Skip to main content

Advertisement

Log in

Comparative landslide susceptibility assessment using statistical information value and index of entropy model in Bhanupali-Beri region, Himachal Pradesh, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Landslide is a complex natural hazard that sometimes causes disaster resulting in loss of life, assets and infrastructure, especially in the Himalayas. Recent studies suggest that for effective mitigation and resilience through proper planning and policymaking, it is equally important to justify and select a suitable scientific technique that most appropriately addresses the salient causes of a landslide in any area. The principal objective of this study is to carry out a comparative assessment between two contemporary statistical techniques, i.e., the statistical information value (SIV) and index of entropy (IOE), to find out the effectiveness of the two said methods in landslide susceptibility mapping in Bhanupali-Beri region. During the analysis, the higher-resolution satellite images, i.e., World view-2 image of 2017 and Landsat-8 OLI image of 2018, have been used for delineation of various triggering parameters used for landslide susceptibility. The contemporary GIS technique integrated with the remote sensing applications was distinct in preparing the prominent landslide conditioning factor layers such as slope, slope aspect, thrust and fault proximity, geomorphology, landuse–landcover, stream power index, topographic wetness index, geology, roads proximity, lineament density and past landslide inventory. The final assessment was performed using GIS software through raster re-sampling, and the values derived for each conditioning factors were combined using defined SIV and IOE equations. The study area was categorized into five distinct landslide susceptible zones (very low, low, moderate, high and very high) using the Jenk’s Natural Breaks algorithm. Index of entropy model has given better results compared to SIV. The utmost vital factors triggering landslide (estimated for entropy values) in the area are landuse–landcover with barren land and sparse vegetation followed by TWI, lineament density, geomorphology, and slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In G. Gaal & D. F. Merriam (Eds.), Computer applications in resource estimation prediction and assessment for metals and petroleum. Oxford: Pergamon Press.

    Google Scholar 

  • Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides, 9, 93–106. https://doi.org/10.1007/s10346-011-0283-7.

    Article  Google Scholar 

  • Ambrosi, C., Strozzi, T., Scapozza, C., & Wegmuller, U. (2018). Landslide hazard assessment in the Himalayas (Nepal and Bhutan) based on Earth-Observation data. Engineering Geology, 237(2018), 217–228. https://doi.org/10.1016/j.enggeo.2018.02.020.

    Article  Google Scholar 

  • Anbalagan, R., Kumar, R., Lakshmanan, K., et al. (2015). Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenvironmental Disasters, 2, 6. https://doi.org/10.1186/s40677-014-0009-y.

    Article  Google Scholar 

  • Catani, F., Lagomarsino, D., Segoni, S., & Tofani, V. (2013). Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13, 2815–2831. https://doi.org/10.5194/nhess-13-2815-2013.

    Article  Google Scholar 

  • Chalkias, C., Ferentinou, M., & Polykretis, C. (2014). GIS supported landslide susceptibility modeling at regional scale: An expert-based fuzzy weighting method. ISPRS International Journal of Geo-information, 3, 523–539. https://doi.org/10.3390/ijgi3020523.

    Article  Google Scholar 

  • Chalkias, C., Polykretis, C., Karymbalis, E., et al. (2020). Exploring spatial non-stationarity in the relationships between landslide susceptibility and conditioning factors: A local modeling approach using geographically weighted regression. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-020-01733-x.

    Article  Google Scholar 

  • Chen, W., Li, W., Chai, H., Hou, E., Li, X., & Ding, X. (2016). GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environmental Earth Sciences, 75, 1–14.

    Article  Google Scholar 

  • Chen, W., Xie, X., Peng, J., Shahabi, H., Hong, H., Tien Bui, D., et al. (2018). GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. CATENA, 164, 135–149. https://doi.org/10.1016/j.catena.2018.01.012.

    Article  Google Scholar 

  • Chung, C.-J. F., & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering & Remote Sensing, 65(12), 1389–1399.

    Google Scholar 

  • Chung, C. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30, 451–472.

    Article  Google Scholar 

  • Das, I., Stein, A., Kerle, N., & Dadhwal, V. K. (2011). Probabilistic landslide hazard assessment using homogeneous susceptible units (HSU) along a national highway corridor in the northern Himalayas, India. Landslides, 8(3), 293–308.

    Article  Google Scholar 

  • Deng, X., Li, L., & Tan, Y. (2017). Validation of spatial prediction models for landslide susceptibility mapping by considering structural similarity. ISPRS International Journal of Geo-Information, 6, 103. https://doi.org/10.3390/ijgi6040103.

    Article  Google Scholar 

  • Devkota, K., Regmi, A. D., Pourghasemi, H. R., & Pradhan, B. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards, 65, 135–165. https://doi.org/10.1007/s11069-012-0347-6.

    Article  Google Scholar 

  • Gajalakshmi, K., & Anantharama, V. (2015). Comparative study of Cartosat-DEM and SRTM-DEM on elevation data and terrain elements. International Journal of Advanced Remote Sensing and GIS, 4(1), 1361–1366.

    Article  Google Scholar 

  • Gorsevski, P. V., Brown, M. K., Panter, C., Simic, A., & Snyder, J. (2016). Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio. Landslides, 13(3), 467–484.

    Article  Google Scholar 

  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-study, Central Italy. Geophysical Journal of the Royal Astronomical Society, 31, 181–216.

    Google Scholar 

  • Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., & Galli, M. (2006). Estimating the quality of landslide susceptibility models. Journal of Geomorphology, 81(1–2), 166–184.

    Article  Google Scholar 

  • Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Journal of Geomorphology, 72(1–4), 272–299.

    Article  Google Scholar 

  • Haoyuan, H., Chen, W., Xu, C., Youssef, A. M., Pradhan, B., & Tien Bui, D. (2017). Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocaroto International, 32(2), 139–154. https://doi.org/10.1080/10106049.2015.1130086.

    Article  Google Scholar 

  • Hong, H., Pradhan, B., Xu, C., & Bui, D. T. (2015a). Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. CATENA, 133, 266–281. https://doi.org/10.1016/j.catena.2015.05.019.

    Article  Google Scholar 

  • Hong, H., Xu, C., Revhaug, I., & Bui, D. T. (2015b). Spatial prediction of landslide hazard at the Yihuang area (China): A comparative study on the predictive ability of backpropagation multi-layer perceptron neural networks and radial basic function neural networks. In C. Robbi Sluter, C. B. Madureira Cruz, & P. M. Leal de Menezes (Eds.), Cartography-maps connecting the world (pp. 175–188). Berlin: Springer International Publishing.

    Chapter  Google Scholar 

  • Jain, A. K., Dasgupta, S., Bhargava, O. N., Israil, M., Perumal, R. J., Patel, R. C., et al. (2016). Tectonics and evolution of the Himalaya. Proceedings of the Indian National Science Academy, 82(3), 581–604.

    Google Scholar 

  • Kim, J., Lee, K., Jeong, S., & Kim, G. (2014). GIS-based prediction method of landslide susceptibility using a rainfall infiltration-groundwater flow model. Engineering Geology, 182(PA), 63–78. https://doi.org/10.1016/j.enggeo.2014.09.001.

    Article  Google Scholar 

  • Kwan, J. S. H., Chan, S. L., Cheuk, J. C. Y., & Koo, R. C. H. (2014). A case study on an open hillside landslide impacting on a flexible rock fall barrier at Jordan Valley, Hong Kong. Landslides, 11, 1037–1050. https://doi.org/10.1007/s10346-013-0461-x.

    Article  Google Scholar 

  • Lee, S. (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 7, 1477–1491.

    Article  Google Scholar 

  • Li, H., Chen, Y., Deng, S., Chen, M., Fang, T., & Tan, H. (2019). Eigenvector spatial filtering-based logistic regression for landslide susceptibility assessment. ISPRS International Journal of Geo-Information, 8, 332. https://doi.org/10.3390/ijgi8080332.

    Article  Google Scholar 

  • Li, Y., Zhou, R., Zhao, G., Li, H., Su, D., Ding, H., et al. (2014). Tectonic uplift and landslides triggered by the Wenchuan earthquake and constraints on orogenic growth: a case study from Hongchun Gully, Longmen Mountains, Sichuan, China. Quaternary International, 349, 142–152. https://doi.org/10.1016/j.quaint.2014.05.005.

    Article  Google Scholar 

  • Ma, J., Tang, H., Hu, X., Bobet, A., Zhang, M., Zhu, T., et al. (2017). Identification of causal factors for the Majiagou landslide using modern data mining methods. Landslides, 14(1), 311–322.

    Article  Google Scholar 

  • Mathew, J., Babu, G., Kundu, S., Kumar, V. K., & Pant, C. C. (2013). Integrating intensity-duration based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of Garhwal Himalaya. Berlin: Springer.

    Google Scholar 

  • Mathew, J., Babu, D. G., Kundu, S., Kumar, K. V., & Pant, C. C. (2014). Integrating intensity-duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India. Landslides, 11(4), 575–588.

    Article  Google Scholar 

  • Mathew, J., Jha, V. K., & Rawat, G. S. (2007). Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Current Science, 92(5), 628–638.

    Google Scholar 

  • Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster-Shafer, and weights-of evidence models. Journal of Asian Earth Sciences, 61, 221–236.

    Article  Google Scholar 

  • Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., & Jaedicke, C. (2006). Global landslide and avalanche hotspots. Landslides, 3(2), 159–174.

    Article  Google Scholar 

  • Negnevitsky, M. (2002). Artificial intelligence: a guide to intelligent systems (p. 394). Harlow: Addison–Wesley/Pearson Education.

    Google Scholar 

  • Onagh, M., Kumra, V. K., & Rai, P. K. (2012a). Application of multiple linear regression model in landslide susceptibility zonation mapping: the case study of Narmab Basin (Iran). International Journal of Geology, Earth and Environmental Sciences, 2(2), 87–101.

    Google Scholar 

  • Onagh, M., Kumra, V. K., & Rai, P. K. (2012b). Landslide susceptibility mapping in a part of Uttarkashi District (India) by multiple linear regression method. International Journal of Geology, Earth and Environmental Sciences, 2(2), 102–120.

    Google Scholar 

  • Palenzuela, J. A., Marsella, M., Nardinocchi, C., Pérez, J. L., Fernández, T., Chacón, J., et al. (2015). Landslide detection and inventory by integrating LiDAR data in a GIS environment. Landslides, 12(6), 1035–1050.

    Article  Google Scholar 

  • Pham, B. T., Bui, D., Prakash, I., & Dholakia, M. (2016). Evaluation of predictive ability of support vector machines and naive Bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GIS. Journal of Geomatics, 10, 71–79.

    Google Scholar 

  • Pham, B. T., Bui, D. T., Prakash, I., & Dholakia, M. B. (2017). Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA, 149, 52–63.

    Article  Google Scholar 

  • Pourghasemi, H. R., Mohammady, M., & Pradhan, B. (2012). Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97, 71–84.

    Article  Google Scholar 

  • Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38, 301–320. https://doi.org/10.1007/s12524-010-0020-z.

    Article  Google Scholar 

  • Pradhan, B., & Lee, S. (2010). Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software, 25, 747–759. https://doi.org/10.1016/j.envsoft.2009.10.016.

    Article  Google Scholar 

  • Raghuvanshi, T. K., Negassa, L., & Kala, P. M. (2015). GIS based grid overlay method versus modeling approach—a comparative study for Landslide Hazard Zonation (LHZ) in Meta Robi District of West Showa Zone in Ethiopia, Egypt. Journal of Remote Sensing and Space Sciences, 18, 235–250.

    Google Scholar 

  • Rai, P. K., Mohan, K., & Kumra, V. K. (2014). Landslide hazard and its mapping using Remote Sensing & GIS techniques. Journal of Scientific Research, 58, 1–13.

    Google Scholar 

  • Rohan, K., & Ambalagan, R. (2015). Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS. Journal of Earth System Science, 124(2), 431–448.

    Article  Google Scholar 

  • Santacana, N., Baezai, B., & Corominas, J. (2003). A GIS based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla De Lillet area (Eastern Pyrenees, Spain). Natural Hazards, 30(3), 281–295. https://doi.org/10.1023/B:NHAZ.0000007169.28860.80.

    Article  Google Scholar 

  • Sarda, V. K., & Pandey, D. D. (2019). Landslide susceptibility mapping using information value method. Jordan Journal of Civil Engineering, 13(2), 2019.

    Google Scholar 

  • Sharma, A., Sur, U., Singh, P., Rai, P. K., & Srivastava, P. K. (2020). Probabilistic landslide hazard assessment using statistical information value (SIV) and GIS techniques: A case study of Himachal Pradesh, India. Book Chapter in Wiley on technique for disaster risk management and mitigation (pp. 173–208), ISBN: 978-1-119-35918-0.

  • Sur, U., & Singh, P. (2019). Landslide susceptibility indexing using geospatial and geostatistical techniques along Chakrata-Kalsi road corridor, India. Indian Cartographer, Journal of the Indian National Cartographic Association (INCA), 38, 2018. Publication year 2019. ISSN:0927-8392.

  • Süzen, M. L., & Doyuran, V. (2004). Data driven bivariate landslide susceptibility assessment using Geographical Information Systems: a method and application to Asarsuyu catchment, Turkey. Engineering Geology, 71, 303–321.

    Article  Google Scholar 

  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.

    Article  CAS  Google Scholar 

  • Tien Bui, D., Pham, B. T., Nguyen, Q. P., & Hoang, N.-D. (2016). Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least-squares support vector machines and differential evolution optimization: A case study in Central Vietnam. International Journal of Digital Earth, 9, 1077–1097.

    Article  Google Scholar 

  • Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice, Natural Hazards. Paris: UNESCO.

    Google Scholar 

  • Wang, B. (2019). Failure mechanism of an ancient sensitive clay landslide in eastern Canada. Landslides, 16(8), 1483–1495.

    Article  Google Scholar 

  • Wang, Q., Guo, Y., Li, W., He, J., & Wu, Z. (2019). Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor. Geomatics, Natural Hazards and Risks, 10(1), 820–835. https://doi.org/10.1080/19475705.2018.1549111.

    Article  Google Scholar 

  • Wang, Q., Li, W., Chen, W., & Bai, H. (2015). GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China. Journal of Earth System Science, 124(7), 1399–1415.

    Article  Google Scholar 

  • Wilson, J. B. (2011). The twelve theories of co-existence in plant communities: The doubtful, the important and the unexplored. Journal of Vegetation Science, 22, 184–195.

    Article  Google Scholar 

  • Xu, C., Xu, X., Shen, L., Yao, Q., Tan, X., Kang, W., et al. (2016). Optimized volume models of earthquake-triggered landslides. Scientific Reports 6, Article number: 29797. https://doi.org/10.1038/srep29797.

  • Yang, Z., Qiao, J. (2009). Entropy-based hazard degree assessment for typical landslides in the three Gorges area, China. In F. Wang & T. Li (Eds.), Landslide disaster mitigation in three Gorges reservoir, China. Environmental Science and Engineering. Berlin: Springer.

    Google Scholar 

  • Yang, Z., Qiao, J., & Zhang, X. (2010). Regional landslide zonation based on entropy method in three Gorges area, China. In Seventh international conference on fuzzy systems and knowledge discovery (pp. 1336–1339).

  • Yin, K. L., & Yan, T. Z. (1988). Statistical prediction models for slope instability of metamorphosed rocks. In C. Bonnard (Ed.), Landslides, Proceedings of the fifth international symposium on landslides, 2 (pp. 1269–1272). Rotterdam: Balkema.

    Google Scholar 

  • Youssef, A. M., Al-Kathery, M., & Pradhan, B. (2015). Landslide susceptibility mapping at Al-Hasher area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosciences Journal, 19(1), 113–134. https://doi.org/10.1007/s12303-014-0032-8.

    Article  Google Scholar 

  • Zhang, J., He, P., Xiao, J., & Xu, F. (2018). Risk assessment model of expansive soil slope based on Fuzzy-AHP method and its engineering application. Geomatics Natural Hazards & Risk, 9(1), 389–402. https://doi.org/10.1080/19475705.2018.1445664.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratefulness to the Amity University for providing facility and constant encouragement to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafull Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Sharma, A., Sur, U. et al. Comparative landslide susceptibility assessment using statistical information value and index of entropy model in Bhanupali-Beri region, Himachal Pradesh, India. Environ Dev Sustain 23, 5233–5250 (2021). https://doi.org/10.1007/s10668-020-00811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00811-0

Keywords

Navigation