Skip to main content

Advertisement

Log in

Progression of Greenway Corridors Through Conflict: Cellular Automata Simulation and AHP Evaluation

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Much of the land transformation responsible for fragmentation of open landscapes occurs in rural and rural–urban fringe regions. Greenways provide connectivity between core open landscapes in these regions, sustaining natural ecosystems and preserving traditional, recreational, and visual functionalities. Developing such greenways, however, involves growing dynamic conflicts with societal needs for housing, commerce, industrial, and transportation areas. A new cellular automata simulation algorithm is presented that allows to represent the dynamic interaction between inhibitory and encouraging factors affecting expansion and connectivity of green landscape zones. Routes of six corridor alternatives, connecting three main core nature areas in the development-threatened northern Israel, were delineated based on simulation results. These corridors were evaluated using a new method based on the analytic hierarchy process that considers the direction of influence, positive or negative, of certain criteria when computing the corridors’ scores and implements attitudes of two expert groups — pragmatists and idealists — in these evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be available upon reasonable request.

Code Availability

Not applicable.

References

  1. Chakraborty, S., Maity, I., Dadashpoor, H., Novotny, J., & Banerji, S. (2022). Building in or out? Examining urban expansion patters and land use efficiency across the global sample of 466 cities with million+ inhabitants. Habitat International, 120.

  2. Angel, S., Parent, J., Civco, D. L., Blei, A., & Potere, D. (2021). The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Progress in Plan, 75(2), 53–107.

    Article  Google Scholar 

  3. Heilig, G. K. (1994). Neglected dimensions of global land-use change: reflections and data. Population Manage Review, 20(4), 831–859.

    Article  Google Scholar 

  4. Meyer, W. B., & Turner, B. L. (1992). Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 23, 39–61.

    Article  Google Scholar 

  5. World Population Prospects. (2022). World Population (2020 and historical). United Nations, Department of Economic and Social Affairs, Population Division. Retrieved October 24, 2022, from https://www.worldometers.info/world-population/#pastfuture

  6. Schiavina, M., Melchiorri, M., Pesaresi, M., Politis, P., Carneiro Freire, S. M., Maffenini, L., Florio, P., Ehrlich, D., Goch, K., Tommasi, P., & Kemper, T. (2022). GHSL data package 2022. Luxembourg: Publications Office of the European Union.

    Google Scholar 

  7. Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang, S., Li, R., Yan, C., Wu, S., Shi, X., Jiang, N., Yu, D., Pan, X., & Chi, W. (2014). Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. Journal of Geographical Sciences, 24, 195–210.

    Article  Google Scholar 

  8. Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12.

  9. Ritchie, H. (2021). Global deforestation peaked in the 1980s, Can we bring it to an end? Our World in Data: Forest and Deforestation. Retrieved October 24, 2022, from https://ourworldindata.org/global-deforestation-peak

  10. Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A., & Seto, K. C. (2020). Trends in urban land expansion, density, and land transitions from 1970 to 2010: a global synthesis. Environmental Research Letters, 15(3).

  11. Potapov, P., Hansen, M. C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X.-P., Baggett, A., Kommareddy, I., & Kommareddy, A. (2022). The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: first results. Frontiers in Remote Sensing, 3.

  12. Hu, X., Naess, J. S., Iordan, C. M., Huang, B., Zhao, W., & Cherubini, F. (2021). Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation. Anthropocene, 34.

  13. Bringezu, S., Schütz, H., Pengue, W., O´Brien, M., Garcia, F., Sims, R., Howarth, R. W., Kauppi, L., Swilling, M., & Herrick, J. (2014). Assessing global land use: Balancing consumption with sustainable supply. United Nations Environment Programme, Division of Technology Industry and Economics, Paris, France (ISBN: 978-92-807-3330-3).

  14. Ahern, J. (1991). Planning for an extensive open space system: Linking landscape structure and function. Landscape and Urban Planning, 21(1–2), 131–145.

    Article  Google Scholar 

  15. Jongman, R. H. G., Bouwma, I. M., & Doorn, A. M. van (2006). The indicative map of the pan-European ecological network in Western Europe: Technical background report. Research Report Alterra 1429, Wageningen University, the Netherlands. Retrieved October 24, 2022, from https://library.wur.nl/WebQuery/wurpubs/reports/353408

  16. Bennett, G., & Mulongoy, K. J. (2006). Review of experience with ecological networks, corridors and buffer zones. Montreal, Canada: Secretariat of the Convention on Biological Diversity.

    Google Scholar 

  17. Jongman, R. H. G. (1995). Nature conservation planning in Europe: Developing ecological networks. Landscape and Urban Planning, 32(3), 169–183.

    Article  Google Scholar 

  18. Jongman, R. H. G., Külvik, M., & Kristiansen, I. (2004). European ecological networks and greenways. Landscape and Urban Planning, 68(2–3), 305–319.

    Article  Google Scholar 

  19. Wilson, M. B., & Belote, R. T. (2022). The value of trail corridors for bold conservation planning. Land, 11(3).

  20. Isola, F., Leone, F., & Zoppi, C. (2022). Mapping of ecological corridors as connections between protected areas: a study concerning Sardinia, Italy. Sustainability, 14(11).

  21. Tian, M., Chen, X., Gao, J., & Tian, Y. (2022). Identifying ecological corridors for the Chinese ecological conservation redline. PloS One, 17(7).

  22. Melicher, J., & Spulerova, J. (2022). Application of landscape-ecological approach for greenways planning in rural agricultural landscape. Environments, 9(2).

  23. Ndubisi, F., DeMeo, T., & Ditto, N. D. (1995). Environmentally sensitive areas: A template for developing greenway corridors. Landscape and Urban Planning, 33(1–3), 159–177.

    Article  Google Scholar 

  24. Neelakantan, A., DeFries, R., & Krishnamurthy, R. (2019). Resettlement and landscape-level conservation: Corridors, human-wildlife conflict, and forest use in Central India. Biological Conservation, 232, 142–151.

    Article  Google Scholar 

  25. Lai, Y., Huang, G., Chen, S., Lin, S., Lin, W., & Lyu, J. (2021). Land use dynamics and optimization from 2000 to 2020 in East Guangdong Province, China. Sustainability, 13(6).

  26. Williams, J. C. (1998). Delineating protected wildlife corridors with multi-objective programming. Environmental Modeling and Assessment, 3, 77–86.

    Article  Google Scholar 

  27. Pino, J., & Marull, J. (2012). Ecological networks: Are they enough for connectivity conservation? A case study in the Barcelona Metropolitan Region (NE Spain). Land Use Policy, 29(3), 684–690.

    Article  Google Scholar 

  28. McWilliam, W., Brown, R., Eagles, P., & Seasons, M. (2015). Evaluation of planning policy for protecting green infrastructure from loss and degradation due to residential encroachment. Land Use Policy, 47(4), 459–467.

    Article  Google Scholar 

  29. De Montis, A., Caschili, S., Mulas, M., Modica, G., Ganciu, A., Bardi, A., Leddam, A., Dessena, L., Laudari, L., & Fichera, C. R. (2016). Urban-rural ecological networks for landscape planning. Land Use Policy, 50, 312–327.

    Article  Google Scholar 

  30. de Oliveira, S., Junior, C., & de, O. A., Gomes, R. A. T., Guimaraes, R. F., & McManus, C. M. (2017). Deforestation analysis in protected areas and scenario simulation for structural corridors in the agricultural frontier of Western Bahia, Brazil. Land Use Policy, 61, 40–52.

    Article  Google Scholar 

  31. Hong, W., Guo, R., Su, M., Tang, H., Chen, L., & Hu, W. (2017). Sensitivity evaluation and land-use control of urban ecological corridors: a case study of Shenzhen, China. Land Use Policy, 62, 316–325.

    Article  Google Scholar 

  32. Saaty, T. L., & De Paola, P. (2017). Rethinking design and urban planning for the cities of the future. Buildings, 7, 76.

    Article  Google Scholar 

  33. Schuch, G., Serrao-Neumann, S., Morgan, E., & Choy, D. L. (2017). Water in the city: Green open spaces, land use planning and flood management – An Australian case study. Land Use Policy, 53, 539–550.

    Article  Google Scholar 

  34. Bircol, G. A. C., Souza, M. P., de Souza, M. P., Fontes, A. T., Chiarello, A. G., & Ranieri, V. E. L. (2018). Planning by the rules: A fair chance for the environment in a land-use conflict area. Land Use Policy, 76, 103–112.

    Article  Google Scholar 

  35. de la Fuente, B., Mateo-Sanchez, M. C., Rodriguez, G., Gaston, A., de Ayala, R. P., Colomina-Pérez, D., Malero, M., & Saura, S. (2018). Natura 2000 sites, public forests and riparian corridors: The connectivity backbone of forest green infrastructure. Land Use Policy, 75, 429–441.

    Article  Google Scholar 

  36. Balta, M. Ö., & Yenil, H. Ü. (2019). Multi criteria decision making methods for urban greenway: the case of Aksaray, Turkey. Land Use Policy, 89,

  37. Shapira, A., & Simcha, M. (2009). AHP-based weighting of factors affecting safety on construction sites with tower cranes. Journal of Construction Engineering and Management, 135(4), 307–318.

    Article  Google Scholar 

  38. Alwaer, H., & Clements-Croome, D. J. (2010). Key performance indicators (KPIs) and priority setting in using the multi-attribute approach for assessing sustainable intelligent buildings. Building and Environment, 45(4), 799–807.

    Article  Google Scholar 

  39. Opher, T., Shapira, A., & Friedler, E. (2018). A comparative social life cycle assessment of urban domestic water reuse alternatives. The International Journal of Life Cycle Assessment, 23(6), 1315–1330.

    Article  Google Scholar 

  40. Rovelli, R., Senes, G., Fumagalli, N., Sacco, J., & De Montis, A. (2020). From railways to greenways: a complex index for supporting policymaking and planning. A case study in Piedmont (Italy). Land Use Policy, 99.

  41. Gompf, K., Traverso, M., & Hetterich, J. (2021). Using analytical hierarchy process (AHP) to introduce weights to social life cycle assessment of mobility services. Sustainability, 13(3), 1258.

    Article  Google Scholar 

  42. Sandeep, P., Reddy, G. P. O., Jegankumar, R., & Kumar, K. C. A. (2021). Modeling and assessment of land degradation vulnerability in semi-arid ecosystem of Southern India using temporal satellite data, AHP and GIS. Environmental Modeling and Assessment, 26, 143–154.

    Article  Google Scholar 

  43. Assumma, V., Bottero, M., Ishizaka, A., & Tasiou, M. (2021). Group analytic hierarchy process sorting II method: an application to evaluate the economic value of a wine region landscape. Environmental Modeling and Assessment, 26, 355–369.

    Article  Google Scholar 

  44. Shapira, A., Shoshany, M., & Nir-Goldenberg, S. (2013). Combining analytical hierarchy process and agglomerative hierarchical clustering in search of expert consensus in green corridors development management. Environmental Management, 52(1), 123–135.

    Article  Google Scholar 

  45. Shkedy, Y., & Sadot, E. (2000). Ecological corridors: A practical conservation tool. Science Division, Israel Nature and Parks Authority, Jerusalem (in Hebrew with abstract in English on p. 44). Retrieved April 13, 2023, from https://conservationcorridor.org/cpb/Shkedy-and-Sadot-2000.pdf

  46. Shkedy, Y., & Sadot, E. (2004). Wildlife crossings over roads: Policy and recommendations for action. Science Division, Israel Nature and Parks Authority, Jerusalem. Retrieved April 13, 2023, from https://conservationcorridor.org/cpb/Shekedi_and_Salot_2004.pdf

  47. Arbel, Y., Fialkoff, C., Kerner, A., & Kerner, M. (2022). Do population density, socio-economic ranking and Gini index of cities influence infection rates from coronavirus? Israel as a case study. Annals of Regional Science, 68, 181–206.

    Article  Google Scholar 

  48. Statistical Abstract of Israel. (2022). Israel in figures 2021. Central Bureau of Statistics, Jerusalem. Retrieved May 10, 2022, from https://www.cbs.gov.il/EN/pages/default.aspx

  49. Department of Landscape and Biodiversity. (2010). Israel’s national biodiversity plan. Policy and Planning Division, Ministry of Environmental Protection, Jerusalem. Retrieved April 13, 2023, from https://www.gov.il/BlobFolder/reports/israel_biodiversity_national_plan/en/biodiversity_natl_biodiversity_plan_2010_eng.pdf

  50. Shoshany, M., & Goldshleger, N. (2002). Land-use and population density changes in Israel—1950 to 1990: Analysis of regional and local trends. Land Use Policy, 19(2), 123–133.

    Article  Google Scholar 

  51. Orenstein, D. E., & Hamburg, S. P. (2010). Population and pavement: Population growth and land development in Israel. Population and Environment, 31(4), 223–254.

    Article  Google Scholar 

  52. Troupin, D., & Carmel, Y. (2014). Can agro-ecosystems efficiently complement protected area networks? Biological Conservation, 169, 158–166.

    Article  Google Scholar 

  53. Carmi, N., & Tal, A. (2019). The perceived relationship between population growth and current ecological problems using repertory grid technique. Human & Ecological Risk Assessment, 25(7), 1773–1788.

    Article  CAS  Google Scholar 

  54. Maruani, T. (2011). The role of courts in open space conservation: Lessons from the Israeli experience. Landscape and Urban Planning, 100(4), 364–368.

    Article  Google Scholar 

  55. Khamaisi, R. (2013). Housing transformation within urbanized communities: The Arab Palestinians in Israel. Geography Research Forum, 33, 189–209.

    Google Scholar 

  56. Baruch, U. (1986). The late holocene vegetational history of Lake Kinneret (Sea of Galilee), Israel. Paléorient, 12(2), 37–48.

    Article  Google Scholar 

  57. Carmel, Y., & Kadmon, R. (1999). Effects of grazing and topography on long-term vegetation changes in a Mediterranean ecosystem in Israel. Plant Ecology, 145(2), 243–254.

    Article  Google Scholar 

  58. Naveh, Z. (1975). The evolutionary significance of fire in the Mediterranean region. Vegetatio, 29(3), 199–208.

    Article  Google Scholar 

  59. Israel Planning Administration (IPA). (1995). National outline plan for forests and afforestation (NOP 22). Ministry of Interior, Jerusalem. Retrieved April 13, 2023, from https://faolex.fao.org/docs/pdf/isr201849E.pdf

  60. Cohen, Y., Amit-Cohen, I., Cohen, A., & Shoshany, M. (2009). Least cost path for green corridors delineation in metropolitan margins: the distance weighting effects. Journal of Spatial Science, 54(1), 63–87.

    Article  Google Scholar 

  61. Matisziw, T. C., Alam, M., Trauth, K. M., Inniss, E. C., Semlitsch, R. D., McIntosh, S., & Horton, J. (2015). A vector approach for modeling landscape corridors and habitat connectivity. Environmental Modeling and Assessment, 20, 1–16.

    Article  Google Scholar 

  62. Rothley, K. D., & Rae, C. (2005). Working backwards to move forwards: graph-based connectivity metrics for reserve network selection. Environmental Modeling and Assessment, 10, 107–113.

    Article  Google Scholar 

  63. Zhang, X., & Armstrong, M. P. (2008). Genetic algorithms and the corridor location problem: Multiple objectives and alternative solutions. Environment and Planning. B, Planning & Design, 35(1), 148–168.

    Article  CAS  Google Scholar 

  64. Torrens, P. (2006). Simulating sprawl. Ann Assoc Am Geogr, 96(2), 248–275.

    Article  Google Scholar 

  65. Nugroho, F., & Al-Sanjary, O. I. (2018). A review of simulation urban growth model. International Journal of Engineering Technologies, 7(4.11), 17–23.

    Google Scholar 

  66. Benguigui, L., Blumenfeld-Lieberthal, E., & Czamanski, D. (2006). The dynamics of the Tel Aviv morphology. Environment and Planning. B, Planning & Design, 33(2), 269–284.

    Article  Google Scholar 

  67. Rui, Y., & Ban, Y. (2010). Multi-agent for modeling urban sprawl in the Greater Toronto area. In Proceeding 13th AGILE International Conference on Geographic Information Science, Guimarães, Portugalhttps://agile-online.org/images/conferences/2010/documents/shortpapers_pdf/124_doc.pdf

  68. Meentemeyer, R. K., Tang, W., Dorning, M. A., Vogler, J. B., Cunniffe, N. J., & Shoemaker, D. A. (2013). FUTURES: Multilevel simulations of emerging urban-rural landscape structure using a stochastic path-growing algorithm. Annals of the Association of American Geographers, 103(4), 785–807.

    Article  Google Scholar 

  69. Petrasova, A., Petras, V., Van Berkel, D., Harmon, B. A., Mitasova, H., & Meentemeyer, R. K. (2016). Open source approach to urban growth simulation. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B7, 953–959.

  70. Silva, C. A., Giannotti, M., & de Almeida, C. M. (2020). Dynamic modeling to support an integrated analysis among land use change, accessibility and gentrification. Land Use Policy, 99, 104992.

  71. Aldogom, D., Aburaed, N., Al-Saad, M., Al Mansoori, S., Al Shamsi, M.R., & Al Maazmi, A. A. (2019). Multi temporal satellite images for growth detection and urban sprawl analysis; Dubai City, UAE. Proceeding SPIE Vol. 11157, Remote Sensing Technologies and Applications in Urban Environments IV, Strasbourg, France.

  72. Perkl, R., Norman, L. M., Mitchell, D., et al. (2019). Urban growth and landscape connectivity threats assessment at Saguaro National Park, Arizona, USA. Journal of Land Use Science, 13(1–2), 102–117.

    Google Scholar 

  73. ERDAS. (1999). ERDAS field guide, 5th edition. ERDAS, Inc., Atlanta, Ga. Retrieved May 10, 2022, from https://eclass.uoa.gr/modules/document/file.php/GEOL130/ERDAS_FieldGuide.pdf

  74. Kaplan, M. (2019). Ecological corridors in Israel: planning aspects. Ecology & Environment, 10(1), 16–23.

    Google Scholar 

  75. Shoshany, M. (2002). Landscape fragmentation and soil cover changes on south- and north-facing slopes during ecosystems recovery: an analysis from multi-date air photographs. Geomorphology, 45(2), 3–20.

    Article  Google Scholar 

  76. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  77. Saaty, T. L., & Peniwati, K. (2008). Group decision making: Drawing out and Reconciling differences. Pittsburgh: RWS.

    Google Scholar 

  78. Shapira, A., & Goldenberg, M. (2005). AHP-based equipment selection model for construction projects. Journal of Construction Engineering and Management, 131(12), 1263–1273.

    Article  Google Scholar 

  79. Dyer, R. F., & Forman, E. H. (1983). Group decision support with the analytic hierarchy process. Decision Support Systems, 8, 99–124.

    Article  Google Scholar 

  80. Shapira, A., & Simcha, M. (2009). Measurement and risk scales of crane-related safety factors on construction sites. Journal of Construction Engineering and Management, 135(10), 979–989.

    Article  Google Scholar 

  81. Hansen, R., & Pauleit, S. (2014). From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas. Ambio, 43, 516–529.

    Article  Google Scholar 

  82. Naidoo, R., Kilian, J. W., Du Preez, P., et al. (2018). Evaluating the effectiveness of local- and original-scale wildlife corridors using quantitative metrics of functional connectivity. Biological Conservation, 217, 96–103.

    Article  Google Scholar 

  83. Beita, C. M., Murillo, L. F. S., & Alvarado, L. D. A. (2021). Ecological corridors in Costa Rica: an evaluation applying landscape structure, fragmentation-connectivity process, and climate adaptation. Conservation Science & Practice, 3(8).

  84. Pinto, N., & Keitt, T. H. (2009). Beyond the least-cost path: Evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology, 24, 253–266.

    Article  Google Scholar 

  85. Cohen, Y. (2002). Green corridors in central Israel: A GIS analysis of alternative spatial configurations. Geography Research Forum, 22, 110–135.

    Google Scholar 

  86. Saaty, T. L. (2005). Making and validating complex decisions with the AHP/ANP. Journal of Systems Science and Systems Engineering, 14(1), 1–36.

    Article  Google Scholar 

  87. Whitaker, R. (2007). Validating examples of the analytic hierarchy process and analytic network process. Journal Mathematical & Computer Modelling, 46, 840–859.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design, methodology, interpretation of data and conclusions, writing the original draft, and supervision: MS and AS. Material preparation and data collection: MS and SNG. Analysis and computation: MS, AS and SNG. Revision and editing: MS, AS and PDP. Final review and approval for submission: MS, AS, SNG and PDP.

Corresponding author

Correspondence to Aviad Shapira.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoshany, M., Shapira, A., Nir-Goldenberg, S. et al. Progression of Greenway Corridors Through Conflict: Cellular Automata Simulation and AHP Evaluation. Environ Model Assess 28, 519–533 (2023). https://doi.org/10.1007/s10666-023-09901-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-023-09901-5

Keywords

Navigation