Skip to main content

Advertisement

Log in

Focus on relative humidity trend in Iran and its relationship with temperature changes during 1960–2005

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In this research, the mean relative humidity (RH) trend was investigated in the monthly, seasonal and annual timescales during 1960–2005 in 32 synoptic meteorological stations. The Mann–Kendall test after the removal of the significant lag-1 serial correlation effect from the RH time series by pre-whitening was used to determine significant trends. Sen’s slope estimator was used to determine the median slope of positive or negative RH trends in seasonal and annual timescales. Also, in order to facilitate trend analysis and exploring in datasets, 10-year moving average low-pass filter was applied on mean annual normalized RH. Furthermore, smoothed time series by the mentioned filter were classified in four clusters and then they were mapped to show the spatial distribution of trend patterns in Iran. Results showed both significant downward and upward trends, but the number of negative trends was more than positive ones. In general, the stations located in arid central and eastern parts of country had more negative trends. Results of the Sen’s slope estimator showed that in annual timescale, Gorgan synoptic station had the most increasing slope by (+) 2 % per decade, while the most negative slope was detected in Bam by (−) 2.79 % per decade. Also, the analysis of smoothed time series of RH and their relationship with smoothed temperatures showed a strong inverse relationship particularly after 1995. It can be concluded that alongside the increasing of temperature in many parts of Iran, lack of sufficient water vapor has led to decreasing trend of RH in the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahani, H., Kherad, M., Kousari, M., Rezaeian-Zadeh, M., Karampour, M., Ejraee, F., et al. (2012). An investigation of trends in precipitation volume for the last three decades in different regions of Fars province, Iran. Theoretical and Applied Climatology, 109, 361–382.

    Article  Google Scholar 

  • Ahani, H., Kherad, M., Kousari, M., Roosmalen, L., Aryanfar, R., & Hosseini, S. (2013). Non-parametric trend analysis of the aridity index for three large arid and semi-arid basins in Iran. Theoretical and Applied Climatology, 112, 553–564.

    Article  Google Scholar 

  • Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrological cycle. Nature, 419, 224–232.

    Article  CAS  Google Scholar 

  • AlSadi, S., & Khatib, T. (2012). Modeling of relative humidity using artificial neural network. Journal of Asian Scientific Research, 2, 81–86.

    Google Scholar 

  • Amiri, R., Weng, Q., Alimohammadi, A., & Alavipanah, S. K. (2009). Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113, 2606–2617.

    Article  Google Scholar 

  • Arora, M., Goel, N. K., & Singh, P. (2005). Evaluation of temperature trends over India. Hydrological Sciences Journal, 50, 81–93.

    Article  Google Scholar 

  • Arrhenius, S. (1896). On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine, 41, 237–276.

    Article  CAS  Google Scholar 

  • Ayoubi, S., Mokhtari Karchegani, P., Mosaddeghi, M. R., & Honarjoo, N. (2012). Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil and Tillage Research, 121, 18–26.

    Article  Google Scholar 

  • Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N., & Singh, R. (2009). Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering, 14, 508–515.

    Article  Google Scholar 

  • Changnon, D., Sandstrom, M., & Schaffer, C. (2003). Relating changes in agricultural practices to increasing dew points in extreme Chicago heat waves. Climate Research, 24, 243–254.

    Article  Google Scholar 

  • Cubasch, U., Meehl, G. A., Boer, G. J., Stouffer, R. J., Dix, M., Noda, A., et al. (2001). Projections of future climate change. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell & C. A. Johnson (Eds.), Climate change 2001: The scientific basis: Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (pp. 526–582). Cambridge, New York: Cambridge University Press.

  • Dai, A. (2006). Recent climatology, variability, and trends in global surface humidity. Journal of Climate, 19, 3589–3606.

    Article  Google Scholar 

  • Dai, A., Meehl, G. A., Washington, W. M., Wigley, T. M. L., & Arblaster, J. M. (2001). Ensemble simulation of twenty-first century climate changes: Business–as–usual versus CO2 stabilization. Bulletin of the American Meteorological Society, 82, 2377–2388.

    Article  Google Scholar 

  • Dessens, J., & Bücher, A. (1995). Changes in minimum and maximum temperatures at the Pic du Midi in relation with humidity and cloudiness, 1882–1984. Atmospheric Research, 37, 147–162.

    Article  Google Scholar 

  • Dessler, A. E., Zhang, Z., & Yang, P. (2008). Water-vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophysical Research Letters, 35, L20704.

    Article  Google Scholar 

  • Dinpashoh, Y., Jhajharia, D., Fakheri-Fard, A., Singh, V. P., & Kahya, E. (2011). Trends in reference crop evapotranspiration over Iran. Journal of Hydrology, 399, 422–433.

    Article  Google Scholar 

  • Durbin, J., & Watson, G. (1950). Testing for serial correlation in least squares regression: I. Biometrika, 37, 409–428.

    CAS  Google Scholar 

  • Durbin, J., & Watson, G. (1971). Testing for serial correlation in least squares regression: III. Biometrika, 58, 1–19.

    Google Scholar 

  • Earle, D. (2010). Dendrogram seriation in data visualisation: Algorithms and applications. Department of Mathematics. PhD thesis National University of Ireland Maynooth, Department of Mathematics.

  • Elliott, W. P. (1995). On detecting long-term changes in atmospheric moisture. Climatic Change, 31, 349–367.

    Article  Google Scholar 

  • Emadi, M., Baghernejad, M., & Memarian, H. R. (2009). Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy, 26, 452–457.

    Article  Google Scholar 

  • Eslamian, S., Khordadi, M. J., & Abedi-Koupai, J. (2011). Effects of variations in climatic parameters on evapotranspiration in the arid and semi-arid regions. Global and Planetary Change, 78, 188–194.

    Article  Google Scholar 

  • Espadafor, M., Lorite, I. J., Gavilán, P., & Berengena, J. (2011). An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agricultural Water Management, 98, 1045–1061.

    Article  Google Scholar 

  • Farmer, C. J. Q., Nelson, T. A., Wulder, M. A., & Derksen, C. (2010). Identification of snow cover regimes through spatial and temporal clustering of satellite microwave brightness temperatures. Remote Sensing of Environment, 114, 199–210.

    Article  Google Scholar 

  • Farris, J. S. (1969). On the cophenetic correlation coefficient. Systematic Zoology, 18, 279–285.

    Article  Google Scholar 

  • Gaffen, D. J., & Rebecca, J. R. (1999). Climatology and trends of U.S. surface humidity and temperature. Journal of Climate, 12, 811–828.

    Article  Google Scholar 

  • Gocic, M., & Trajkovic, S. (2013). Analysis of changes in meteorological variables using Mann–Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172–182.

    Article  Google Scholar 

  • Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19, 5686–5699.

    Article  Google Scholar 

  • Hirsch, R., Helsel, D., Cohn, T., & Gilroy, E. (1993). Statistical analysis of hydrologic data. In D. R. Maidment (Ed.), Handbook of hydrology (Chap. 17). New York: McGraw-Hill.

  • Irmak, S., Kabenge, I., Skaggs, K. E., & Mutiibwa, D. (2012). Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska–USA. Journal of Hydrology, 420–421, 228–244.

    Article  Google Scholar 

  • Jhajharia, D., Agrawal, G., & Sevda, M. S. (2009a). Influence of meteorological parameters on pan evaporation at Agartala. Journal of Agricultural Engineering, 46, 23–26.

    Google Scholar 

  • Jhajharia, D., Dinpashoh, Y., Kahya, E., Singh, V. P., & Fakheri-Fard, A. (2012). Trends in reference evapotranspiration in the humid region of northeast India. Hydrological Processes, 26, 421–435.

    Article  Google Scholar 

  • Jhajharia, D., Fancon, A. K., & Kithan, S. B. (2006). Correlation between pan evaporation and meteorological parameters under the climatic conditions of Jorhat (Assam). Journal of Indian Water Resources Society, 26, 39–42.

    Google Scholar 

  • Jhajharia, D., Kumar, R., Dabral, P. P., Singh, V. P., Choudhary, R.R., & Dinpashoh, Y. (2014). Reference evapotranspiration under changing climate over the Thar Desert in India. Meteorological Applications.

  • Jhajharia, D., Shrivastava, S. K., Sarkar, D., & Sarkar, S. (2009b). Temporal characteristics of pan evaporation trends under the humid conditions of northeast India. Agricultural and Forest Meteorology, 149, 763–770.

    Article  Google Scholar 

  • Jhajharia, D., & Singh, P. S. (2011). Trends in temperature, diurnal temperature range and sunshine duration in Northeast India. International Journal of Climatology, 31, 1353–1367.

    Article  Google Scholar 

  • Johnston, J. W. (1976). Similarity indices I: What do they measure. Richland, WA: Battelle Pacific Northwest Labs.

    Book  Google Scholar 

  • Kahya, E., & Kalaycı, S. (2004). Trend analysis of streamflow in Turkey. Journal of Hydrology, 289, 128–144.

    Article  Google Scholar 

  • Kaiser, D. P. (2000). Decreasing cloudiness over China: An updated analysis examining additional variables. Geophysical Research Letters, 27, 2193–2196.

    Article  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods. London: Griffin.

    Google Scholar 

  • Khormali, F., Ajami, M., Ayoubi, S., Srinivasarao, C., & Wani, S. P. (2009). Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran. Agriculture, Ecosystems & Environment, 134, 178–189.

    Article  Google Scholar 

  • Kiely, G. (1999). Climate change in Ireland from precipitation and stream flow. Advances in Water Resources, 23, 141–151.

    Article  Google Scholar 

  • Kousari, M. R., & Ahani, H. (2012). An investigation on reference crop evapotranspiration trend from 1975 to 2005 in Iran. International Journal of Climatology, 32, 2387–2402.

    Article  Google Scholar 

  • Kousari, M. R., Ahani, H., & Hakimelahi, H. (2013a). An investigation of near surface wind speed trends in arid and semiarid regions of Iran. Theoretical and Applied Climatology, 114(1–2), 153–168.

  • Kousari, M. R., Ahani, H., & Hendi-zadeh, R. (2013b). Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Global and Planetary Change, 111, 97–110.

    Article  Google Scholar 

  • Kousari, M., Ekhtesasi, M., Tazeh, M., Naeini, M. S., & Zarch, M. A. (2011). An investigation of the Iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theoretical and Applied Climatology, 103, 321–335.

    Article  Google Scholar 

  • Kousari, M., & Zarch, M. A. (2011). Minimum, maximum, and mean annual temperatures, relative humidity, and precipitation trends in arid and semi-arid regions of Iran. Arabian Journal of Geosciences, 4, 907–914.

    Article  Google Scholar 

  • Lee, D. O. (1991). Urban–rural humidity differences in London. International Journal of Climatology, 11, 577–582.

    Article  Google Scholar 

  • Lin, G. F., & Wu, M. C. (2007). A SOM-based approach to estimating design hyetographs of ungauged sites. Journal of Hydrology, 339, 216–226.

    Article  Google Scholar 

  • Malekinezhad, H. (2009). Study on the water availability in Iran, using the international water indicators. In 8th International congress on civil engineering, Shiraz, Iran.

  • Manabe, S., & Wetherald, R. T. (1967). Thermal equilibrium of atmosphere with a given distribution of relative humidity. Journal of Atmospheric Science, 24, 241.

    Article  CAS  Google Scholar 

  • Mann, H. B. (1945). Non-parametric tests against trend. Econometrica, 13, 245–259.

    Article  Google Scholar 

  • Marquart, S., Ponater, M., Mager, F., & Sausen, R. (2003). Future development of contrail cover, optical depth and radiative forcing: Impacts of increasing air traffic and climate change. Journal of Climate, 16, 2890–2904.

    Article  Google Scholar 

  • MathWorks. (2001). Statistics toolbox: For use with Matlab: User’s guide, version 4. http://www.mathworks.com/products/statistics/.

  • Mckenna, J. E. (2003). An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environmental Modelling and Software, 18, 205–220.

    Article  Google Scholar 

  • McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., Van Niel, T. G., Thomas, A., et al. (2012). Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology, 416–417, 182–205.

    Article  Google Scholar 

  • Nathan, R. J., & McMahon, T. A. (1990). Identification of homogeneous regions for the purposes of regionalization. Journal of Hydrology, 121, 217–238.

    Article  Google Scholar 

  • New, M., Hulme, M., & Jones, P. (2000). Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. Journal of Climate, 13, 2217–2238.

    Article  Google Scholar 

  • Rashki, A., Kaskaoutis, D. G., Rautenbach, C. J., Eriksson, P. G., Qiang, M., & Gupta, P. (2012). Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Research, 5, 51–62.

    Article  Google Scholar 

  • Sabet Sarvestani, M., Ibrahim, A. L., & Kanaroglou, P. (2011). Three decades of urban growth in the city of Shiraz, Iran: A remote sensing and geographic information systems application. Cities, 28, 320–329.

    Article  Google Scholar 

  • Sahin, S., & Cigizoglu, H. (2012). The sub-climate regions and the sub-precipitation regime regions in Turkey. Journal of Hydrology, 450–451, 180–189.

    Article  Google Scholar 

  • Schwartzman, P. D., Michaels, P. J., & Knappenberger, P. C. (1998). Observed changes in the diurnal dewpoint cycles across North America. Geophysical Research Letters, 25, 2265–2268.

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Journal of American Statistical Association, 63, 1379–1389.

    Article  Google Scholar 

  • Sigaroodi, S. K., & Ebrahimi, S. (2010). Effects of land use change on surface water regime (case study orumieh lake of Iran). Procedia Environmental Sciences, 2, 256–261.

    Article  Google Scholar 

  • Socrates Ngongondo, C. (2006). An analysis of long-term rainfall variability, trends and groundwater availability in the Mulunguzi river catchment area, Zomba mountain, Southern Malawi. Quaternary International, 148, 45–50.

    Article  Google Scholar 

  • Song, Y., Liu, Y., & Ding, Y. (2012). A study of surface humidity changes in China during the recent 50 years. Acta Meteorologica Sinica, 26, 541–553.

    Article  Google Scholar 

  • Trenberth, K. E. (2006). Hurricanes and global warming—potential linkages and consequences. Bulletin of the American Meteorological Society, 87, 623–628.

    Article  Google Scholar 

  • van Wijngaarden, W. A., & Vincent, L. A. (2005). Examination of discontinuities in hourly surface relative humidity in Canada during 1953–2003. Journal of Geophysical Research: Atmospheres, 110, D22102.

    Article  Google Scholar 

  • Vincent, L. A., van Wijngaarden, W. A., & Hopkinson, R. (2007). Surface temperature and humidity trends in Canada for 1953–2005. Journal of Climate, 20, 5100–5113.

    Article  Google Scholar 

  • Von Storch, H., & Navarra, A. (1995). Analysis of climate variability—applications of statistical techniques. New York: Springer.

    Book  Google Scholar 

  • Wang, J. X. L., & Gaffen, D. J. (2001). Late-twentieth-century climatology and trends of surface humidity and temperature in China. Journal of Climate, 14, 2833–2845.

    Article  Google Scholar 

  • Willett, K. M. (2007). Creation and analysis of HadCRUH: A new global surface humidity dataset. PhD thesis in Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.

  • Willett, K. M., Jones, P. D., Gillett, N. P., & Thorne, P. W. (2008). Recent changes in surface humidity: Development of the HadCRUH dataset. Journal of Climate, 21, 5364–5383.

    Article  Google Scholar 

  • Xu, J., Chen, Y., Li, W., Ji, M., Dong, S., & Hong, Y. (2009). Wavelet analysis and nonparametric test for climate change in Tarim River Basin of Xinjiang during 1959–2006. Chinese Geographical Science, 19, 306–313.

    Article  Google Scholar 

  • Xu, C.-Y., Zhang, Q., El Hag El Tahir, M., & Zhang, Z. (2010). Statistical properties of the temperature, relative humidity, and net solar radiation in the Blue Nile-eastern Sudan region. Theoretical and Applied Climatology, 101, 397–409.

    Article  Google Scholar 

  • Yu, Y.-S., Zou, S., & Whittemore, D. (1993). Non-parametric trend analysis of water quality data of rivers in Kansas. Journal of Hydrology, 150, 61–80.

    Article  CAS  Google Scholar 

  • Yue, S., & Wang, C. Y. (2002). Applicability of the pre-whitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resources Research, 38, 1068.

    Article  Google Scholar 

  • Zanganeh Shahraki, S., Sauri, D., Serra, P., Modugno, S., Seifolddini, F., & Pourahmad, A. (2011). Urban sprawl pattern and land-use change detection in Yazd, Iran. Habitat International, 35, 521–528.

    Article  Google Scholar 

  • Zarghami, M., Abdi, A., Babaeian, I., Hassanzadeh, Y., & Kanani, R. (2011). Impacts of climate change on runoffs in East Azerbaijan, Iran. Global and Planetary Change, 78, 137–146.

    Article  Google Scholar 

  • Zhai, L., & Feng, Q. (2009). Spatial and temporal pattern of precipitation and drought in Gansu Province, Northwest China. Natural Hazards, 49, 1–24.

    Article  Google Scholar 

  • Zhang, Q., Liu, C., Xu, C. Y., Xu, Y. P., & Jiang, T. (2006). Observed trends of water level and streamflow during past 100 years in the Yangtze River basin, China. Journal of Hydrology, 324, 255–265.

    Article  Google Scholar 

  • Zhu, Y., & Day, R. L. (2005). Analysis of streamflow trends and the effects of climate in Pennsylvania, 1971 to 2001. Journal of the American Water Resources Association, 41, 1393–1405.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate the Shiraz University their support and providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noshadi, M., Ahani, H. Focus on relative humidity trend in Iran and its relationship with temperature changes during 1960–2005. Environ Dev Sustain 17, 1451–1469 (2015). https://doi.org/10.1007/s10668-014-9615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-014-9615-9

Keywords

Navigation