Skip to main content

Advertisement

Log in

Application of forest canopy density model for forest cover mapping using LISS-IV satellite data: a case study of Sali watershed, West Bengal

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Investigation of forest canopy density has become an important tool for proper management of natural resources. Vegetation cover density can identify the exact forest gaps within a particular area which in turn will provide the appropriate management strategies for future. Forest canopy density has become an essential tool for identifying the exact areas where the afforestation or reforestation programmes needs to be implemented. The aim and objective of this article is to show up the existing density of forest cover using remote sensing and geographic information system tools. Weighted overlay analysis method has been adopted for investigating forest canopy density of Sali river basin, Bankura district, West Bengal. Several indices likewise normalized difference vegetation index, bareness index, shadow index and perpendicular vegetation index etc. have been used for this study. Higher the weight was assigned for greater concentration of vegetation and lower the weight was assigned for lesser concentration of vegetation. Southern part of the region has very high density of forest coverage in comparison with the northern part of the region. It has been observed that 7.48% of the area is at very low density, 12.63% of low density, 24.84% of medium density, 23.92% of high density and 31.13% of very high forest canopy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • As-Syakur AR, Adnyana I, Arthana IW, Nuarsa IW (2012) Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote Sens 4(10):2957–2970

    Article  Google Scholar 

  • Azizi Z (2008) Forest canopy density estimating using satellite images. Int Arch Photogramm Remote Sens Spatial Inf Sci 8(11):1127–1130

    Google Scholar 

  • Bayramov E, Buchroithner M, Bayramov R (2016) Quantitative assessment of 2014–2015 land-cover changes in Azerbaijan using object-based classification of LANDSAT-8 time series. Modeling Earth Syst Environ 2(1):35

    Article  Google Scholar 

  • Beaulieu E, Lucas Y, Viville D, Chabaux F, Ackerer P, Goddéris Y, Pierret MC (2016) Hydrological and vegetation response to climate change in a forested mountainous catchment. Modeling Earth Syst Environ 2(4):191

    Article  Google Scholar 

  • Belward AS, Estes JE, Kline KD (1999) The IGBP-DIS global 1-km land-cover data set DISCover: a project overview. Photogramm Eng Remote Sens 65(9):1013–1020

    Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  • Boles SH, Xiao X, Liu J, Zhang Q, Munkhtuya S, Chen S, Ojima D (2004) Land cover characterization of Temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sens Environ 90(4):477–489

    Article  Google Scholar 

  • Bradley AV, Rosa IM, Brandão A, Crema S, Dobler C, Moulds S, Ewers RM (2017) An ensemble of spatially explicit land-cover model projections: prospects and challenges to retrospectively evaluate deforestation policy. Model Earth Syst Environ 3(4):1–14

    Article  Google Scholar 

  • Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62(3):241–252

    Article  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, UK

    Book  Google Scholar 

  • Chuvieco E, Congalton RG (1989) Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens Environ 29(2):147–159

    Article  Google Scholar 

  • Cihlar J, Ly H, Xiao Q (1996) Land cover classification with AVHRR multichannel composites in northern environments. Remote Sens Environ 58(1):36–51

    Article  Google Scholar 

  • Coppin PR, Bauer ME (1994) Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features. IEEE Trans Geosci Remote Sens 32(4):918–927

    Article  Google Scholar 

  • Crist EP, Cicone RC (1984) Application of the tasseled cap concept to simulated thematic mapper data. Ann Arbor 1001:48107

    Google Scholar 

  • DeFries RS, Townshend JRG (1994) Global land cover: comparison of ground-based data sets to classifications with AVHRR data. In: Foody GM, Curran PJ (eds) Environmental remote sensing from regional to global scales. Wiley, Chichester, pp 84–110

    Google Scholar 

  • FAO (2002) Food and agriculture organisation of the United Nations. Forests and the forestry sector: India. http://www.fao.org/forestry/country/57478/en/ind/. Accessed 23 Nov 2017

  • FAO (2010) Food and agriculture organization of the United Nations. Global forest resources assessment 2010—main report. http://www.fao.org/docrep/013/i1757e/i1757e.pdf. Accessed 5 Dec 2017

  • Forest Survey of India (2011) India state of forest report 2011. Ministry of Environment and Forests, Government of India. http://www.fsi.org.in/final_2011.pdf. Accessed 14 Dec 2017

  • Forestry in India (2017) https://en.wikipedia.org/wiki/Forestry_in_India

  • Giri C, Pengra B, Zhu Z, Singh A, Tieszen LL (2007) Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar Coast Shelf Sci 73(1):91–100

    Article  Google Scholar 

  • Gottfried M, Pauli H, Grabherr G (1998) Prediction of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arct Alp Res 30(3):207–221

    Article  Google Scholar 

  • Guhathakurta P, Roy S (2000) Joint forest management in West Bengal: a critique. World Wide Fund for Nature, India

    Google Scholar 

  • Guisan A, Weiss SB, Weiss AD (1999) GLM versus CCA spatial modeling of plant species distribution. Plant Ecol 143(1):107–122

    Article  Google Scholar 

  • Hansen MC, Defries RS, Townshend JRG, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21(6–7):1331–1364

    Google Scholar 

  • He C, Shi P, Xie D, Zhao Y (2010) Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sens Lett 1(4):213–221

    Article  Google Scholar 

  • Huang X, Zhang L (2012) Morphological building/shadow index for building extraction from high-resolution imagery over urban areas. IEEE J Sel Topics Appl Earth Obs Remote Sens 5(1):161–172

    Article  Google Scholar 

  • Huemmrich KF (1996) Effects of shadows on vegetation indices. In Geoscience and Remote Sensing Symposium, 1996. IGARSS’96.’Remote Sensing for a Sustainable Future.’, International 4: 2372–2374

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Jaiswal RK, Mukherjee S, Raju KD, Saxena R (2002) Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Obs Geoinf 4(1):1–10

    Article  Google Scholar 

  • Jamal M, Mandal S (2016) Monitoring forest dynamics and landslide susceptibility in Mechi–Balason interfluves of Darjiling Himalaya, West Bengal using forest canopy density model (FCDM) and Landslide Susceptibility Index model (LSIM). Modeling Earth Syst Environ 2(4):184

    Article  Google Scholar 

  • Jelaska SD (2009) Vegetation mapping applications. Dev Soil Sci 33:481–496

    Google Scholar 

  • Jelaska SD, Antonić O, Božić M, Križan J, Kušan V (2006) Responses of forest herbs to available understory light measured with hemispherical photographs in silver fir–beech forest in Croatia. Ecol Modeling 194(1):209–218

    Article  Google Scholar 

  • Jha CS, Dutt CBS, Bawa KS (2000) Deforestation and land use changes in Western Ghats, India. Curr Sci 79(2):231–238

    Google Scholar 

  • Jin X, Davis CH (2005) Automated building extraction from high-resolution satellite imagery in urban areas using structural, contextual, and spectral information. EURASIP J Adv Signal Process 2005(14):745309

    Article  Google Scholar 

  • Joshi PK (2002) Geospatial analysis of central India for conservation and planning using remote sensing and geographical information system. Ph.D. Thesis. Gurukula Kangri University Hariwar

  • Joshi PK, Singh S, Agarwal S, Roy PS (2001) Land cover assessment in Jammu and Kashmir using phenology as discriminant—an approach using Wide swath satellite (IRS—WiFS). Curr Sci 81(4):392–398

    Google Scholar 

  • Joshi PK, Joshi PC, Singh S, Agarwal S, Roy PS (2004) Tropical forest covers type characterization in central highlands of India, using multi-temporal IRS-1C WiFS data. Indian J For 27(2):157–168

    Google Scholar 

  • Joshi PK, Roy PS, Singh S, Agrawal S, Yadav D (2006) Vegetation cover mapping in India using multi-temporal IRS Wide Field Sensor (WiFS) data. Remote Sens Environ 103(2):190–202

    Article  Google Scholar 

  • Kayet N, Pathak K, Chakrabarty A, Sahoo S (2016) Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Modeling Earth Syst Environ 2(3):127

    Article  Google Scholar 

  • Kilpelainen P, Tokola T (1999) Gain to be achieved from stand delineation in LANDSAT TM image-based estimates of stand volume. For Ecol Manage 124(2):105–111

    Article  Google Scholar 

  • Kumar KV, Nair RR, Lakhera RC (1993) Digital image enhancement for delineating active landslide areas. Asia-Pac Remote Sens J 6(1):63–66

    Google Scholar 

  • Lambin EF (1999) Monitoring forest degradation in tropical regions by remote sensing: some methodological issues. Glob Ecol Biogeogr 8(3-4):191–198

    Article  Google Scholar 

  • Lesaignoux A, Fabre S, Briottet X, Olioso A, Belin E, Cedex T (2009) Influence of surface soil moisture on spectral reflectance of bare soil in the 0.4–15 µm domain. In proceedings of the 6th EARSeL SIG IS workshop, pp 6

  • Liu X, Hou Z, Shi Z, Bo Y, Cheng J (2017) A shadow identification method using vegetation indices derived from hyperspectral data. Int J Remote Sens 38(19):5357–5373

    Article  Google Scholar 

  • Maiti KK, Mondal S, Chakravarty D, Bandyopadhyay J (2015) Assessment of vegetation canopy using geo-spatial techniques over mining areas of Pandabeswar in Barddhaman district, West Bengal, India. Int J Remote Sens Geosci 4(4):18–22

    Google Scholar 

  • Maselli F, Conese C, De Filippis T, Norcini S (1995) Estimation of forest parameters through fuzzy classification of TM data. IEEE Trans Geosci Remote Sens 33(1):77–84

    Article  Google Scholar 

  • Pfeffer K, Pebesma EJ, Burrough PA (2003) Mapping alpine vegetation using vegetation observations and topographic attributes. Landsc Ecol 18(8):759–776

    Article  Google Scholar 

  • Pôças I, Rodrigues A, Gonçalves S, Costa PM, Gonçalves I, Pereira LS, Cunha M (2015) Predicting grapevine water status based on hyperspectral reflectance vegetation indices. Remote Sens 7(12):16460–16479

    Article  Google Scholar 

  • Polidorio AM, Flores FC, Imai NN, Tommaselli AM, Franco C (2003) Automatic shadow segmentation in aerial color images. In computer graphics and image processing, 2003. SIBGRAPI 2003. XVI Brazilian symposium on, pp 270–277

  • Price JC (2003) Comparing MODIS and ETM + data for regional and global land classification. Remote Sens Environ 86(4):491–499

    Article  Google Scholar 

  • Qi J, Huete AR, Moran MS, Chehbouni A, Jackson RD (1993) Interpretation of vegetation indices derived from multi-temporal SPOT images. Remote Sens Environ 44(1):89–101

    Article  Google Scholar 

  • Raha AK (2007) Real time forest cover mapping using IRS—P6 data. Paper presented in second ESRI Asia—pacific user conference, 18–19 Jan 2007, New Delhi, India

  • Raha AK, Sudhakar S, Prithviraj M (1997) Forest change detection studies and wetland mapping through digital image processing of indian remote sensing satellite data. In at Rahaa. A.K. et al. (2014). Time Series Analysis of Forest and Tree Cover of West Bengal from 1988 to 2010, using RS/GIS, for Monitoring Afforestation Programmes. The Journal of Ecology (Photon) 108:255–265

    Google Scholar 

  • Raha AK, Mishra AV, Das S, Zaman S, Ghatak S, Bhattacharjee S, Mitra A (2014) Time series analysis of forest and tree cover of West Bengal from 1988 to 2010, using RS/GIS, for monitoring afforestation programmes. J Ecol (Photon) 108:255–265

    Google Scholar 

  • Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens 43(12):1541–1552

    Google Scholar 

  • Rikimaru A (1997) Development of forest canopy density mapping and monitoring model using indices of vegetation, bare soil and shadow. In 18th Asian conference on remote sensing, October 20–24, Malaysia, 1997

  • Robbins PF, Chhangani AK, Rice J, Trigosa E, Mohnot SM (2007) Enforcement authority and vegetation change at Kumbhalgarh wildlife sanctuary, Rajasthan, India. Environ Manag 40(3):365–378

    Article  Google Scholar 

  • Rouse J Jr, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: Third ERTS symposium, vol I. NASA SP-351, pp 309–317

  • Roy PS, Ranganath BK, Diwakar PG, Vohra TPS, Bhan SK, Singh IJ, Pandian VC (1991) Tropical forest typo mapping and monitoring using remote sensing. Int J Remote Sens 12(11):2205–2225

    Article  Google Scholar 

  • Sahana M, Sajjad H, Ahmed R (2015) Assessing spatio-temporal health of forest cover using forest canopy density model and forest fragmentation approach in Sundarban reserve forest, India. Modeling Earth Syst Environ 1(4):49

    Article  Google Scholar 

  • Schmidt H, Karnieli A (2001) Sensitivity of vegetation indices to substrate brightness in hyper-arid environment: the Makhtesh Ramon Crater (Israel) case study. Int J Remote Sens 22(17):3503–3520

    Article  Google Scholar 

  • Singh S, Agarwal S, Joshi PK, Roy PS (1999a) Vegetation mapping through phenological variability—an application of multidate IRS 1C/1D WiFS data. In proceedings of the XIX INCA international congress Vasco-Da-Gama, Goa, India, pp 26–28

  • Singh S, Agarwal S, Joshi PK, Roy PS (1999b) Biome level classification of vegetation in western India—an application of wide field view sensor (WiFS). In proceedings of the joint workshop of ISPRS working groups I/1, I/3 and IV/4: Sensors and mapping from space, Hanover, Germany, pp 27–30

  • Sudhakar S, Sengupta S, Venkata Ramana I, Raha AK, Bardhan Roy BK (1996) Forest cover mapping of west Bengal with special reference to north Bengal using IRS-1B satellite LISS II data. Int J Remote Sens 17(1):29–42

    Article  Google Scholar 

  • Sukristiyanti R (2007) Suharyadi; Jatmiko, RH Evaluasi Indeks Urban pada citra Landsat Multitemporal dalam ekstraksi kepadatan bangunan. Jurnal Riset Geologi dan Pertambangan 17:1–10

    Article  Google Scholar 

  • Tieszen LL, Reed BC, Bliss NB, Wylie BK, DeJong DD (1997) NDVI, C3 and C4 production, and distributions in Great Plains grassland land cover classes. Ecol Appl 7(1):59–78

    Google Scholar 

  • Townshend J, Justice C, Li W, Gurney C, McManus J (1991) Global land cover classification by remote sensing: present capabilities and future possibilities. Remote Sens Environ 35(2–3):243–255

    Article  Google Scholar 

  • Tucker CJ, Sellers PJ (1986) Satellite remote sensing of primary production. Int J Remote Sens 7(11):1395–1416

    Article  Google Scholar 

  • Van Leeuwen WJ, Huete AR, Laing TW (1999) MODIS vegetation index compositing approach: a prototype with AVHRR data. Remote Sens Environ 69(3):264–280

    Article  Google Scholar 

  • Weng Q (2008) Remote sensing of impervious surfaces: an overview. In: Weng Q (ed) Remote sensing of impervious surfaces. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA

    Google Scholar 

  • Woodcock CE, Collins JB, Gopal S, Jakabhaz VD, Li X, Macomber S, Warbington R (1994) Mapping forest vegetation using Landsat TM imagery and a canopy reflectance model. Remote Sens Environ 50(3):240–254

    Article  Google Scholar 

  • Wulder MA, Dechka JA, Gillis MA, Luther JE, Hall RJ, Beaudoin A, Franklin SE (2003) Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program. For Chron 79(6):1075–1083

    Article  Google Scholar 

  • Xiao X, Boles S, Liu J, Zhuang D, Liu M (2002) Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens Environ 82(2):335–348

    Article  Google Scholar 

  • Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JC, Gao F, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84(3):471–475

    Article  Google Scholar 

  • Zhao H, Chen X (2005) Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. In: Geoscience and remote sensing symposium, 2005. IGARSS’05. proceedings. 2005 IEEE international, vol 3, pp 1666–1668

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Chandra Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S.C., Chakrabortty, R., Malik, S. et al. Application of forest canopy density model for forest cover mapping using LISS-IV satellite data: a case study of Sali watershed, West Bengal. Model. Earth Syst. Environ. 4, 853–865 (2018). https://doi.org/10.1007/s40808-018-0445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-018-0445-x

Keywords

Navigation