Skip to main content

Advertisement

Log in

A study on the status of saltwater intrusion in the coastal hard rock aquifer of South India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Groundwater of the coastal regions represents a fragile environment. A study has been attempted in the hard rock aquifer of the south-eastern part of India. A total of 135 groundwater samples were collected and analysed for major cations and anions. The domination of cations and anions was in the order of Na+ > Ca2+ > Mg2+ > K+ for cations and Cl > HCO3  > SO4 2− > H4SiO4 > NO3  > PO4  > F in anions. The water is neutral to alkaline in nature with pH ranging from 6.30 to 9.20 with an average of 7.57. The ions analysed were used for standard plots, ratio of different ions and correlation between them helped to evaluate the active hydrogeochemical process and extent of saltwater intrusion in the coastal aquifer. The electrical conductivity (EC) contour shows that the groundwater quality is poor along the coast due to saltwater intrusion. The Piper and chadda’s plot shows that most of the groundwater samples fall on Na–Cl water type may be due to saltwater intrusion in the eastern part study area. The ratios of Cl/HCO3 ranged between 0.24 and 152.50 and have strong positive relationship with Cl concentrations; it was found that about 30 % of the groundwater samples were strongly affected by the saline water in the study area. The Na+/Cl ratios ranged from 0.20 to 3.73, and most of the groundwater samples fall close to the contamination region. Agricultural and salt pan land use pattern decrease the water quality due to impact of anthropogenic processes and seawater intrusion. Statistical analysis was also used to obtain the objectives, and it was found that the seawater intrusion is the major factor controlling the groundwater chemistry followed by other factors such as weathering and fertiliser impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abidin, H. Z., Andreas, H., Djaja, R., Darmawa, D., & Gamal, M. (2007). Land subsidence characteristics of Jakarta between 1997 and 2005 as estimated using GPS surveys, GPS Solutions, Springer Berlin/Heidelberg, doi:10.1007/s10291-007-0061-0.

  • Abyaneh, H. Z., Nazemi, H., Neyshabori, M. R., Mohammadi, K., & Majzoobi, G. H. (2005). Chloride estimation in groundwater from electrical conductivity measurement. Tarim bilimleri dergisi, 11(1), 110–114.

    Google Scholar 

  • Adams, S., Titus, R., Pietersen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241, 91–103.

    Article  CAS  Google Scholar 

  • Ahn, H., & Chon, H. (1999). Assessment of groundwater contamination using geographic information systems. Environmental Geochemistry and Health, 21, 273–289.

    Article  CAS  Google Scholar 

  • Aiuppa, A., Allard, P. D., Alessandro, W., Michel, A., Parello, F., Treuil, M., et al. (2000). Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etnavolcan (Sieity). Geochimica et Cosmochimica Acta, 64, 1827–1841.

    Article  CAS  Google Scholar 

  • Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., et al. (2004). Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Applied Geochemistry, 19, 215–230.

    Article  CAS  Google Scholar 

  • APHA. (1992). Standard methods for the examination of water and wastewater (p. 326). Washington, DC: American Public Health Association.

  • Appelo, C. A. J., & Postma, D. (1999). Geochemistry, groundwater and pollution. Rotterdam: Balkema.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). Amsterdam: Balkema. 649p.

    Book  Google Scholar 

  • Atwood, D. F., & Barber, C. (1989). The effects of Perth’s urbanisation on groundwater quality: A comparison with the case histories in the USA. In G. Lowe (Ed.), Proceedings of the Swan Coastal Plain groundwater management conference (pp. 177–190). Perth: Western Australia Resource Council.

    Google Scholar 

  • Barbecot, F., Marlin, C., Gibert, E., & Dever, L. (2000). Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (Northern France). Applied Geochemistry, 15, 791–805.

    Article  CAS  Google Scholar 

  • Barber, C., Otto, C. J., Bates, L. E., & Taylor, K. J. (1996). Evaluation of the relationship between land-use changes and groundwater quality in a water-supply catchment, using GIS technology: The Gwelup Wellfield, Western Australia. Hydrogeology Journal, 4(1), 6–19.

    Article  Google Scholar 

  • Barker, A. P., Newton, R. J., & Bottrell, S. H. (1998). Processes affecting groundwater chemistry in a zone of saline intrusion into an urban aquifer. Applied Geochemistry, 13, 735–749.

    Article  CAS  Google Scholar 

  • Ben-Yaakov, S. (1973). pH buffering of pore water of recent anoxic marine sediments. Limnology and Oceanography, 18(1), 86–94.

    Article  CAS  Google Scholar 

  • Bouwer, H. (1978). Groundwater quality, groundwater hydrology (pp. 339–375). New York: Mc Graw-Hill Kogakusha Ltd.

    Google Scholar 

  • Burt, T. P., & Haycock, N. E. (1993). Controlling losses of nitrate by changing land use. In T. P. Burt, A. L. Heathwaite, & S. T. Trudgill (Eds.), Nitrate: Processes, patterns and management (pp. 342–367). Chichester: Wiley.

    Google Scholar 

  • Cardona, A., Carrillo-Rivera, J. J., Huizar-A´ lvarez, R., & Graniel-Castro, E. (2004). Salinization in coastal aquifers of arid zones: An example from Santo Domingo, Baja California Sur, Mexico. Environmental Geology, 45, 350–366.

    Article  CAS  Google Scholar 

  • Cederstorm, D. J. (1946). Genesis of groundwater in the coastal plain of Virginia. Environmental Geology, 41, 218–245.

    Google Scholar 

  • CGWB. (2009). South Eastern Coastal Region, District groundwater brochure, Thoothukudi district, Tamil nadu.

  • Chadha, D. K. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7(5), 431–439.

    Article  Google Scholar 

  • Chae, G. T., Kim, K., Yun, S. T., Kim, K. H., Kim, S. O., Choi, B. Y., et al. (2004). Hydrogeochemistry of alluvial groundwaters in an agricultural area: An implication for groundwater contamination susceptibility. Chemosphere, 55, 369–378.

    Article  CAS  Google Scholar 

  • Chandrasekar, N., Joevivek, V., & John Prince Soundaranayagam, D. C. (2011). Geospatial analysis of coastal geomorphological vulnerability along Southern Tamilnadu coast. Geospatial World Forum.

  • Chidambaram, S., Prasanna, M. V., Ramanathan, A. L., Vasu, K., Hameed, S., Warrier, U. K., et al. (2009). A study on the factors affecting the stable isotopic composition in precipitation of Tamil Nadu, India. Hydrological Processes, 23(12), 1792–1800.

    Article  Google Scholar 

  • Chidambaram, S., Prasanna, M. V., Singaraja, C., Thilagavathi, R., Pethaperumal, S., & Tirumalesh, K. (2012). Study on the saturation index of the carbonates in the groundwater using WATEQ4F, in layered coastal aquifers of Pondicherry. Journal Geological Society of India, 80, 813–824.

    Article  CAS  Google Scholar 

  • Chidambaram, S., Prasanna, M. V., Vasu, K., Shahul Hameed, A., Unnikrishna Warrier, C., & Srinivasamoorthy, K. (2007). Study on the stable isotope signatures in groundwater of Gadilam river basin, Tamilnadu. India. Indian Journal of Geochemistry, 22(2), 209–221.

    CAS  Google Scholar 

  • Chivas, A. R., Andrew, A. S., Lyons, W. B., Bird, M. I., & Donnelly, T. H. (1991). Isotopic constraints on the origin of salts in Australian playas. 1. Sulphur. Palaeogeog., Palaeoecol. Palaeoclim, 84, 309–322.

    Article  Google Scholar 

  • Choi, S. H., Kim, Y. K., & Lee, D. Y. (1991). Seawater intrusion in the coastal area of Cheju Volcanic Island, Korea. The Journal of the Korean Institute of Mining Geology, 24, 319–327.

    Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental Isotopes in Hydrology. Lewis Publishers, New York, 328 pp (Chapters 1 and 10).

  • Compton, J. S. (1988). Degree of supersaturation and precipitation of organogenic dolomite. Geology, 16, 318–321.

    Article  CAS  Google Scholar 

  • Desai, B. I., Gupta, S. K., Shah, M. V., & Sharma, S. C. (1979). Hydrochemical evidence of seawater inmision along the mangrol-chorwad coast of saurashtra Gujarat. Hydrogeologiques, 24, (1) 3: 71–81.

  • Drever, J. I. (1997). The geochemistry of natural waters: Surface and groundwater environments (3rd ed.). New Jersey: Prentice-Hall.

    Google Scholar 

  • Ducci, D. (1999). GIS techniques for mapping groundwater contamination risk. Natural Hazards, 20, 279–294.

    Article  Google Scholar 

  • Eaton, A. D., Clesceri, L., & Greenberg, A. E. (1995). Standard methods for the examination of water and wastewater (9th ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • El Moujabber, M., Bou Samra, B., Darwish, T., & Atallah, T. (2006). Comparison of different indicators for groundwater contamination by seawater intrusion on the Lebanese coast. Water Resources Management, 20, 161–180.

    Article  Google Scholar 

  • Fakir, Y., Mernissi, M. E., Kreuser, T., & Berjami, B. (2002). Natural tracer approach to characterize groundwater in the coastal Sahel of Oualidia (Morocco). Environmental Geology, 43, 197–202.

    Article  CAS  Google Scholar 

  • Faure, G. (1992). Principles and applications of inorganic geochemistry. New York: Macmillan Publishing Company.

    Google Scholar 

  • Faye, S. C., Faye, S., Wohnlich, S., & Gaye, C. B. (2004). An assessment of the risk associated with urban development in the Thiaroye area (Senegal). Environmental Geology, 45, 312–322.

    Article  Google Scholar 

  • Freeze, A. R., & Cherry, J. A. (1979). Groundwater (p. 604). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gangai, I. P. D., & Ramachandran, S. (2010). The role of spatial planning in coastal management: A case study of Tuticorin coast (India). Land Use Policy, 27, 518–534.

    Article  Google Scholar 

  • Ghabayen, S. M. S., McKee, M., & Kemblowski, M. (2006). Identification of salinity sources and missing data in the Gaza aquifer. Journal of Hydrology, 318, 360–373.

    Article  Google Scholar 

  • Gupta, S., Mahato, A., Roy, P., & Datta, J. K. (2008). Geochemistry of groundwater, Burdwan District, West Bengal, India. Environmental Geology, 53, 1271–1282.

    Article  CAS  Google Scholar 

  • Hajrasuliha, S., Cassel, D. K., & Rezainejad, Y. (1991). Estimation of chloride ion concentration in saline soils from measurement of electrical conductivity from saturated soil extracts. Geoderma, 49, 117–127.

    Article  CAS  Google Scholar 

  • Han, K. E., & Shin, H. S. (2000). The study of high chloride in the coastal area of Cheju island. Symposium on Assessment. Prediction and Prevention of Geohazard, 150–171.

  • Haris, H. K., Khan, Arina, Ahmed, Shakeel, & Perrin, Jerome. (2008). GIS-based impact assessment of land-use changes on groundwater quality: Study from a rapidly urbanizing region of South India. Environmental Earth Sciences,. doi:10.1007/s12665-010-0801-2.

    Google Scholar 

  • Hem J. D. (1985). Study and interpretation of the chemical characteristics of natural water. US Geological Survey Water Supply Paper 2254.

  • Herczeg, A. L., & Lyons, W. B. (1991). A chemical model for the evolution of Australian sodium chloride lake brines. Palaeogeography, Palaeoclimatology, 84, 43–53.

    Article  Google Scholar 

  • Jeen, S. K., Kim, J. M., Ko, K. S., Yum, B., & Chang, H. W. (2001). Hydrogeochemical characteristics of groundwater in a mid-western coastal aquifer system, Korea. Geosciences Journal, 5, 339–348.

    Article  Google Scholar 

  • Jones, B. F., Vengosh, A., Rosenthal, E., & Yechieli, Y. (1999). Geochemical investigation of groundwater quality. Seawater intrusion in coastal aquifers-concepts, methods and practices (pp. 51–71). Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Kim, J. O., & Mueller, C. W. (1987). Introduction to factor analysis: What it is and how to do it, quantitative applications in the social sciences series. Newbury Park: Sage University Press.

    Google Scholar 

  • Kim, Y., Lee, K.-S., Koh, D.-C., Lee, D.-H., Lee, S.-G., Park, W.-B., et al. (2003). Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: A case study in Jeju volcanic island, Korea. Journal of Hydrology, 270, 282–294.

    Article  CAS  Google Scholar 

  • Knudson, E. J., Duewer, D. L., Christian, G. D., & Larson, T. V. (1977). Application of factor analysis to the study of rain chemistry in the Puget Sound region. In B. R. Kowalski (Ed.), Chemometric: Theory and application (pp. 80–116). Washington, DC: ACS Symposium Series.

    Chapter  Google Scholar 

  • Koh, K. W., Yoon, S., Yoon, J. S., Park, W. B., Hahn, J. S., Kim N. J., & Jung, G. W. (1993). Characteristics of groundwater yield in Cheju Island. 48th Symposium Journal of Geolical Socity., Korea, 48.

  • Kumar, M., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi. India Environ geology, 50, 1025–1039.

    Article  CAS  Google Scholar 

  • Lambrakis, N., & Kallergis, G. (2005). Contribution to the study of Greek thermal springs: Hydrogeological and hydrochemical characteristics and origin of thermal waters. Hydrogeology Journal, 13(3), 506–521.

    Article  CAS  Google Scholar 

  • Last, W. M. (1990). Lacustrine dolomite-an overview of modern, Holocene, and Pleistocene occurrences. Earth-Science Reviews, 27, 221–263.

    Article  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a black foot disease area in Taiwan. Science of the Total Environment, 313, 77–89.

    Article  CAS  Google Scholar 

  • Long, D. T., Fegan, N. E., Lyons, W. B., Hines, M. E., Macumber, P. G., & Giblin, A. M. (1992). Geochemistry of acid brines: Lake Tyrrell, Victoria, Australia. Chemical Geology, 96, 33–52.

    Article  CAS  Google Scholar 

  • Lyons, W. B., Long, D. T., Hines, M. E., Gaudette, H. E., & Armstrong, P. B. (1984). Calcification of cyanobacterial mats in Solar Lake, Sinai. Geology, 12, 623–626.

    Article  CAS  Google Scholar 

  • Ma, J., Pan, F., Chen, L., Edmunds, W. M., Ding, Z., He, J., et al. (2010). Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China. Applied Geochemistry, 25(7), 996–1007.

    Article  CAS  Google Scholar 

  • Manikandan, S., Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Karmegam, U., Singaraja, C., Paramaguru, P., & Jainab I. (2012). A study on the high fluoride concentration in the magnesium-rich waters of hard rock aquifer in Krishnagiri district, Tamilnadu, India. Arabian Journal of Geosciences, doi:10.1007/s12517-012-0752-x.

  • Manimaran, B., Srinivasan, A., & Selvin, P. J. (2007). Ecological problems associated with the disposal of coolant water and ash pond effluent in the coastal waters of Tuticorin. Abstracts–Phmfrm’07, 96 pp.

  • Manivannan, R., Chidambaram, S., Anandhan, P., Karmegam, U., Singaraja, C., Johnsonbabu, G., et al. (2010). Study on the significance of temporal ion chemistry in groundwater of Dindigul District, Tamilnadu, India. E-Journal of Chemistry, 8(2), 938–944.

    Article  Google Scholar 

  • Martínez, D. E., & Bocanegra, E. M. (2002). Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina. Hydrogeology Journal, 10(3), 393–408.

    Article  Google Scholar 

  • Mercado, A. (1985). The use of hydrogeochemical patterns in carbonate sand and sandstone aquifers to identify intrusion and flushing of saline waters. Groundwater, 23(5), 635–645.

    Article  CAS  Google Scholar 

  • Metcalf., & Eddy Inc (2000). Integrated aquifer management plan. Final report. Gaza Coastal Aquifer Management Program, USAID Contract No. 294-C-00-99-00038-00.

  • Mondal, N. C., Singh, V. S., Saxena, V. K., & Prasad, R. K. (2008). Improvement of groundwater quality due to fresh water ingress in Potharlanka Island, Krishna delta, India. Environmental Geology, 55(3), 595–603.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, V. S., & Saxena, V. K. (2010). Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology, 388, 100–111.

    Article  CAS  Google Scholar 

  • Nas, B., & Berktay, A. (2008). Groundwater quality mapping in urban groundwater using GIS. Environmental Monitoring and Assessment, 160(1–4), 215–227.

    Google Scholar 

  • Njitchoua, R., Dever, I., Fontes, J., & Naoh, E. (1997). Geochemistry, origin and recharge mechanisms of groundwater from the Carona sandstone aquifer, Northern Cameroon. Journal of Hydrology, 190, 123–140.

    Article  CAS  Google Scholar 

  • Ozler, M. H. (2003). Hydrochemistry and salt-water intrusion in the Van aquifer, east Turkey. Environmental Geology, 43, 759–775.

    CAS  Google Scholar 

  • Panagopoulos, G., Lambrakis, N., Tsolis-Katagas, P., & Papoulis, D. (2004). Cation exchange processes and human activities in unconfined aquifers. Environmental Geology, 46, 542–552.

    Article  CAS  Google Scholar 

  • Pelc J. (1990). Gwelup groundwater scheme review. Water Authority of Western Australia Confidential Report WG115, 269 p.

  • Phienwej, N., Nitaramorn, A., Suwannakitti, R., Areepitak, C., & Prapphal, K. (2006). Rock Tunnelling at Lam Ta Khong Pumped Storage project, Thailand Proceedings of international symposium on tunnelling and underground excavations. Urban Tunnelling for Better Environment.

  • Piper, A. M. (1953). A graphic procedure I the geo-chemical interpretation of water analysis, USGS Groundwater Note no, 12.

  • Polido-Le boeuf, P. (2004). Seawater intrusion and associated processes in a small coastal complex aquifer (Castell de Ferro, Spain). Applied Geochemistry, 19, 1517–1527.

    Article  Google Scholar 

  • Porter, Donovan, Roychoudhury, A. N., & Cowan., D. (2007). Dissimilatory sulfate reduction in hypersaline coastal pans: Activity across a salinity gradient. Geochimica et Cosmochimica Acta, 71, 5102–5116.

    Article  CAS  Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Pethaperumal, S., Srinivasamoorthy, K., John Peter, A., Anandhan, P., et al. (2008). Integrated geophysical and chemical study in the lower subbasin of Gadilam River, Tamilnadu, India. Environmental Geosciences, 15(4), 145–152.

    Article  Google Scholar 

  • Psychoyou, M., Mimides, T., Rizos, S., & Sgoubopoulou, A. (2007). Groundwater hydrochemistry at Balkan coastal plains: The case of Marathon of Attica, Greece. Desalination, 213, 230–237.

    Article  CAS  Google Scholar 

  • Rajmohan, N., Elango, L., & Elampooranam, T. (1997). Seasonal and spatial variation in magnesium and chloride concentration in groundwaters of Nagai Quaid E Milleth District in Tamil Nadu. Indian Journal of Environmental Protection, 17(6), 448–453.

    CAS  Google Scholar 

  • Ramanathan A. L. (1992). Geochemical studies in the Cauvery river basin. Ph.D thesis, Punjab University, Chandigarh.

  • Ram, B., & Kolarkar, A. S. (1993). Remote sensing application in monitoring land use changes in arid Rajasthan. International Journal of Remote Sensing, 14(17), 3191–3200.

  • Ramesh, R., & Anbu, M. (1996). Chemical methods for environmental analysis- water and sediments, 161.

  • Ramkumar, T., Venkatramanan, S., Anitha Mary, I., Tamilselvi, M., & Ramesh, G. (2010). Hydrogeochemical quality of groundwater in Vedaraniyam Town, TamilNadu, India. Research Journal of Environmental and Earth Sciences, 2(1), 44–48.

    CAS  Google Scholar 

  • Sanchez Martos, F., Pulido Bosch, A., Molina Sanchez, L., & Vallejos Izquierdo, A. (2002). Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). Science of the Total Environment, 297, 43–58.

    Article  CAS  Google Scholar 

  • Saxena, V. K., Mondal, N. C., & Singh, V. S. (2004). Identification of seawater ingress using Sr and B in Krishna delta. Current Science India, 86(4), 586–590.

    CAS  Google Scholar 

  • Selvin Pitchaikani, J., Ananthan, G., & Sudhakar, M. (2010). Studies on the effect of coolant water effluent of tuticorin thermal power station on hydro biological characteristics of Tuticorin Coastal Waters, South East Coast of India. Current Research Journal of Biological Sciences, 2(2), 118–123.

    CAS  Google Scholar 

  • Seto, K. C., Woodcock, C. E., Song, C., Huang, X., Lu, J., & Kaufmann, R. K. (2002). Monitoring land use change in the Pearl River Delta using Landsat TM. International Journal of Remote Sensing, 23(10), 1985–2004.

    Article  Google Scholar 

  • Singaraja, C. (2011). Impact of tidal variation in shallow coastal groundwater of cuddalore district. unpublished M.Phil, thesis, 1–147. Department of Geology, Annamalai University.

  • Singaraja, C., Chidambaram, S., Anandhan, P., Prasann, M. V., Thivya, C., & Thilagavathi, R. (2012a). A study on the status of fluoride ion in groundwater of coastal hard rock aquifers of south India. Arabian Journal of Geosciences, 6, 4167–4177. doi:10.1007/s12517-012-0675-6.

    Article  Google Scholar 

  • Singaraja, C., Chidambaram, S., Anandhan, P., Prasann, M. V., Thivya, C., Thilagavathi, R., et al. (2014). Geochemical evaluation of fluoride contamination of groundwater in the Thoothukudi District of Tamilnadu, India. Applied Water Sciences,. doi:10.1007/s13201-014-0157-y.

    Google Scholar 

  • Singaraja, C., Chidambaram, S., Anandhan, P., Prasanna, M. V., Thivya, C., Thilagavathi, R., & Sarathidasan, J. (2013a). Hydrochemistry of groundwater in a coastal region and its repercussion on quality, a case study- Thoothukudi district, tamilnadu, India. Arabian Journal of Geosciences, doi:10.1007/s12517-012-0794-0.

  • Singaraja, C., Chidambaram, S., Anandhan, P., Prasanna, M. V., Thivya, C., Thilagavathi, R., et al. (2013b). Determination of the utility of groundwater with respect to the geochemical parameters: A case study from Tuticorin District of Tamil Nadu (India). Environment, Development and Sustainability,. doi:10.1007/s10668-013-9502-9.

    Google Scholar 

  • Singaraja, C., Chidambaram, S., Prasanna, M. V., Paramaguru, P., Johnsonbabu, T. C., & Thilagavathi, R. (2012b). A study on the behavior of the dissolved oxygen in the shallow coastal wells of Cuddalore District, Tamilnadu, India. Water Quality, Exposure and Health, 4(1), 1–16. doi:10.1007/s12403-011-0058-3.

    Article  CAS  Google Scholar 

  • Singaraja, C., Chidambaram, S., Prasanna, M. V., Thivya, C., & Thilagavathi R. (2013b). Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu, India. Environmental Earth Sciences, doi:10.1007/s12665-013-2453-5.

  • Singaraja, C., Chidambaram, S., Prasanna, M. V., Thivya, C., & Thilagavathi, R. (2013d). Appraisal of water quality pollution Indices for heavy metal contamination monitoring: A case study from Thoothukudi Districts, Tamilnadu, India. Inventi Rapid: Water & Environment, 4, 1–5.

    Google Scholar 

  • Smith, S. J., Andres, R., Conception, E., & Lurz, J. (2004). Sulfur Dioxide Emissions: 1850–2000 (JGCRI Report. PNNL-14537).

  • Soares dos Santos, J., Oliveira, E., Bruns, R. E., & Gennari, R. F. (2004). Evaluation of the salt accumulation process during inundation in water resource of Contas river basin (Bahia–Brasil) applying principal component analysis. Water Research, 38, 1579–1585.

    Article  CAS  Google Scholar 

  • Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., & Anandhan, P. (2007). Control of rock weathering on the chemical composition of groundwater in Salem District, Tamilnadu, India. International Journal of Physics Sciences, 19(3), 367–378.

    CAS  Google Scholar 

  • Srinivasamoorthy, K., Vasanthavigar, V., Chidambaram, S., Anandhan, P., & Sarma, V. S. (2011). Characterisation of groundwater chemistry in an Eastern Coastal Area of Cuddalore District, Tamil Nadu. Journal of Geological Society of India, 78, 549–558.

    Article  CAS  Google Scholar 

  • Stoessell, R. K., Ward, W. C., Ford, B. H., & Schuttert, J. D. (1989). Water chemistry and CaCO3 dissolution in the saline portion of an open-flow mixing zone, coastal Yucatan peninsula, Mexico. Geological Society of America Bulletin, 101, 159–169.

    Article  CAS  Google Scholar 

  • Suresh, K., Ahamed, M. S., Durairaj, G., & Nair, K. V. K. (1993). Impact of power plant heated effluent on the abundance of sedimentary organisms, off Kalpakkam, East Coast India. Hydrobiology, 268, 109–114.

    Article  Google Scholar 

  • Thilagavathi, R., Chidambaram, S., Prasanna, M. V., Thivya, C., Singaraja, C., & Jainab, I. (2012). A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Applied Water Science, 2, 253–269. doi:10.1007/s13201-012-0045-2.

    Article  CAS  Google Scholar 

  • Thivya, C., Chidambaram, S., Singaraja, C., Thilagavathi, R., Prasanna, M. V., & Jainab., I. (2013a). A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environment, Development and Sustainability, 15, 1365–1387. doi:10.1007/s10668-013-9439-z.

    Article  Google Scholar 

  • Thivya, C., Chidambaram, S., Thilagavathi, R., Prasanna, M. V., Singaraja, C., & Nepolian, M. (2013b). Identification of the geochemical processes in groundwater by factor analysis in hard rock aquifers of Madurai District, South India. Arabian Journal of Geosciences, doi:10.1007/s12517-013-1065-4.

  • Todd, D. K. (1959). Groundwater hydrology. New York: Wiley.

    Google Scholar 

  • Vandenbohede, A., Courtens, C., & William de Breuck, L. (2010). Fresh- salt water distribution in the central Belgian coastal plain: An update. Geologica Belgica, 11(3), 163–172.

    Google Scholar 

  • Vengosh, A., & Ben-Zvi, A. (1994). Formation of a salt plume in the coastal plain aquifer of Israel: The Be’er Toviyya region. Journal of Hydrology, 160, 21–52.

    Article  Google Scholar 

  • Vengosh, A., Gill, J., Davisson, M. L., & Hudson, G. B. (2002). A multiisotope (B, Sr, O, H, and C) and age dating study of groundwater from Salinas Valley, California: hydrochemistry, dynamics, and contamination process. Water Resources Research, 38(1), 1–17.

    Article  Google Scholar 

  • Vengosh, A., Heumann, K. G., Juraski, S., & Kasher, R. (1994). Boron isotope application for tracing sources of contamination in groundwater. Environmental Science Technology, 28(11), 1968–1974.

    Article  CAS  Google Scholar 

  • Vengosh, A., & Rosenthal, E. (1994). Saline groundwater in Israel: Its bearing on the water crisis in the country. Journal of Hydrology, 156, 389–430.

    Article  CAS  Google Scholar 

  • Vengosh, A., Starinsky, A., Melloul, A., Fink, M., & Erlich, S. (1991). Salinization of the coastal aquifer water by Ca-chloride solutions at the interface zone, along the Coastal Plain of Israel. Jerusalem: Hydrological Service.

    Google Scholar 

  • White, A. F., Bullen, T. D., Schulz, M. S., Blum, A. E., Huntington, T. G., & Peters, N. E. (2001). Differential rates of feldspar weathering in granitic regoliths. Geochimica et Cosmochimica Acta, 65, 847–869.

    Article  CAS  Google Scholar 

  • WHO. (1993). Guidelines for drinking water quality. vol 1, recommendations, 2nd edn. WHO, Geneva, 130.

  • WHO. (2004). Guidelines for drinking water quality recommendations, Geneva: WHO. Vol 1.

  • Wilcox, L.V. (1955). Classification and use of irrigation water. U.S. Geological Department Agri Circ, v.969, 19 p.

  • Yoon, J. S. (1986). The factors of saline groundwater in the east area of Cheju Island. Chejudo Research, 3, 43–53.

    Google Scholar 

  • Zilberbrand, M., Rosenthal, E., & Shachnai, E. (2001). Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel. Journal of Contaminant Hydrology, 50, 175–208.

    Article  CAS  Google Scholar 

  • Zouhri, L., Carlier, E., Ben Kabbour, B., Toto, E. A., Gorini, C., & Louche, B. (2008). Groundwater interaction in the coastal environment: hydrochemical, electrical and seismic approaches. Bulletin of Engineering Geology and the Environment, 67, 123–128.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Singaraja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singaraja, C., Chidambaram, S., Anandhan, P. et al. A study on the status of saltwater intrusion in the coastal hard rock aquifer of South India. Environ Dev Sustain 17, 443–475 (2015). https://doi.org/10.1007/s10668-014-9554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-014-9554-5

Keywords

Navigation