Skip to main content

Advertisement

Log in

Comparative analysis of forest canopy mapping methods for the Sundarban biosphere reserve, West Bengal, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The canopy density of forests is highly influenced by population pressure which cause forest fragmentations, deforestations, forest degradation and also land reclamation for infrastructure and agriculture. This study was envisaged with the objective of mapping the forest canopy density with two different methods by using Landsat 8 OLI dataset of the year 2016 after mapping the vegetation indices. One of the two methods is the semi-expert FCD mapper model, while the other model is newly developed by us and consists of eight vegetation indices. After running the models, the results of both the models were compared. It was found that for the semi-expert FCD model, the three classes viz. high canopy density, moderate canopy and low canopy covered an area of 81,615.51 ha (40%), 84,474.72 ha (41%) and 38,844.18 ha (19%), respectively. And for the modified FCD model, the same classes covered 69,134.670 ha (37%), 84,062.250 ha (45%) and 32,529.150 ha (18%), respectively. It was observed that the difference between semi-expert FCD model and the modified FCD model’s accuracy is about 1.75% and difference in Kappa statistics is 0.0362. Thus, the modified model is more accurate than the semi-expert FCD model and gives us more detailed canopy density map than the semi-expert FCD map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Achard, F., Eva, H., & Mayaux, P. (2001). Tropical forest mapping from coarse spatial resolution satellite data: Production and accuracy assessment issues. International Journal of Remote Sensing, 22(14), 2741–2762.

    Article  Google Scholar 

  • Akhand, A., Mukhopadhyay, A., Chanda, A., Mukherjee, S., Das, A., Das, S., et al. (2016). Potential CO2 emission due to loss of above ground biomass from the Indian Sundarban mangroves during the last four decades. Journal of the Indian Society of Remote Sensing., 45, 147–154. https://doi.org/10.1007/s12524-016-0567-4.

    Article  Google Scholar 

  • Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carbon Management, 3(3), 313–322. https://doi.org/10.4155/CMT.12.20.

    Article  CAS  Google Scholar 

  • Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6, 195–219. https://doi.org/10.1146/annurev-marine-010213-135020.

    Article  Google Scholar 

  • Asrar, G., Kanemasu, E. T., & Yoshida, M. (1985). Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle. Remote Sensing of Environment, 17, 1–11.

    Article  Google Scholar 

  • Azadeh, A., Dimitrios, P., & Peter, S. (2016). Forest canopy density assessment using different approaches: Review. Journal of Forest Science, 63(3), 106–115. https://doi.org/10.17221/110/2016-Jfs.

    Article  Google Scholar 

  • Ball, M. C. (1998). Mangrove species richness in relation to salinity and water logging. Global Ecology and Biogeography Letters, 7, 73–82.

    Article  Google Scholar 

  • Bandyopadhyay, J., Mondal, I., Maiti, K. K., Biswas, A., Acharyya, N., Sarkar, S., et al. (2017). Forest canopy density mapping for natural resource management of Jangalmahal area, India, using geospatial technology. International Journal of Current Research, 9(08), 56073–56082.

    Google Scholar 

  • Boerboom, J. H. A., & Wiersum, K. F. (1983). Human impact on moist tropical vegetation. In: W. Holzner, M. J. A. Werger, I. Ibusima (Eds.), Man's impact on vegetation (pp. 83–106).

  • Bonyad, A. (2005). Multitemporal satellite image database classification for land cover inventory and mapping. Journal of Applied Sciences, 5, 835–837.

    Article  Google Scholar 

  • Chen, R., & Twilley, R. R. (1998). A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. Journal of Ecology, 86, 37–52.

    Article  Google Scholar 

  • Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285–304. https://doi.org/10.1016/j.rse.2006.07.007.

    Article  Google Scholar 

  • Curran, P. J. (1980). Multispectral remote sensing of vegetation amount. Progress in Physical Geography, 4, 315–341.

    Article  Google Scholar 

  • Danson, F. M., Hetherington, D., Morsdorf, F., Koetz, B., & Allgöwer, B. (2007). Forest canopy gap fraction from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 4, 157–160.

    Article  Google Scholar 

  • Deering, D. W., Eck, T. F., & Banerjee, B. (1999). Characterization of the reflectance anisotropy of boreal forest canopy in spring-summer. Remote Sensing of Environment, 67(205–229), 1999.

    Google Scholar 

  • Defries, R. S., Hansen, M. C., & Townshend, J. R. G. (1995). Global discrimination of land cover types from metrics derived from AVHRR Pathfinder data. Remote Sensing Environment, 54, 209–222.

    Article  Google Scholar 

  • DeFries, R. S., Hansen, M. C., & Townshend, J. R. G. (2000). Global continuous fields of vegetation characteristics: A linear mixture model applied to multi-year 8 km AVHRR data. International Journal of Remote Sensing, 21(6/7), 1389–1414.

    Article  Google Scholar 

  • Deka, J., Tripathi, O. P., & Khan, M. L. (2013). Implementation of forest canopy density model to monitor tropical deforestation. Journal of the Indian Society of Remote Sensing, 41(2), 469–475.

    Article  Google Scholar 

  • Dietz, J., Hölscher, D., & Leuschner, C. (2006). Rainfall partitioning in relation to forest structure in differently managed montane forest stands in central Sulawesi. Indonesia. Forest Ecology and Management, 237(1), 170–178. https://doi.org/10.1016/j.foreco.2006.09.044.

    Article  Google Scholar 

  • Doraiswamy, P. C., Sinclair, T. R., Hollinger, S., Akhmedov, B., Stern, A., & Prueger, J. (2005). Application of MODIS derived parameters for regional crop yield assessment. Remote Sensing of Environment, 97, 192–202.

    Article  Google Scholar 

  • FAO. (2010). Global forest resources assessment 2010—main report. In FAO Forestry Paper No. 163. Rome. http://www.fao.org/docrep/013/i1757e/i1757e00.html.

  • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., et al. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154–159.

    Article  Google Scholar 

  • Hadi, F., Wikantika, K., & Sumarto, I. (2004). Implementation of forest canopy density model to monitor forest fragmentation in Mt. Simpang and Mt. Tilu Nature Reserves, West Java, Indonesia. In: 3rd FIG regional conference Jakarta, Indonesia, October 3–7, 2004, https://www.fig.net/resources/proceedings/fig_proceedings/jakarta/papers/ts_21/ts_21_4_hadi_etal.pdf.

  • Himayah, S., & Danoedoro, P. (2016). The utilization of Landsat 8 multitemporal imagery and forest canopy density (FCD) model for forest reclamation priority of natural disaster areas at Kelud mountain, East Java. IOP Conference Series: Earth and Environmental Science, 47, 012043. https://doi.org/10.1088/1755-1315/47/1/012043.

    Article  Google Scholar 

  • Hussin, Y. A., & Sha, K. (1996). Monitoring forest cover changes using remotely sensed data and geographical information system in sub-tropical environment. In Paper presented at the application of remote data and GIS in environment and natural resources assessment in Africa. Harare, Zimbabwe, March 15–22.

  • Jamalabad, M. S., & Abkar, A. A. (2004). Forest canopy density monitoring, using satellite images. In 20th ISPRS congress, Istanbul 12–23 July. Turkey, Commission 7:244, from the World Wide Web: http://www.isprs.org/istanbul2004/comm7/comm7.html.

  • Jensen, J. R. (2000). Remote sensing of the environment: An earth resource perspective. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Kauth, R., & Thomas, G. (1979). The tasselled sap-A graphic description of the spectral-temporal development of agricultural crops as seen By Landsat. In Symposium of machine processing of remotely-sensed data: Proceedings of the LARS (Purdue University, West Lafayette, Indiana, 29 June–1 July 1979) (pp. 4B41–4B51).

  • Kleinn, C. (2001). A cautionary note on the minimum crown cover criterion in forest definitions. Canadian Journal of Forest Research, 31(2), 350–356.

    Article  Google Scholar 

  • Leuning, R., Cleugh, H. A., Zegelin, S. J., & Hughes, D. (2005). Carbon and water fluxes over a temperate eucalyptus forest and a tropical wet/dry Savanna in Australia: Measurements and comparison with MODIS remote sensing estimates. Agricultural and Forest Meteorology, 129(3), 151–173. https://doi.org/10.1016/j.agrformet.2004.12.004.

    Article  Google Scholar 

  • Longman, K. A., & Jenik, J. (1931). Tropical forest and its environment, x, 196 p. ill., map 22cm, Tropical ecology series. ISBN-0582440459.

  • Lovell, J. L., Jupp, D. L. B., Culvenor, D. S., & Coops, N. C. (2003). Using airborne and ground-based ranging Lidar to measure canopy structure in Australian forests. Canadian Journal of Remote Sensing, 29, 607–622.

    Article  Google Scholar 

  • Mahboob, J., & Iqbal, F. (2012). Forest crown closure assessment using multispectral satellite imagery. African Journal of Agricultural Research, 7(36), 5033–5042. https://doi.org/10.5897/AJAR11.1937.

    Article  Google Scholar 

  • Malila, W. A., Lambeck, P. F., Crist, E. P., Jackson, R. D. & Pinter, P. J. Jr. (1981). Landsat features for agricultural applications. In Proceedings of the symposium on remote sensing of the environment, Ann Arbor, Michigan (pp. 793–803).

  • McCloy, K. R., & Hall, K. A. (1991). Mapping the density of woody vegetative cover using Landsat MSS digital data. International Journal of Remote Sensing, 12, 1877–1885.

    Article  Google Scholar 

  • Middleton, E. M. (1991). Solar zenith angle effects on vegetation indices in tallgrass prairie. Remote Sensing of Environment, 38, 45–62.

    Article  Google Scholar 

  • Mondal, I., & Bandyopadhyay, J. (2014). Coastal zone mapping through geospatial technology for resource management of Indian Sundarban, West Bengal, India. International Journal of Remote Sensing Applications (IJRSA), 4(2), 103–112. https://doi.org/10.14355/ijrsa.2014.0402.04.

    Article  Google Scholar 

  • Mondal, I., & Bandyopadhyay, J. (2014). Environmental change of trans international boundary Indo-Bangladesh border of Sundarban Ichamati river catchment area using geoinformatics techniques, West Bengal, India. Universal Journal of Environmental Research and Technology, 4(3), 143–154.

    Google Scholar 

  • Mondal, I., Bandyopadhyay, J., & Jana, M. (2013). Mangrove zonation and succession pattern of Fazergange and Bakkhali area, at Sundarban, W.B., India, Using RS & GIS Techniques. Indian Cartographer, 33, 311–315.

    Google Scholar 

  • Mróz, M., & Sobieraj, A. (2004). Comparison of several vegetation indices calculated on the basis of a seasonal spot XS time series, and their suitability for land cover and agricultural crop identification. Technical Sciences, 7, 39–66.

    Google Scholar 

  • Muthulingam, M., Rao, A., & Kataru, N. (2014). Loss of above ground biomass (AGB) on Avicennia marina (Forsk.) and CO2 emission due to thane cyclone in Puducherry coast, South India.

  • Myneni, B., Nemani, R. R., & Running, S. (1997). Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing, 35, 1380–1393.

    Article  Google Scholar 

  • Nandy, S., Joshi, P. K., & Das, K. K. (2003). Forest canopy density stratification using biophysical modeling. Journal of the Indian Society of Remote Sensing, 31(4), 291–297.

    Article  Google Scholar 

  • Pakkhesal, E., & Bonyad, A. E. (2013). Classification and delineating natural forest canopy density using FCD Model (case study: Shafarud area of Guilan). Iranian Journal of Forest and Poplar Research, 21, 99–114.

    Google Scholar 

  • Panta, M. (2003). Analysis of forest canopy density and factors affecting it using RS and GIS techniques: A case study from Chitwan District of Nepal. International Institute for Geo-Information Science and Earth Observation Enschede, The Netherlands, pp. 1–84. https://webapps.itc.utwente.nl/librarywww/papers_2003/msc/nrm/panta.pdf.

  • Plummer, S. P. N., & Briggs, S. (1994). The angular vegetation index: An atmospherically resistant index for the second along track scanning radiometer (ATSR-2). In Proceedings of the sixth international symposium of physical measurements and signatures in remote sensing, Val D’Isere, France, 1994.

  • Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43, 1541–1552.

    Google Scholar 

  • Rikimaru, A. (1996). Landsat TM data processing guide for forest canopy density mapping and monitoring model. In: ITTO workshop on utilization of remote sensing in site assessment and planning for rehabilitation of logged-over forest, Bangkok, Thailand (p. 18).

  • Rikimaru, A. (2012). Concept of FCD mapping model and semi-expert system Japan overseas forestry consultants association Rinyuu-Blgd: 1-7-12 Koraku, Bunkyo-Ku, Tokyo, Japan (pp. 1–32)

  • Rikimaru, A., & Miyatake, S. (1997). Development of forest canopy density mapping and monitoring model using indices of vegetation, bare soil and shadow. Seattle: ACRS.

    Google Scholar 

  • Rikimaru, A., Miyatake, S., & Dugan, P. (1999). Sky is the limit for forest management tool. ITTO Tropical Forest Update, 9(3), 6–9.

    Google Scholar 

  • Rikimaru, A., Roy, P. S., & Miyatake, S. (2002). Tropical forest cover density mapping. Tropical Ecology, 43(1), 39–47.

    Google Scholar 

  • Roujean, J.-L., & Breon, F.-M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. In: S. C. Fraden, E. P. Marcanti, M. A. Becker (Eds.), 3rd ERTS-1 symposium (pp. 309–317). Washington, DC: NASA SP-351.

  • Roy, P. S. (1999). Space remote sensing for forest management. India Institute of Remote Sensing (National Remote Sensing Agency), 1999 http://www.biospec.org/bpmt/P.S.Roy_Biodata.doc.

  • Roy, P. S., Diwakar, P. G., Vohra, T. P. S., & Shan, S. K. (1990). Forest resource management using Indian remote sensing satellite data. Asian-Pacific Remote Sensing Journal, 3, 11–22.

    Google Scholar 

  • Roy, P. S., Miyatake, S., & Rikimaru, A. (1997). Biophysical spectral response modeling approach for forest density stratification. In Proceedings of the 18th Asian conference on remote sensing. Retrieved Nov 11, 2015 from http://www.a-a-r-s.org/aars/proceeding/ACRS1998/Papers/PS298-4.htm.

  • Roy, P. S., Sharma, K. P., & Jain, A. (1996). Stratification of density in dry deciduous forest using satellite remote sensing digital data—An approach based on spectral indices. Journal of Biosciences, 21(5), 723–734.

    Article  Google Scholar 

  • Saei, M. J., & Abkar, A. A. (2014). Forest canopy density monitoring, using satellite images http://www.isprs.org/proceedings/XXXV/congress/comm7/papers/48.pdf

  • Sahana, M., Sajjad, H., & Ahmed, R. (2015). Assessing spatio-temporal health of forest cover using forest canopy density model and forest fragmentation approach in Sundarban reserve forest India. Modeling Earth Systems and Environment, 1, 49. https://doi.org/10.1007/s40808-015-0043-0.

    Article  Google Scholar 

  • Sanquetta, C., Corte, A., Sanquetta, M., Pelissari, A., & Tomé, M. (2020). Greenhouse gas emissions due to land-use change in Brazil from 1990 to 2015: Comparison of methodological approaches. Desenvolvimento e Meio Ambiente, 53, 25–37. https://doi.org/10.5380/dma.v53i0.68494.

    Article  Google Scholar 

  • Schmierer, J. M., Jr., Mroz, G. D., & Noble, S. D. (2004). The FERM: Forest and environmental resource management. Natural Resources and Environmental Issues, 12, 49.

    Google Scholar 

  • Silleos, N. G., Alexandridis, T. K., Gitas, L. Z., & Perakis, K. (2006). Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International, 21(4), 21–28.

    Article  Google Scholar 

  • Slady, A., & Sailesh, S. (2016). Land use/land cover and forest canopy density monitoring of wafi-golpu project area, papua new guinea. Journal of Geoscience and Environment Protection, 4, 1–14.

    Article  Google Scholar 

  • Thakur, S., Maiti, D., Ghosh, P. B., Das, P., & De T. K. (2017). Analyzing land surface temperature distribution from land use land cover changes in Sundarbans, India. In 37th Asian conference of remote sensing, New Delhi. https://www.researchgate.net/publication/326775284.

  • Thakur, S., Maity, D., Mondal, I., Basumatary, G., Ghosh, P. B., & De, T. K. (2020a). Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environment, Development and Sustainability, 22(3), 1–29. https://doi.org/10.1007/s10668-020-00656-7.

    Article  Google Scholar 

  • Thakur, S., Mondal, I., Bar, S., Nandi, S., Das, P., Ghosh, P. B., et al. (2020b). Shoreline changes and its impact on the mangrove ecosystems of some Islands of Indian Sundarbans, North- East coast of India. Journal of Cleaner Production, Elsevier, 284, 124764. https://doi.org/10.1016/j.jclepro.2020.124764.

  • Tucker, C. J., Holben, B. N., & Goff, T. E. (1984). Intensive forest clearing in Rondonia, Brazil, as detected by satellite remotesensing. Remote Sensing of Environment, 15, 255–261.

    Article  Google Scholar 

  • Tucker, C. J., & Townshend, J. R. G. (2000). Strategies for monitoring tropical deforestation using satellite data. International Journal of Remote Sensing, 21(6), 1461–1471.

    Article  Google Scholar 

  • Urquizo, M. C. M., Hussin, Y. A., & Weir, M. J. C. (1988). Forest canopy density of logged-over tropical rain forest using satellite image in Bukit Soeharto national park, East Kalimantan, Indonesia. Unpublished ITC MSC-thesis, Enschede.

  • Vandermeer, J. H., Mallona, M. A., Boucher, D., Perfecto, I., & Yih, K. (1995). Three years of ingrowth following catastrophic hurricane damage on the Caribbean Coast of Nicaragua: Evidence in support of the direct regeneration hypothesis. Journal of Tropical Ecology, 11, 465–471.

    Article  Google Scholar 

  • Walter-Shea, E. A., Privette, J., Cornell, D., Mesarch, M. A., & Hays, C. J. (1997). Relations between directional spectral vegetation indices and leaf area and absorbed radiation in alfalfa. Remote Sensing of Environment, 61, 162–177.

    Article  Google Scholar 

  • Wang, F., Huang, J., & Chen, L. (2010). Development of a vegetation index for estimation of leaf area index based on simulation modeling. Journal of Plant Nutrition, 33(3), 328–338.

    Article  CAS  Google Scholar 

  • Wilki, D. S., & Finn, J. T. (1996). Remote sensing imagery for natural resources monitoring: A guide for first-time user. New York: Columbia University Press.

    Google Scholar 

  • Xavier, A. C., & Vettorazzi, C. A. (2004). Monitoring leaf area index at watershed level through NDVI from Landsat-7/ETM+ data. Scientia Agricola, 61(3), 243–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, I., Thakur, S., Juliev, M. et al. Comparative analysis of forest canopy mapping methods for the Sundarban biosphere reserve, West Bengal, India. Environ Dev Sustain 23, 15157–15182 (2021). https://doi.org/10.1007/s10668-021-01291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01291-6

Keywords

Navigation