Skip to main content

Advertisement

Log in

Toward a sustainable city of tomorrow: a hybrid Markov–Cellular Automata modeling for urban landscape evolution in the Hanoi city (Vietnam) during 1990–2030

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The targets and challenges of the sustainable city of tomorrow are wide. In Hanoi city (Vietnam), the sustainable aspects of the urban landscape evolution are affected by a rapid urbanization, inefficient urban spatial planning, and the pressures of contemporary socioeconomic growth. This paper describes the evolution of urban landscape in Hanoi during the period 1990–2030. The background is the urbanization and the changes in urban planning. Urban land use/land cover of Hanoi city in 1993, 2000, 2007, 2012, and 2015 is described using LANDSAT satellite images. Land use/land cover of Hanoi in 2030 is projected by the Markov–cellular automata, which are a hybrid model of Markov chain analysis, multi-criteria evaluation, and cellular automata. The results show that Hanoi is becoming a metropolis, gradually having more dynamics and more diversity, but having less green in its pattern until 2030. All over Hanoi city, the built-up areas expanded, while the non-built area and water bodies narrowed. Residential, industrial, commercial, and service areas grow increasingly faster and become dense in the southwestern and southeastern parts of the city. New lakescapes and water corridors orient new urban development. Green areas become smaller and more fragmented. Agricultural rings have been cleared and replaced by new urban areas. Planning and managing the urban evolution toward sustainable development are imperative in Hanoi. The methods described in this paper can be effective tools expected to help planners, managers, and residents to deal with these concerns in the future. Moreover, socioeconomic development, environmental protection, improving urban planning efficiency, and integrating local governance into urban planning should be prioritized for a sustainable Hanoi city in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akın, A., Sunar, F., & Berberoğlu, S. (2015). Urban change analysis and future growth of Istanbul. Environmental Monitoring and Assessment, 187(8), 506.

    Article  Google Scholar 

  • Al-Bakri, J. T., Duqqah, M., & Brewer, T. (2013). Application of remote sensing and GIS for modeling and assessment of land use/cover change in Amman/Jordan. Geographic Information System, 5, 509–519.

    Article  Google Scholar 

  • Al-sharif, A. A. A., & Pradhan, B. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences, 7(10), 4291–4301.

    Article  Google Scholar 

  • Al-sharif, A. A. A., & Pradhan, B. (2015). A novel approach for predicting the spatial patterns of urban expansion by combining the Chi squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS. Geocarto International, 30(8), 858–881.

    Article  Google Scholar 

  • Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Applied Earth Observation and Geoinformation, 21, 265–275.

    Article  Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183–212.

    Article  Google Scholar 

  • Cobbinah, P. B., Erdiaw-Kwasie, M. O., & Amoateng, P. (2015). Africa’s urbanisation: Implications for sustainable development. Cities, 47, 62–72.

    Article  Google Scholar 

  • Collins, M. G., Steiner, F. R., & Rushman, M. J. (2001). Land-use suitability analysis in the United States: Historical development and promising technological achievements. Environmental Management, 28(5), 611–621.

    Article  CAS  Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing and Environment, 37, 35–46.

    Article  Google Scholar 

  • Cruz, R. V., & Amado, M. P. (2015). Construction of a sustainable island city: The case of Cape Verde. Energy Procedia, 74, 1476–1489.

    Article  Google Scholar 

  • Du Quan, V. V., & Nguyen, A. T. (2012). Predicting landscape development based on Markov–cellular automata and Hexagonal Grid Analysis. In A. T. Nguyen (Ed.), A new approach to landscape change modeling: Integrating remote sensing, GIS and fractal analysis (pp. 2009–2232). Hanoi: TheGioi publisher.

    Google Scholar 

  • Esch, T., Marconcini, M., Marmanis, D., Zeidler, J., Elsayed, S., Metz, A., et al. (2014). Dimensioning urbanization—An advanced procedure for characterizing human settlement properties and patterns using spatial network analysis. Applied Geography, 55, 212–228.

    Article  Google Scholar 

  • Estoque, R. C., Murayama, Y., & Akiyama, C. M. (2015). Pixel-based and object-based classifications using high- and medium-spatial-resolution imageries in the urban and suburban landscapes. Geocarto International, 30(10), 1113–1129.

    Article  Google Scholar 

  • Fan, P., Chen, J., & John, R. (2016). Urbanization and environmental change during the economic transition on the Mongolian Plateau: Hohhot and Ulaanbaatar. Environmental Research, 144, 96–112.

    Article  CAS  Google Scholar 

  • Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of Cellular Automaton and Markov model. Ecological Modelling, 222, 3761–3772.

    Article  Google Scholar 

  • Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov–CA. Applied Geography, 63, 101–112.

    Article  Google Scholar 

  • Ho, D. D., & Shibayama, M. (2009). Studies on Hanoi urban transition in the late 20th century based on GIS/RS. Southeast Asian Studies, 46, 532–546.

    Google Scholar 

  • Hossein, S. M., & Marco, H. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140–149.

    Article  Google Scholar 

  • Jafar, N., Alireza, G., Reza, A., Shahrzad, F., & Mahsa, A. (2014). Predicting urban land use changes using a CA–Markov model. Arabian Journal for Science and Engineering, 39, 5565–5573.

    Article  Google Scholar 

  • Jenerette, D. G., & Wu, J. (2001). Analysis and simulation of land-use change in the central Arizona—Phoenix region, USA. Landscape Ecology, 16(7), 611–626.

    Article  Google Scholar 

  • Kityuttachai, K., Tripathi, N. K., Tipdecho, T., & Shrestha, R. (2013). CA–Markov analysis of constrained coastal urban growth modeling: Hua Hin Seaside City, Thailand. Sustainability, 5, 1480–1500.

    Article  Google Scholar 

  • Kumar, S., Radhakrishnan, N., & Mathew, S. (2014). Land use change modeling using a Markov model and remote sensing. Geomatics, Natural Hazards and Risk, 5(2), 145–156.

    Article  Google Scholar 

  • Labbé, D. (2011). A short history of urban and regional development in the Red River Delta (p. 53). Vancouver: University of British Columbia. ISBN 978-2-89575-242-4.

    Google Scholar 

  • Liu, Y. (2008). Modelling urban development with geographical information systems and cellular automata (p. 186). Boca Raton: CRC Press.

    Book  Google Scholar 

  • Luo, G., Amuti, T., Zhu, L., Mambetov, B. T., Maisupova, B., & Zhang, C. (2014). Dynamics of landscape patterns in an inland river delta of Central Asia based on a cellular automata–Markov model. Regional Environmental Change, 15, 277–289.

    Article  Google Scholar 

  • Maithani, S. (2010). Cellular automata based model of urban spatial growth. The Indian Society of Remote Sensing, 38, 604–610.

    Article  Google Scholar 

  • Marín, S. L., Nahuelhual, L., Echeverría, C., & Gran, W. E. (2011). Projecting landscape changes in southern Chile: Simulation of human and natural processes driving land transformation. Ecological Modelling, 222, 2841–2855.

    Article  Google Scholar 

  • Moghadam, S. H., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains–cellular automata urban growth model. Applied Geography, 40, 140–149.

    Article  Google Scholar 

  • Moskal, M. L., Styers, D. M., & Halabisky, M. (2011). Monitoring urban tree cover using object-based image analysis and public domain remotely sensed data. Remote Sensing, 3, 2243–2262.

    Article  Google Scholar 

  • Nguyen, V. T., Dang, T. L., Nguyen, A. T., Tran, D. L., & Hens, L. (2017). Shifting challenges for coastal green cities. Vietnam Journal of Earth Sciences, 39(2), 109–129.

    Google Scholar 

  • Nguyen, Q., & Kammeier, H. D. (2002). Changes in the political economy of Vietnam and their impacts on the built environment of Hanoi. Cities, 19(6), 373–388.

    Article  Google Scholar 

  • Nouri, J., Gharagozlou, A., Arjmandi, R., Faryadi, S., & Adl, M. (2014). Predicting urban land use changes using a CA–Markov model. Arabian Journal for Science and Engineering, 39(7), 5565–5573.

    Article  Google Scholar 

  • Omar, N. Q., Ahamad, M. S. S., Hussin, W. M. A. W., Samat, N., & Ahmad, S. Z. B. (2014). Markov CA, multi regression, and multiple decision making for modeling historical changes in Kirkuk City, Iraq. Indian Society of Remote Sensing, 42(1), 165–178.

    Article  Google Scholar 

  • Pan, Y., Zhai, M., Lin, L., Lin, Y., Cai, J., Deng, J., et al. (2016). Characterizing the spatiotemporal evolutions and impact of rapid urbanization on island sustainable development. Habitat International, 53, 215–227.

    Article  Google Scholar 

  • Parenteau, R., Charbonneau, F., Pham, K. T., Nguyen, B. D., Tran, H., Nguyen, H. M., et al. (1995). Impact of restoration in Hanoi’s French colonial quarter. Cities, 12, 163–173.

    Article  Google Scholar 

  • Pham, D. U., & Nakagoshi, N. (2008). Application of land suitability analysis and landscape ecology to urban greenspace planning in Hanoi, Vietnam. Urban Forestry & Urban Greening, 7(1), 25–40.

    Article  Google Scholar 

  • Phuong, L. T. M., & Len, N. T. (2011). Oriented classification of objected images for studying urban. Scientific architecture and construction, 6, 54–56.

    Google Scholar 

  • Ratiu, D. E. (2013). Creative cities and/or sustainable cities: Discourses and practices. City, Culture and Society, 4(3), 125–135.

    Article  Google Scholar 

  • Shen, L., & Zhou, J. (2014). Examining the effectiveness of indicators for guiding sustainable urbanization in China. Habitat International, 44, 111–120.

    Article  Google Scholar 

  • Song, Q., Li, J., Duan, H., Yu, D., & Wang, Z. (2017). Towards to sustainable energy-efficient city: A case study of Macau. Renewable and Sustainable Energy Reviews, 75, 504–514.

    Article  Google Scholar 

  • Sun, Y., Tong, S. T. Y., Fang, M., & Yang, Y. J. (2013). Exploring the effects of population growth on future land use change in the Las Vegas Wash watershed: An integrated approach of geospatial modeling and analytics. Environment, Development and Sustainability, 15, 1495–1515.

    Article  Google Scholar 

  • Tewolde, M. G., & Cabral, P. (2011). Urban sprawl analysis and modeling in Asmara, Eritrea. Remote Sensing, 3, 2148–2165.

    Article  Google Scholar 

  • Tsarouchi, G. M., Mijica, A., Moulds, S., & Buytaert, W. (2014). Historical and future land-cover changes in the Upper Ganges basin of India. Remote Sensing, 35(9), 3150–3176.

    Article  Google Scholar 

  • Verburg, P. H., Nijs, T. C. M., Eck, J. R., Visser, H., & Jong, K. (2004). A method to analyse neighbourhood characteristics of land use patterns. Computers, Environment and Urban Systems, 28, 667–690.

    Article  Google Scholar 

  • Vietnamese Ministry of Construction (MOC). (2016). Report on urban infrastructure development in Vietnam 2012–2015, Hanoi city (pp. 52–53). Hanoi, Vietnam.

  • Vietnamese Ministry of Planning and Investment (MPI). (2011). Migration and urbanization in Vietnam: Patterns, trends and differentials. Vietnam population and housing census 2009. Hanoi, Vietnam.

  • Waseem, M., Halmy, A., Gesster, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov–CA. Applied Geography, 63, 101–112.

    Article  Google Scholar 

  • WB. (2011). Vietnam urbanization review: technical assistance report (p. 263). Washington, DC: World Bank.

    Google Scholar 

  • Yagoub, M. M., & Al Bizreh, A. A. (2014). Prediction of land cover change using Markov and cellular automata models: case of Al-Ain, UAE, 1992–2030. The Indian Society of Remote Sensing, 42, 665–671.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are most in depth to Mr. Jeffrey Bauch for this most careful language revision of the manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thinh An Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.A., Le, P.M.T., Pham, T.M. et al. Toward a sustainable city of tomorrow: a hybrid Markov–Cellular Automata modeling for urban landscape evolution in the Hanoi city (Vietnam) during 1990–2030. Environ Dev Sustain 21, 429–446 (2019). https://doi.org/10.1007/s10668-017-0046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-017-0046-2

Keywords

Navigation