Skip to main content

Advertisement

Log in

Social Acceptance and Optimal Pollution: CCS or Tax?

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The two main hurdles to a widespread carbon capture and storage (CCS) deployment are its cost and social acceptance issues. Assessing accurately social preferences is thus interesting to determine whether CCS techniques use is socially optimal. Unlike most academic papers that have a dichotomous approach and consider either the atmospheric pollution (first source of marginal disutility) or the underground pollution (second source), the problem is considered as a whole: CCS introduces a third source of disutility due to the simultaneous presence of CO2 in the atmosphere and in geological formations. We show that there are some configurations of social preferences for which CCS use grants a higher social welfare provided that public authorities tax the carbon content of fossil fuels and subsidise carbon storage. CCS can even increase simultaneously the social welfare of the country with CCS and the one of the country without. Tied with the idea of minimising the decarbonizing costs and with the large literature on burden sharing in greenhouse gas (GHG) mitigation, two cases are compared to assess the transfers required to encourage CCS deployment: the case where each country defines its own climate policy and when they are aggregated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. The atmospheric concentration of pollutants increases with emissions with an accumulation effect. The convexity of A has a climatic justification (IPCC, [15]).

  2. The underground storage capacity decreases with pollutant emissions.

  3. Only one figure represents the social welfare sensitivity to \({\theta _{1}^{A}}\) for results are very similar to the other parameters of social acceptance.

References

  1. ADEME (2005). Facteur d’émission de dioxyde de carbone pour les combustibles fossiles.

  2. Amigues, J.-P., Lafforgue, G., Moreaux, M. (2012). Optimal timing of carbon capture policies under alternative CCS cost functions. IDEI Working Paper Series, (727).

  3. Ayong Le Kama, A., & Fodha, M. (2010). Optimal nuclear waste burying policy under uncertainty. Optimal Control Applications and Methods, 31, 67–76.

    Google Scholar 

  4. Ayong Le Kama, A., Fodha, M., Lafforgue, G. (2013). Optimal carbon capture and storage policies. Environmental Modeling & Assessment, 18, 417–426.

    Article  Google Scholar 

  5. European Commission (2011). Energy roadmap 2050—impact assessment and scenario analysis. Technical report, European Commission.

  6. Crettez, B., & Jouvet, P.-A. (2010). On the optimal burying of wastes. Mimeo.

  7. De Figueiredo, M., Reiner, D., Herzog, H. (2003). Ocean carbon sequestration: a case study in public and institutional perceptions. Greenhouse Gas Control Technologies, 1, 799–804.

    Article  CAS  Google Scholar 

  8. Dijkgraaf, E., & Volleberg, H.R.J. (2004). Burn or Bury? A social cost comparison of final waste disposal methods. Ecological Economics, 50, 233–247.

    Article  Google Scholar 

  9. Edenhofer, O., Carraro, C., Hourcade, J.-C. (2012). On the economics of decarbonization in an imperfet world. Climatic Change, 114, 1–8.

    Article  Google Scholar 

  10. Edmonds, J., Clarke, J., Dooley, J., Kim, S.H., Smith, S.J. (2004). Stabilization of C O 2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies. Energy Economics, 26, 517–537.

    Article  Google Scholar 

  11. Grimaud, A., & Rougé L. (2014). Carbon sequestration economic policies and growth. Resource and Energy Economics, 36, 307–331.

    Article  Google Scholar 

  12. Grimston, M.C., Karakoussis, V., Fouquet, R., Van der Vorst, R., Pearson, P., Leach, M. (2001). The european and global potential of carbon dioxide sequestration in tackling climate change. Climate Policy, 1 (2), 155–171.

    Article  Google Scholar 

  13. Ha-Duong, M., Nadaï, A., Campos, A.-S (2009). A survey on the public perception of CCS in France. International Journal of Greenhouse Gas Control, 3, 633–640.

    Article  CAS  Google Scholar 

  14. IPCC (2005). Special Report on Carbon Dioxide Capture and Storage. Contribution of Working Group III, Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.

  15. I P C C (2013). Climate change 2013—the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.

  16. Kurosawa, A. (2004). Carbon concentration target and technological choice. Energy Economics, 26, 675–684.

    Article  Google Scholar 

  17. Lafforgue, G., Magné, B., Moreaux, M. (2008). Energy substitutions, climate change and carbon sinks. Ecological Economics, 67, 589–597.

    Article  Google Scholar 

  18. Luderer, G., Bosetti, V., Jacob, M., Leimbach, M., Steckel, J.C., Waisman, H., Edenhofer, O. (2011). The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison. Climatic Change, 114, 9–37.

    Article  Google Scholar 

  19. McFarland, J.R., Herzog, H.J., Reilly, J.M. (2003). Economic modeling of the global adoption of carbon capture and sequestration technologies.. In: Greenhouse Gas Control Technologies: Proceedings of the Sixth International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, Elsevier Science, Oxford, UK, volume 20.

  20. Moslener, U., & Requate, T. (2007). Optimal abatement in dynamic multi-pollutant problems when pollutants can be complements or substitutes. Journal of Economic Dynamics and Control, 31, 2293–2316.

    Article  Google Scholar 

  21. OECD/IEA (2012). World energy outlook. Technical report, International Energy Agency.

  22. OECD/IEA (2013). Technology roadmap—carbon capture and storage. Technical report, International Energy Agency.

  23. Renner, M. (2013). Quel prix du CO2 pour le déploiement des techniques de captage, transport et stockage du CO2? Les Cahiers de la Chaire Economie du Climat - Série Infomation et Débat.

  24. Tokushige, K., Akimoto, K., Tomoda, T. (2007). Public perceptions on the acceptance of geological storage of carbon dioxide and information influencing the acceptance. International Journal of Greenhouse Gas Control, 1, 101–112.

    Article  CAS  Google Scholar 

  25. Vennemo, H., He, J., Li, S. (2013). Macroeconomic impacts of carbon capture and Storage in China. Environmental and Resource Economics, pages 1–23.

Download references

Acknowledgments

We are grateful to Marc Baudry, Christian de Perthuis, Florent Le Strat, Benoit Peluchon, the Climate Economics Chair and anonymous reviewers for their wise and relevant comments or advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Renner.

Appendix

Appendix

Fig. 20
figure 20

Emission and tax levels sensitivity to 𝜃 2, \({\theta _{1}^{A}}<{\theta _{1}^{S}}\)

Fig. 21
figure 21

Welfare sensitivity to 𝜃 2, \({\theta _{1}^{A}}<{\theta _{1}^{S}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouvet, PA., Renner, M. Social Acceptance and Optimal Pollution: CCS or Tax?. Environ Model Assess 20, 285–302 (2015). https://doi.org/10.1007/s10666-014-9438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-014-9438-y

Keywords

Navigation