Skip to main content

Advertisement

Log in

Impacts of Sea Level Rise on Seawater Intrusion in Cubatão River, Brazil

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Estuarine systems are very sensitive environments to sea level rise as a consequence of climate changes, which can enhance seawater intrusion and affect multiple water uses. The seawater intrusion under sea level scenarios in an estuarine river by applying the one-dimensional hydrodynamic and water quality model HEC-RAS 5.0.5 was studied. The study was carried out at the estuarine reach of Cubatão River, in São Paulo, Brazil. Considering sea level rise scenarios of ΔH = 0.25 m, 0.50 m, and 1.0 m combined with constant freshwater discharge conditions for Cubatão River (16 m3/s, mean annual discharge and 8 m3/s, dry season discharge), the model results showed that seawater intrusion moves significantly upstream the river in all cases and the maximum seawater intrusion length may reach 10 km in the worst scenario (ΔH = 1.0 m and 8 m3/s freshwater discharge), 70% higher than the current sea level and the mean discharge. At the local water abstraction point for urban supply, salinity concentration may reach 12 g/kg, making conventional water treatment unfeasible. Sea level rise may threaten water supply facilities and require water resource management solutions, such as water abstraction restricted times when salinity concentration is low; higher freshwater reservation; new water abstraction locations, farther the present ones; or higher water discharges in Cubatão River from a local hydroelectric power plant, which can cause water resource management conflicts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jeong, S., Yeon, K., Hur, Y., & Oh, K. (2010). Salinity intrusion characteristics analysis using EFDC model in the downstream of Geum River. Journal of Environmental Sciences. The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, 22(6), 934–939. https://doi.org/10.1016/S1001-0742(09)60201-1.

    Article  Google Scholar 

  2. Bhuiyan, M. J. A. N., & Dutta, D. (2012). Assessing impacts of sea level rise on river salinity in the Gorai river network, Bangladesh. Estuarine, Coastal and Shelf Science, 96(1), 219–227. https://doi.org/10.1016/j.ecss.2011.11.005.

    Article  CAS  Google Scholar 

  3. Alfredini, P., & Arasaki, E. (2013). Engenharia Portuária (2nd ed.). São Paulo: Edgard Blucher.

    Google Scholar 

  4. Rich, V. I., & Maier, R. M. (2015). (2015). Aquatic Environments. In I. L. Pepper, C. P. Gerba, & T. J. Gentry (Eds.), Environmental microbiology (3rd. ed., pp. 111–138). London: Elsevier Inc..

    Chapter  Google Scholar 

  5. Vargas, C. I. C., Vaz, N., & Dias, J. M. (2017). An evaluation of climate change effects in estuarine salinity patterns: application to Ria de Aveiro shallow water system. Estuarine, Coastal and Shelf Science, 189, 33–45. https://doi.org/10.1016/j.ecss.2017.03.001.

    Article  Google Scholar 

  6. Wang, J., Li, L., He, Z., Kalhoro, N. A., & Xu, D. (2019). Numerical modelling study of seawater intrusion in Indus River Estuary, Pakistan. Ocean Engineering, 184(November 2018), 74–84. https://doi.org/10.1016/j.oceaneng.2019.05.029.

    Article  Google Scholar 

  7. Wolanski, E., Day, J. W., Elliott, M., & Ramachandran, R. (2019). Coasts and estuaries: The future. Orxford: Elsevier.

    Google Scholar 

  8. Martin, J. L., & McCutcheon, S. C. (1999). Hydrodynamics and transport for water quality modeling. Lewis Publishers.

  9. Etemad-Shahidi, A., et al. (2015). Effects of sea level rise on the salinity of Bahmanshir estuary. International Journal of Environmental Science and Technology. Springer Berlin Heidelberg, 12(10), 3329–3340. https://doi.org/10.1007/s13762-015-0761-x.

    Article  CAS  Google Scholar 

  10. Haddout, S., Igouzal, M., & Maslouhi, A. (2016). Analytical and numerical study of the salinity intrusion in the Sebou river estuary (Morocco) - effect of the “Super Blood Moon” (total lunar eclipse) of 2015. Hydrology and Earth System Sciences, 20(9), 3923–3945. https://doi.org/10.5194/hess-20-3923-2016.

    Article  Google Scholar 

  11. Ji, Z.-G. (2017). Hydrodynamics and water quality. Modeling Rivers, Lakes and Estuaries. 2nd edn. John Wiley and Sons.

  12. de Miranda, L. B., de Castro, B. M., & Kjerfve, B. (2012). Princípios de Oceanografia Física de Estuários (2nd ed.). Edusp: Edited by L. B. de Miranda. São Paulo.

    Google Scholar 

  13. Prandle, D. (2009). Estuaries: Dynamics, Mixing, Sedimentation and Morphology New York: Cambridge University Press. https://doi.org/10.15713/ins.mmj.3.

  14. Chua, V. P. & Xu, M. (2014). Impacts of sea-level rise on estuarine circulation: an idealized estuary and San Francisco Bay Journal of Marine Systems. Elsevier B.V., 139, pp. 58–67. https://doi.org/10.1016/j.jmarsys.2014.05.012.

  15. Liu, W. C., & Liu, H. M. (2014). Assessing the impacts of sea level rise on salinity intrusion and transport time scales in a tidal estuary, Taiwan. Water (Switzerland), 6(2), 324–344. https://doi.org/10.3390/w6020324.

    Article  Google Scholar 

  16. Yang, Z., Wang, T., Voisin, N., & Copping, A. (2015). Estuarine response to river flow and sea-level rise under future climate change and human development. Estuarine, Coastal and Shelf Science. Elsevier Ltd, 156(1), 19–30. https://doi.org/10.1016/j.ecss.2014.08.015.

    Article  Google Scholar 

  17. Kuang, C., Chen, W., Gu, J., Su, T. C., Song, H., Ma, Y., & Dong, Z. (2017). River discharge contribution to sea-level rise in the Yangtze River Estuary, China. Continental Shelf Research. Elsevier, 134(December 2016), 63–75. https://doi.org/10.1016/j.csr.2017.01.004.

    Article  Google Scholar 

  18. Palmer, K., Watson, C. & Fischer, A. (2019). Non-linear interactions between sea-level rise, tides, and geomorphic change in the Tamar estuary, Australia. Estuarine, Coastal and Shelf Science. Elsevier, 225, p. 106247. https://doi.org/10.1016/j.ecss.2019.106247.

  19. IPCC. (2014). Climate change 2014. Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Edited by C. W. Team, R. K. Pachauri, and L. A. Meyer. Geneva: IPCC. https://doi.org/10.1017/CBO9781107415324.

  20. Chen, W., Chen, K., Kuang, C., Zhu, D. Z., He, L., Mao, X., Liang, H., & Song, H. (2016). Influence of sea level rise on saline water intrusion in the Yangtze River Estuary, China. Applied Ocean research, 54, 12–25. https://doi.org/10.1016/j.apor.2015.11.002.

    Article  Google Scholar 

  21. James, A. (1993). An Introduction to Water Quality Modelling. 2nd edn. Edited by A. James. Chichester: John Wiley and Sons.

  22. Chapra, S. (1997). Surface water-quality modeling (2nd ed.). McGraw-Hill.

  23. Saran, S. H., Rahman, A. and Yunus, A. (2018). Simulation of flow and salinity in Rupsha-Passur River system. Proceedings of the 4th International Conference on Civil Engineering for Sustainable Development (ICCESD 2018).

  24. Pinto, C. de S. (2005). Cubatão. História de uma cidade industrial. Edited by C. de S. Pinto. Cubatão.

  25. Couto, J. M. (2012). Industrialização, Meio Ambiente e Pobreza. O Caso do Município de Cubatão/SP. Maringá: Editora da Universidade Estadual de Maringá.

    Google Scholar 

  26. Fundação Centro Tecnológico de Hidráulica -FCTH. (2017). Controle de inundações das áreas urbanas e industriais situadas nas bacias dos Rios Cubatão. São Paulo: Perequê e Mogi.

    Google Scholar 

  27. Harari, J., & Camargo, R. Tides and mean sea level variabilities in Santos (SP), 1944 to 1989. (1995). Relatório Interno do Instituto Oceanográfico, v. 36, n. February, p. 1–15.

  28. Instituto Brasileiro de Geografia e Estatística – IBGE. (2017). Cubatão. Available at: https://cidades.ibge.gov.br/brasil/sp/cubatao/panorama.

  29. Gutberlet, J. (1996). Cubatão. Desenvolvimento, Exclusão Social, Degradação Ambiental. São Paulo: Edusp.

    Google Scholar 

  30. Gonçalves, G. R. (2013). Henry Borden: urbanização e industrialização. São Paulo: II Simpósio Internacional Eletrificação e Modernização Social.

    Google Scholar 

  31. ONSET. (2019). HOBO U24–002-C data logger. United States. Available at: <https://www.onsetcomp.com/products/data-loggers/u24-002-c>.

    Google Scholar 

  32. Brasil. (2019). Porto de Santos - Torre Grande (Estado de São Paulo). Available at: https://www.marinha.mil.br/chm/sites/www.marinha.mil.br.chm/files/dados_de_mare/santos_torre_grande_2019.pdf.

  33. SAISP. (2019). Sistema de Alerta a Inundações de São Paulo. São Paulo. Available at: https://www.saisp.br/estaticos/sitenovo/home.xmlt.

    Google Scholar 

  34. Brunner, G. W. (2016). HEC-RAS River analysis system user’s manual. Davis.

    Google Scholar 

  35. UNESCO. (1991). Guidelines on the study of seawater intrusion into rivers. United Nations Educational, Scientific and Cultural Organization: Edited by V. der H. Tuin. Paris.

    Google Scholar 

Download references

Acknowledgments

We acknowledge FCTH (Fundação Centro Tecnológico de Hidráulica) and EMAE (Empresa Metropolitana de Águas e Energia).

Funding

This study was financed by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil) through the Finance Code 001 and MOMA-SE Project (CAPES-ANA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Paiva da Silva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.P., Martins, J.R.S. & Nogueira, F.F. Impacts of Sea Level Rise on Seawater Intrusion in Cubatão River, Brazil. Environ Model Assess 25, 831–841 (2020). https://doi.org/10.1007/s10666-020-09720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-020-09720-y

Keywords

Navigation