_1^*)\), then \(dE\left[ {U\left( {{\Pi ^R}(q_1^*)} \right) } \right] /dq > 0\). Since \(E\left[ {U\left( {{\Pi ^R}(q)} \right) } \right] \) is concave, so \(q_\lambda ^* > q_1^*\), which in turn implies

$$\begin{aligned}&\int _0^{1/K} {\left[ {\left( {p - w + {\beta _r}} \right) uK - \left( {p + {h_r} + {\beta _r}} \right) uK\int _0^{uKq_\lambda ^*} {g\left( x \right) dx} } \right] f\left( u \right) du} \nonumber \\&\quad + \int _{1/K}^\infty {\left[ {\left( {p - w + {\beta _r}} \right) - \left( {p + {h_r} + {\beta _r}} \right) \int _0^{q_\lambda ^*} {g\left( x \right) dx} } \right] f\left( u \right) du} \nonumber \\&\quad < 0 \end{aligned}$$

Thus, from the first-order condition Eq. (9), \({l_1}(q_\lambda ^*) > {l_2}(q_\lambda ^*)\). Therefore, by the implicit function theorem,

$$\begin{aligned} \frac{{dq_\lambda ^*}}{{d{\lambda _r}}}= \,& {} - \frac{{{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /dqd{\lambda _r}}}{{{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /d{q^2}}} \\= \,& {} \frac{{{l_1}(q_\lambda ^*) - {l_2}(q_\lambda ^*)}}{{ - {d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /d{q^2}}} > 0 \end{aligned}$$

Similarly, we can prove that if \({l_1}(q_1^*) \le {l_2}(q_1^*)\), then \(dq_\lambda ^*/d{\lambda _r} \le 0\). \(\square \)

Proof of Theorem 3.9

(1) According to the implicit function theorem,

$$\begin{aligned} \frac{{dq_\lambda ^*}}{{d{\beta _r}}} = - \frac{{{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /dqd{\beta _r}}}{{{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /d{q^2}}} \end{aligned}$$

where,

$$\begin{aligned}&{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /dqd{\beta _r}\\&\quad = \int _0^{1/K} {uK\overline{G} \left( {uKq_\lambda ^*} \right) } f\left( u \right) du + \int _{1/K}^\infty {\overline{G} \left( {q_\lambda ^*} \right) f\left( u \right) du} \\&\qquad + \left( {{\lambda _r} - 1} \right) \int _0^{1/K} {uK\left[ {\overline{G} \left( {{R_4}\left( {q_\lambda ^*} \right) } \right) + \frac{{\left( {p - w} \right) \left( {p - w + {\beta _r}} \right) }}{{\beta _r^2}}uKqg\left( {{R_4}\left( {q_\lambda ^*} \right) } \right) } \right] } f\left( u \right) du\\&\qquad + \left( {{\lambda _r} - 1} \right) \int _{1/K}^\infty {\left[ {\overline{G} \left( {{R_2}\left( {q_\lambda ^*} \right) } \right) + \frac{{\left( {p - w} \right) \left( {p - w + {\beta _r}} \right) }}{{\beta _r^2}}qg\left( {{R_2}\left( {q_\lambda ^*} \right) } \right) } \right] f\left( u \right) du} \\&\quad > 0 \end{aligned}$$

Thus, \(dq_\lambda ^*/d{\beta _r} > 0\).

(2) According to the implicit function theorem,

$$\begin{aligned} \frac{{dq_\lambda ^*}}{{d{h_r}}} = - \frac{{{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /dqd{h_r}}}{{{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /d{q^2}}} \end{aligned}$$

where,

$$\begin{aligned}&{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /dqd{h_r}\\&\quad = - \int _0^{1/K} {uKG\left( {uKq_\lambda ^*} \right) } f\left( u \right) du - \int _{1/K}^\infty {G\left( {q_\lambda ^*} \right) f\left( u \right) du} \\&\qquad - \left( {{\lambda _r} - 1} \right) \int _0^{1/K} {uK\left[ {G\left( {{R_3}\left( {q_\lambda ^*} \right) } \right) + \frac{{\left( {p - w} \right) \left( {w + {h_r}} \right) }}{{{{\left( {p + {h_r}} \right) }^2}}}uKqg\left( {{R_3}\left( {q_\lambda ^*} \right) } \right) } \right] } f\left( u \right) du\\&\qquad - \left( {{\lambda _r} - 1} \right) \int _{1/K}^\infty {\left[ {G\left( {{R_1}\left( {q_\lambda ^*} \right) } \right) + \frac{{\left( {p - w} \right) \left( {w + {h_r}} \right) }}{{{{\left( {p + {h_r}} \right) }^2}}}qg\left( {{R_1}\left( {q_\lambda ^*} \right) } \right) } \right] f\left( u \right) du} \\&\quad < 0 \end{aligned}$$

Thus, \(dq_\lambda ^*/d{h_r} < 0\).

(3) According to the implicit function theorem,

$$\begin{aligned} \frac{{dq_\lambda ^*}}{{dw}} = - \frac{{{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /dqdw}}{{{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /d{q^2}}} \end{aligned}$$

where,

$$\begin{aligned}&- {d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /dqdw\\&\quad = \int _0^{1/K} {uKf\left( u \right) du + \overline{F} \left( {1/K} \right) } \\&\qquad + \left( {{\lambda _r} - 1} \right) \int _0^{1/K} {uK\left[ {\overline{G} \left( {{R_4}\left( {q_\lambda ^*} \right) } \right) - {R_4}\left( {q_\lambda ^*} \right) g\left( {{R_4}\left( {q_\lambda ^*} \right) } \right) } \right] } f\left( u \right) du\\&\qquad + \left( {{\lambda _r} - 1} \right) \int _0^{1/K} {uK\left[ {G\left( {{R_3}\left( {q_\lambda ^*} \right) } \right) + {R_3}\left( {q_\lambda ^*} \right) g\left( {{R_3}\left( {q_\lambda ^*} \right) } \right) } \right] } f\left( u \right) du\\&\qquad + \left( {{\lambda _r} - 1} \right) \int _{1/K}^\infty {\left[ {\overline{G} \left( {{R_2}\left( {q_\lambda ^*} \right) } \right) - {R_2}\left( {q_\lambda ^*} \right) g\left( {{R_2}\left( {q_\lambda ^*} \right) } \right) } \right] f\left( u \right) du} \\&\qquad + \left( {{\lambda _r} - 1} \right) \int _{1/K}^\infty {\left[ {G\left( {{R_1}\left( {q_\lambda ^*} \right) } \right) + {R_1}\left( {q_\lambda ^*} \right) g\left( {{R_1}\left( {q_\lambda ^*} \right) } \right) } \right] f\left( u \right) du} \end{aligned}$$

Let \({Z_1}\left( {q_\lambda ^*} \right) = - {d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /dqdw\), thus, if \({Z_1}\left( {q_\lambda ^*} \right) < 0\), then \(dq_\lambda ^*/dw > 0\); otherwise \(dq_\lambda ^*/dw \le 0\).

(4) According to the implicit function theorem,

$$\begin{aligned} \frac{{dq_\lambda ^*}}{{dp}} = - \frac{{{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /dqdp}}{{{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /d{q^2}}} \end{aligned}$$

where,

$$\begin{aligned}&{d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /dqdp\\&\quad = \int _0^{1/K} {uK\overline{G} \left( {uKq_\lambda ^*} \right) f\left( u \right) du + \overline{G} \left( {q_\lambda ^*} \right) \overline{F} \left( {1/K} \right) } \\&\qquad + \left( {{\lambda _r} - 1} \right) \int _0^{1/K} {uK\left[ {\overline{G} \left( {{R_4}\left( {q_\lambda ^*} \right) } \right) - {R_4}\left( {q_\lambda ^*} \right) g\left( {{R_4}\left( {q_\lambda ^*} \right) } \right) } \right] } f\left( u \right) du\\&\qquad + \left( {{\lambda _r} - 1} \right) \int _0^{1/K} {uK\left[ {\frac{{w + {h_r}}}{{p + {h_r}}}{R_3}\left( {q_\lambda ^*} \right) g\left( {{R_3}\left( {q_\lambda ^*} \right) } \right) } \right] } f\left( u \right) du\\&\qquad + \left( {{\lambda _r} - 1} \right) \left[ {\overline{G} \left( {{R_2}\left( {q_\lambda ^*} \right) } \right) - {R_2}\left( {q_\lambda ^*} \right) g\left( {{R_2}\left( {q_\lambda ^*} \right) } \right) } \right] \overline{F} \left( {1/K} \right) \\&\qquad + \left( {{\lambda _r} - 1} \right) \left[ {\frac{{w + {h_r}}}{{p + {h_r}}}{R_1}\left( {q_\lambda ^*} \right) g\left( {{R_1}\left( {q_\lambda ^*} \right) } \right) } \right] \overline{F} \left( {1/K} \right) \end{aligned}$$

Let \({Z_2}\left( {q_\lambda ^*} \right) = {d^2}E\left[ {U\left( {{\Pi ^R}(q_\lambda ^*)} \right) } \right] /dqdp\), thus, if \({Z_2}\left( {q_\lambda ^*} \right) < 0\), then \(dq_\lambda ^*/dp < 0\), otherwise \(dq_\lambda ^*/dp \ge 0\). \(\square \)

Appendix B

See Table 3.

Table 3 Summary of the problems and results

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Zhu, Y., Nie, T. et al. Loss-averse preferences in a two-echelon supply chain with yield risk and demand uncertainty. Oper Res Int J 18, 361–388 (2018). https://doi.org/10.1007/s12351-016-0268-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-016-0268-3

Keywords

Navigation