Skip to main content
Log in

The method of fundamental solutions for Brinkman flows. Part II. Interior domains

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

In part I, we considered the application of the method of fundamental solutions (MFS) for solving numerically the Brinkman fluid flow in the unbounded porous medium outside obstacles of known or unknown shapes. In this companion paper we consider the corresponding interior problem for the Brinkman flow in a bounded porous medium which contains an unknown rigid inclusion \(D \subset \Omega \). The inclusion D is to be identified by a pair of Cauchy data represented by the fluid velocity and traction on the boundary \(\partial \Omega \). The fluid velocity and pressure of the incompressible viscous flow in the porous medium \(\Omega \backslash \overline{D}\) are approximated by linear combinations of fundamentals solutions for the Brinkman system with sources (singularities) placed outside the closure of the solution domain, i.e. in \(D \cup \big ({\mathbb {R}}^2\backslash \overline{\Omega } \big )\), assuming, for simplicity, that we analyse planar domains. By further assuming that the unknown obstacle D is star-shaped (with respect to the origin), the inverse problem recasts as the minimization of the nonlinear Tikhonov’s regularization functional with respect to the MFS expansion coefficients and the discretized polar radii defining D. This minimization subject to simple bounds on the variables is solved numerically using the MATLAB optimization toolbox routine lsqnonlin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ligaarden IS, Krotkiewski M, Lie K. A, Pal M, Schmid DW (2010) On the Stokes–Brinkman equations for modelling flow in carbonate reservoirs. In: Proceedings of the the ECMOR XII—12th European conference on the mathematics of oil recovery, Oxford, cp-163-00006

  2. Leiderman KM, Miller LA, Fogelson AL (2008) The effect of spatial inhomogeneities on flow through the endothelial surface layer. J Theor Biol 252:313–325

    Article  MathSciNet  Google Scholar 

  3. Durlofsky L, Brady JF (1987) Analysis of Brinkman equations as a model for flow in porous media. Phys Fluids 30:3329–3341

    Article  Google Scholar 

  4. Tam CKW (1969) The drag on a cloud of spherical particles in low Reynolds number flow. J Fluid Mech 38:537–546

    Article  Google Scholar 

  5. Lundgren TS (1972) Slow flow through stationary random beds and suspension of spheres. J Fluid Mech 51:273–299

    Article  Google Scholar 

  6. Howells ID (1974) Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects. J Fluid Mech 64:449–475

    Article  Google Scholar 

  7. Karageorghis A, Lesnic D, Marin L (2021) The method of fundamental solutions for Brinkman flows. Part I. Exterior domains. J Eng Math. https://doi.org/10.1007/s10665-020-10082-3

  8. Karageorghis A, Lesnic D, Marin L (2011) A survey of applications of the MFS to inverse problems. Inverse Probl Sci Eng 19:309–336

    Article  MathSciNet  Google Scholar 

  9. Borman D, Ingham DB, Johansson BT, Lesnic D (2009) The method of fundamental solutions for detection of cavities in EIT. J Integr Equ Appl 21:381–404

    Article  MathSciNet  Google Scholar 

  10. Karageorghis A, Lesnic D, Marin L (2012) The method of fundamental solutions for the detection of rigid inclusions and cavities in plane linear elastic bodies. Comput Struct 106–107:176–188

    Article  Google Scholar 

  11. Karageorghis A, Lesnic D, Marin L (2014) A moving pseudo-boundary MFS for void detection in two-dimensional thermoelasticity. Int J Mech Sci 88:276–288

    Article  Google Scholar 

  12. Bin-Mohsin B, Lesnic D (2012) Determination of inner boundaries in modified Helmholtz inverse geometric problems using the method of fundamental solutions. Math Comput Simul 82:1445–1458

    Article  MathSciNet  Google Scholar 

  13. Karageorghis A, Lesnic D (2011) Application of the MFS to inverse obstacle scattering problems. Eng Anal Bound Elements 35:631–638

    Article  MathSciNet  Google Scholar 

  14. Martins NFM (2015) Direct and optimization methods for the localization of obstacles in a porous medium. In: Rodrigues H et al (eds) Engineering optimization IV. Taylor & Francis Group, London, pp 991–996

    Google Scholar 

  15. Karageorghis A, Lesnic D (2020) Identification of obstacles immersed in a stationary Oseen fluid via boundary measurements. Inverse Probl Sci Eng 28:950–967

    Article  MathSciNet  Google Scholar 

  16. Karageorghis A, Lesnic D, Marin L (2013) A moving pseudo-boundary MFS for three-dimensional void detection. Adv Appl Math Mech 5:510–527

    Article  MathSciNet  Google Scholar 

  17. Karageorghis A, Lesnic D, Marin L (2016) The method of fundamental solutions for three-dimensional inverse geometric elasticity problems. Comput Struct 166:51–59

    Article  Google Scholar 

  18. Alessandrini G, Rondi L (2001) Optimal stability for the inverse problem of multiple cavities. J Differ Equ 176:356–386

    Article  MathSciNet  Google Scholar 

  19. Karageorghis A, Lesnic D, Marin L (2013) A moving pseudo-boundary method of fundamental solutions for void detection. Numer Methods Partial Differ Equ 29:953–960

    Article  MathSciNet  Google Scholar 

  20. Rondi L (1999) Uniqueness and optimal stability for the determination of multiple defects by electrostatic measurements. PhD Thesis, University of Trieste

  21. Alves CJS, Kress R, Silvestre AL (2007) Integral equations for an inverse boundary value problem for the two-dimensional Stokes equations. J Inverse Ill-Posed Probl 15:461–481

    Article  MathSciNet  Google Scholar 

  22. Ballerini A (2010) Stable determination of an immersed body in a stationary Stokes fluid. Inverse Probl 26:125015

    Article  MathSciNet  Google Scholar 

  23. Bourgeois L, Dardé J (2014) The “exterior approach” to solve the inverse obstacle problem for the Stokes system. Inverse Probl Imaging 8:23–51

    Article  MathSciNet  Google Scholar 

  24. Ballerini A (2013) Stable determination of a body immersed in a fluid: the nonlinear stationary case. Appl Anal 92:460–481

    Article  MathSciNet  Google Scholar 

  25. Doubova A, Fernández-Cara AE, Ortega JH (2007) On the identification of a single body immersed in a Navier–Stokes fluid. Eur J Appl Math 18:57–80

    Article  MathSciNet  Google Scholar 

  26. Martins NFM, Rebelo M (2014) Meshfree methods for non-homogeneous Brinkman flows. Comput Math Appl 68:872–886

    Article  MathSciNet  Google Scholar 

  27. Tsai CC (2008) Solutions of slow Brinkman flows using the method of fundamental solutions. Int J Numer Methods Fluids 56:927–940

    Article  MathSciNet  Google Scholar 

  28. Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flow. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. Belge M, Kilmer M, Miller EL (2002) Efficient determination of multiple regularization parameters in a generalized L-curve framework. Inverse Probl 18:1161–1183

    Article  MathSciNet  Google Scholar 

  30. Hazanee A, Lesnic D (2013) Reconstruction of an additive space- and time-dependent heat source. Eur J Comput Mech 22:304–329

    Article  Google Scholar 

  31. Hansen PC (2001) The L-curve and its use in the numerical treatment of inverse problems. In: Johnston P (ed) Computational inverse problems in electrocardiology. WIT Press, Southampton, pp 119–142

    Google Scholar 

  32. Matlab. The MathWorks, Inc., Natick, MA

  33. Karageorghis A, Lesnic D (2019) The method of fundamental solutions for the Oseen steady-state viscous flow past obstacles of known or unknown shapes. Numer Methods Partial Differ Equ 35:2103–2119

    Article  MathSciNet  Google Scholar 

  34. Kohr M, Sekhar GPR, Blake JR (2008) Green’s function of the Brinkman equation in a 2D anisotropic case. IMA J Appl Math 73:374–392

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Cyprus for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Marin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix we provide the expressions for the partial derivatives \(\big ({\partial G_{ij}}/{\partial x_k} \big )_{i,j,k=1,2}\) needed for calculating the matrix \(\left( D_{ij}\right) _{i,j=1,2}\) appearing in the stress force MFS approximation (3.8). First, using the identity

$$\begin{aligned} \dfrac{2 K_1(z)}{z}=K_2(z)-K_0(z), \quad z\ne 0, \end{aligned}$$

we can rewrite (3.3) in the equivalent form, see [34],

$$\begin{aligned} G_{ik}({\varvec{x}}, {\varvec{x}}^\prime )\!=\!\dfrac{1}{2 \pi \mu } \left[ \left( -\dfrac{1}{\kappa ^2 r^2}\!+\! \dfrac{K_0(\kappa r) + K_2(\kappa r)}{2}\right) \delta _{ik} \!+\! \dfrac{(x_i-x_i^\prime ) (x_k-x_k^\prime ) }{r^2} \left( \dfrac{2}{\kappa ^2 r^2} \!-\! K_2(\kappa r) \right) \right] , \quad i,k\!=\!1,2.\nonumber \\ \end{aligned}$$
(A.1)

Using that

$$\begin{aligned} K_0^\prime (s)=-K_1(s), \quad K_2^\prime (s)=-\dfrac{1}{2} \left( K_1(s)+K_3(s)\right) , \end{aligned}$$
(A.2)

we obtain (checked using the symbolic computation package MAPLE)

$$\begin{aligned} \dfrac{\partial G_{11}}{\partial x_1}= & {} \dfrac{1}{2 \pi \mu } \left\{ \dfrac{2(x_1-x_1^\prime )}{\kappa ^2 r^4} - \dfrac{\kappa (x_1-x_1^\prime ) \left( 3 K_1(\kappa r) + K_3(\kappa r) \right) }{4 r} \right. \\&+\dfrac{(x_1-x_1^\prime )^2}{r^2} \left[ -\dfrac{4 (x_1-x_1^\prime ) }{\kappa ^2 r^4 } + \dfrac{\kappa (x_1-x_1^\prime ) \left( K_1(\kappa r) + K_3(\kappa r) \right) }{2 r} \right] \\&\left. +\dfrac{2 (x_1-x_1^\prime )(x_2-x_2^\prime )^2}{ r^4} \left( \dfrac{2}{\kappa ^2 r^2} - K_2(\kappa r) \right) \right\} , \\ \dfrac{\partial G_{12}}{\partial x_1}= & {} \dfrac{\partial G_{21}}{\partial x_1} = \dfrac{1}{2 \pi \mu } \left\{ \dfrac{(x_1-x_1^\prime )(x_2-x_2^\prime )}{r^2}\left[ -\dfrac{4 (x_1-x_1^\prime ) }{\kappa ^2 r^4} + \dfrac{\kappa (x_1-x_1^\prime )\left( K_1(\kappa r) + K_3(\kappa r) \right) }{2 r} \right] \right. \\&\left. + \dfrac{(x_2-x_2^\prime )\left[ (x_2-x_2^\prime )^2- (x_1-x_1^\prime )^2\right] }{ r^4} \left( \dfrac{2}{\kappa ^2 r^2} - K_2(\kappa r) \right) \right\} , \\ \dfrac{\partial G_{22}}{\partial x_1}= & {} \dfrac{1}{2 \pi \mu } \left\{ \dfrac{2(x_1-x_1^\prime )}{\kappa ^2 r^4} - \dfrac{\kappa (x_1-x_1^\prime ) \left( 3 K_1(\kappa r) + K_3(\kappa r) \right) }{4 r}\right. \\&+\dfrac{(x_2-x_2^\prime )^2}{r^2} \left[ -\dfrac{4 (x_1-x_1^\prime )}{\kappa ^2 r^4 } + \dfrac{\kappa (x_1-x_1^\prime ) \left( K_1(\kappa r) + K_3(\kappa r) \right) }{2 r} \right] \\&\left. - \dfrac{2(x_1-x_1^\prime )(x_2-x_2^\prime )^2}{r^4} \left( \dfrac{2}{\kappa ^2 r^2} - K_2(\kappa r) \right) \right\} , \\ \dfrac{\partial G_{11}}{\partial x_2}= & {} \dfrac{1}{2 \pi \mu } \left\{ \dfrac{2(x_2-x_2^\prime )}{\kappa ^2 r^4} - \dfrac{\kappa (x_2-x_2^\prime ) \left( 3 K_1(\kappa r) + K_3(\kappa r) \right) }{4 r}\right. \\&+\dfrac{(x_1-x_1^\prime )^2}{r^2} \left[ -\dfrac{4 (x_2-x_2^\prime ) }{\kappa ^2 r^4 } + \dfrac{\kappa (x_2-x_2^\prime ) \left( K_1(\kappa r) + K_3(\kappa r) \right) }{2 r} \right] \\&\left. -\dfrac{2(x_1-x_1^\prime )^2(x_2-x_2^\prime )}{r^4} \left( \dfrac{2}{\kappa ^2 r^2} - K_2(\kappa r) \right) \right\} , \\ \dfrac{\partial G_{12}}{\partial x_2}= & {} \dfrac{\partial G_{21}}{\partial x_2} = \dfrac{1}{2 \pi \mu } \left\{ \dfrac{(x_1-x_1^\prime )(x_2-x_2^\prime )}{r^2}\left[ -\dfrac{4 (x_2-x_2^\prime ) }{\kappa ^2 r^4} + \dfrac{\kappa (x_2-x_2^\prime ) \left( K_1(\kappa r) + K_3(\kappa r) \right) }{2 r } \right] \right. \\&\left. + \dfrac{(x_1-x_1^\prime )\left[ (x_1-x_1^\prime )^2- (x_2-x_2^\prime )^2\right] }{r^4} \left( \dfrac{2}{\kappa ^2 r^2} - K_2(\kappa r) \right) \right\} , \\ \dfrac{\partial G_{22}}{\partial x_2}= & {} \dfrac{1}{2 \pi \mu } \left\{ \dfrac{2(x_2-x_2^\prime )}{\kappa ^2 r^4} - \dfrac{\kappa (x_2-x_2^\prime ) \left( 3 K_1(\kappa r) + K_3(\kappa r) \right) }{4r }\right. \\&+\dfrac{(x_2-x_2^\prime )^2}{r^2} \left[ -\dfrac{4 (x_2-x_2^\prime ) }{\kappa ^2 r^4 } + \dfrac{\kappa (x_2-x_2^\prime ) \left( K_1(\kappa r) + K_3(\kappa r) \right) }{2 r } \right] \\&\left. + \dfrac{2(x_1-x_1^\prime )^2(x_2-x_2^\prime )}{r^4} \left( \dfrac{2}{\kappa ^2 r^2} - K_2(\kappa r) \right) \right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karageorghis, A., Lesnic, D. & Marin, L. The method of fundamental solutions for Brinkman flows. Part II. Interior domains. J Eng Math 127, 19 (2021). https://doi.org/10.1007/s10665-020-10083-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-020-10083-2

Keywords

Mathematics Subject Classification

Navigation