Skip to main content
Log in

Similarity solutions for magnetogasdynamic shock waves in a rotating ideal gas using the Lie group-theoretic method

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The propagation of a cylindrical shock wave under the influence of an azimuthal magnetic field in a rotating medium for adiabatic flow conditions is investigated using the Lie group transformation method. The density, magnetic field, and azimuthal and axial fluid velocities are assumed to vary in the undisturbed medium. The arbitrary constants appearing in the expressions for the infinitesimals of the local Lie group of transformations bring about different cases of solutions, i.e., with a power-law shock path, with an exponential-law shock path, and a particular case of a power-law shock path. Numerical solutions are obtained in the case of a power-law shock path and exponential-law shock path. The distributions of gasdynamical quantities are discussed based on figures. The effects of varying the values of the adiabatic exponent \(\gamma \), Alfven–Mach number \(M_\mathrm{A}^{-2}\), ambient azimuthal fluid velocity variation index \(\lambda _{1}\), and ambient density variation index \(\phi \) on the flow variables and shock strength are studied. With an increase in the adiabatic exponent or the strength of the magnetic field, the shock strength decreases. However, an increase in the ambient density variation index or ambient azimuthal fluid velocity variation index results in an increase in the shock strength. The numerical calculations are carried out using Mathematica software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Here the summation convention of summing repeated indices is used.

References

  1. Nath G (2016) Propagation of a spherical shock wave in mixture of non-ideal gas and small solid particles under the influence of gravitational field with conductive and radiative heat fluxes. Astrophys Space Sci 361:31–44

    Article  MathSciNet  Google Scholar 

  2. Lin SC (1954) Cylindrical shock waves produced by instantaneous energy release. J Appl Phys 25:54–57

    Article  MATH  Google Scholar 

  3. Chaturani P (1971) Strong cylindrical shocks in a rotating gas. Appl Sci Res 23:197–211

    Article  MathSciNet  MATH  Google Scholar 

  4. Nath G (2012) Self-similar solution of cylindrical shock wave propagation in a rotational axisymmetric mixture of a non-ideal gas and small solid particles. Meccanica 47:1797–1814

    Article  MathSciNet  MATH  Google Scholar 

  5. Nath G (2016) Propagation of exponential shock wave in an axisymmetric rotating non-ideal dusty gas. Indian J Phys 90:1055–1068

    Article  Google Scholar 

  6. Vishwakarma JP, Nath G (2011) Cylindrical shock wave generated by a piston moving in a non-uniform self-gravitating rotational axisymmetric gas in the presence of conduction and radiation heat-flux. Adv Eng Res 2:537–576

    Google Scholar 

  7. Vishwakarama JP, Vishwakarama S (2007) Magnetogasdynamic cylindrical shock wave in a rotating gas with variable density. Int J Appl Mech Eng 12:283–297

    Google Scholar 

  8. Vishwakarma JP, Maurya AK, Singh KK (2007) Self-similar adiabatic flow headed by a magnetogasdynamic cylindrical shock wave in a rotating non-ideal gas. Geophys Astrophys Fluid Dyn 101(2):155–168

    Article  MathSciNet  Google Scholar 

  9. Hishida M, Fujiwara T, Wolanski P (2009) Fundamentals of rotating detonations. Shock Waves 19(1):1–10

    Article  MATH  Google Scholar 

  10. Nath G (2011) Magnetogasdynamic shock wave generated by a moving piston in a rotational axisymmetric isothermal ow of perfect gas with variable density. Adv Space Res 47(9):1463–1471

    Article  Google Scholar 

  11. Nagasawa M (1987) Gravitational instability of the isothermal gas cylinder with an axial magnetic field. Prog Theor Phys 77(3):635–652

    Article  Google Scholar 

  12. Summers D (1975) An idealised model of a magnetohydrodynamic spherical blast wave applied to a flare produced shock in the solar wind. Astron Astrophys 45:151–158

    Google Scholar 

  13. Hartmann L (1998) Accretion processes in star formation. Cambridge University Press, Cambridge

    Google Scholar 

  14. Balick B, Frank A (2002) Shapes and shaping of planetary nebulae. Annu Rev Astron Astrophys 40(1):439–486

    Article  Google Scholar 

  15. Lee TS, Chen T (1968) Hydromagnetic interplanetary shock waves. Planet Space Sci 16(12):1483–1502

    Article  Google Scholar 

  16. Lerche I (1979) Mathematical theory of one-dimensional isothermal blast waves in a magnetic field. Aust J Phys 32(5):491–502

    Article  MathSciNet  Google Scholar 

  17. Lerche I (1981) Mathematical theory of cylindrical isothermal blast waves in a magnetic field. Aust J Phys 34(3):279–302

    Article  MathSciNet  Google Scholar 

  18. Shang JS (2001) Recent research in magneto-aerodynamics. Prog Aerosp Sci 37(1):1–20

    Article  Google Scholar 

  19. Christer AH, Helliwell JB (1969) Cylindrical shock and detonation waves in magnetogasdynamics. J Fluid Mech 39(4):705–725

    Article  MATH  Google Scholar 

  20. Pullin DI, Mostert W, Wheatley V, Samtaney R (2014) Converging cylindrical shocks in ideal magnetohydrodynamics. Phys Fluids 26(9):097103

    Article  Google Scholar 

  21. Mostert W, Pullin DI, Samtaney R, Wheatley V (2016) Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current. J Fluid Mech 793:414–443

    Article  MathSciNet  MATH  Google Scholar 

  22. Nath G, Singh S (2017) Flow behind magnetogasdynamic exponential shock wave in self-gravitating gas. Int J Non-Linear Mech 88:102–108

    Article  Google Scholar 

  23. Bluman GW, Cole JD (1974) Similarity methods for differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Bluman GW, Kumei S (1989) Symmetries and differential equations. Springer, New York

    Book  MATH  Google Scholar 

  25. Stephani H (1989) Differential equations: their solution using symmetries. Cambridge University Press, New York

    MATH  Google Scholar 

  26. Ibragimov NH (1999) Elementary lie group analysis and ordinary differential equations. Wiley, Chichester

    MATH  Google Scholar 

  27. Olver PJ (1993) Application of lie groups to differential equations, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  28. Hydon PE (2000) Symmetry methods for differential equations: a beginner’s guide. Cambridge University Press, London

    Book  MATH  Google Scholar 

  29. Logan JD, Perez JDJ (1980) Similarity solutions for reactive shock hydrodynamics. SIAM J Appl Math 39(3):512–527

    Article  MathSciNet  MATH  Google Scholar 

  30. Donato A (1987) Similarity analysis and non-linear wave propagation. Int J Non-Linear Mech 22(4):307–314

    Article  MATH  Google Scholar 

  31. Torrisi M (1988) Similarity solution and wave propagation in a reactive polytropic gas. J Eng Math 22(3):239–251

    Article  MathSciNet  MATH  Google Scholar 

  32. Zedan HA (2002) Applications of the group of equations of the one-dimensional motion of a gas under the influence of monochromatic radiation. Appl Math Comput 132(1):63–71

    MathSciNet  MATH  Google Scholar 

  33. Donato A, Oliveri F (1993) Reduction to autonomous form by group analysis and exact solutions of axisymmetric MHD equations. Math Comput Model 18(10):83–90

    Article  MathSciNet  MATH  Google Scholar 

  34. Zayed EME, Zedan HA (2001) Autonomous forms and exact solutions of equations of motion of polytropic gas. Int J Theor Phys 40(6):1183–1196

    Article  MATH  Google Scholar 

  35. Oliveri F, Speciale MP (2005) Exact solutions to the ideal magneto-gas-dynamics equations through Lie group analysis and substitution principles. J Phys A Math Gen 38(40):8803–8820

    Article  MathSciNet  MATH  Google Scholar 

  36. Taylor GI (1950) The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc R Soc Lond Ser A Math Phys Sci 201(1065):159–174

    MATH  Google Scholar 

  37. Taylor GI (1950) The formation of a blast wave by a very intense explosion. II. The atomic explosion of (1945). Proc R Soc Lond Ser A Math Phys Sci 201(1065):175–186

    MATH  Google Scholar 

  38. Sedov LI (1959) Similarity and dimensional methods in mechanics. Academic Press, New York

    MATH  Google Scholar 

  39. Nath G, Sahu PK (2016) Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density. SpringerPlus. https://doi.org/10.1186/s40064-016-3119-z

  40. Nath G (2015) Similarity solutions for unsteady flow behind an exponential shock in an axisymmetric rotating non-ideal gas. Meccanica 50(7):1701–1715

    Article  MathSciNet  MATH  Google Scholar 

  41. Sharma VD, Radha C (1995) Similarity solutions for converging shocks in a relaxing gas. Int J Eng Sci 33(4):535–553

    Article  MathSciNet  MATH  Google Scholar 

  42. Levin VA, Skopina GA (2004) Detonation wave propagation in rotational gas flows. J Appl Mech Tech Phys 45(4):457–460

    Article  MathSciNet  MATH  Google Scholar 

  43. Nath G (2010) Propagation of a strong cylindrical shock wave in a rotational axisymmetric dusty gas with exponentially varying density. Res Astron Astrophys 10(5):445–460

    Article  Google Scholar 

Download references

Acknowledgements

Sumeeta Singh (IF no. 150736) acknowledges the Department of Science and Technology, India for the award of an INSPIRE fellowship for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, G., Singh, S. Similarity solutions for magnetogasdynamic shock waves in a rotating ideal gas using the Lie group-theoretic method. J Eng Math 126, 9 (2021). https://doi.org/10.1007/s10665-020-10073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-020-10073-4

Keywords

Navigation