Skip to main content
Log in

Transfers between libration point orbits of Sun–Earth and Earth–Moon systems by using invariant manifolds

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Single-impulse and low-thrust low-energy transfers from a Lyapunov orbit around \(L_2\) point of the Sun–Earth system to the periodic orbits around the equilibrium points \(L_i\; (i=3,4,5)\) of the Earth–Moon system are investigated. In our computation, the series expansions of invariant manifolds are used to generate the departure state, the series expansions of periodic orbits around the triangular libration points, and Lissajous orbits around the collinear libration points are used to generate the target orbits. In order to construct the first guesses for single-impulse and low-thrust low-energy transfers, we establish the corresponding optimization problems under some suitable assumptions and solve them by means of an improved cooperative evolutionary algorithm (ICEA). For computing optimal transfers, the nonlinear programming problems are established by direct description and solved by a local optimization method with the initial-guess transfers computed by ICEA. Numerical results show that the low-thrust transfers outperform the corresponding single-impulse transfers in terms of propellant mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Farquhar RW (1968) The control and use of libration point satellites. Technical report TR R346, Standford University report SUDAAR-350

  2. Canalias E, Gómez G, Marcote M, Masdemont JJ (2004) Assessment of mission design including utilization of libration points and weak stability boundaries. Department de Matematica Aplicada, Universitat Politecnica de Catalunya and Department de Matematica Aplicada, Universitat de Barcellona

  3. Hou XY, Tang JS, Liu L (2007) Transfer to the collinear libration point \(L_3\) in the Sun-Earth+Moon system. Technical Report 20080012700, NASA

  4. Tantardini M, Fantino E, Ren Y, Pergola P, Gómez G, Masdemont JJ (2010) Spacecraft trajectories to the \(L_3\) point of the Sun–Earth three-body problem. Celest Mech Dyn Astron 108(3):215–232

  5. Koon WS, Lo MW, Marsden JE, Ross SD (2006) Dynamical Systems, the Three Body Problem and Space Mission Design. Springer, New York

    MATH  Google Scholar 

  6. Farquhar RW (1971) The utilization of halo orbits in advanced lunar operations. Technical report NASA TN D-6365

  7. Folta DC, Woodard M, Howell K, Patterson C, Schlei W (2012) Applications of multi-body dynamical environments: the ARTEMIS transfer trajectory design. Acta Astronaut 73:237–249

    Article  ADS  Google Scholar 

  8. Davis K, Born G, Butcher E (2013) Transfers to Earth–Moon \(L_3\) halo orbits. Acta Astronaut 88:116–128

    Article  ADS  Google Scholar 

  9. Xu M, Wang JL, Liu SL, Xu SJ (2013) A new constellation configuration scheme for communicating architecture in cislunar space. Math Probl Eng 19:864950

  10. Schutz BE (1977) Orbital mechanics of space colonies at \(L_4\) of the Earth–Moon system. In: AIAA Astronomical Specialist Conference

  11. O’Neill GK (1974) The colonization of space. Phys Today 27:32–40

    Article  Google Scholar 

  12. Salazar FJT, de Melo CF, Macau EEN, Winter OC (2012) Three-body problem, its Lagrangian points and how to exploit them using an alternative transfer to L4 and L5. Celest Mech Dyn Astron 114(1–2):201–213

    Article  ADS  MathSciNet  Google Scholar 

  13. Vaquero M, Howell KC (2013) Design of transfer trajectories between resonant orbits in the Earth–Moon restricted problem. Acta Astronaut 94(1):302–317

    Article  ADS  Google Scholar 

  14. Prado AFBA (1996) Travelling between the Lagrangian points and the Earth. Acta Astronaut 39(7):483–486

    Article  ADS  Google Scholar 

  15. Broucke RA (1979) Travelling between the Lagrangian points and the Moon. J Guid Control Dyn 2(4):257–263

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Gómez G, Masdemont JJ, Simó C (1998) Quasihalo orbits associated with libration points. J Astronaut Sci 46(2):135–176

    MathSciNet  Google Scholar 

  17. Hou XY, Liu L (2011) On motions around the collinear libration points in the elliptic restricted three-body problem. Mon Not R Astron Soc 415(4):3552–3560

    Article  ADS  Google Scholar 

  18. Jorba À, Masdemont J (1999) Dynamics in the center manifold of the collinear points of the restricted three body problem. Physica D Nonlinear Phenom 132(1):189–213

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Lei HL, Xu B (2013) High-order analytical solutions around triangular libration points in circular restricted three-body problem. Mon Not R Astron Soc 434(2):1376–1386

    Article  ADS  MathSciNet  Google Scholar 

  20. Lei HL, Xu B, Hou XY, Sun YS (2013) High-order solutions of invariant manifolds associated with libration point orbits in the elliptic restricted three-body system. Celest Mech Dyn Astron 117(4):349–384

  21. Lei HL, Xu B (2014) High-order solutions around triangular libration points in the elliptic restricted three-body problem and applications to low energy transfers. Commun Nonlinear Sci Numer Simulat 19(9):3374–3398

    Article  ADS  MathSciNet  Google Scholar 

  22. Masdemont JJ (2005) High-order expansions of invariant manifolds of libration point orbits with application to mission design. Dyn Syst 20(1):59–113

    Article  MathSciNet  MATH  Google Scholar 

  23. Richardson DL (1980) Analytic construction of periodic orbits about the collinear points. Celest Mech 22(3):241–253

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Lo MW, Williams BG, Bollman WE, Han D, Hahn Y, Bell JL, Hirst EA, Corwin RA, Hong PE, Howell KC, Barden B, Wilson R (2001) Genesis mission design. J Astronaut Sci 49(1):169–184

    Google Scholar 

  25. Anderson RL, Lo MW (2009) Role of invariant manifolds in low-thrust trajectory design. J Guid Control Dyn 32(6):1921–1930

    Article  ADS  Google Scholar 

  26. Lei HL, Xu B, Sun YS (2013) Earth–Moon low energy trajectory optimization in the real system. Adv Space Res 51(5):917–929

    Article  ADS  Google Scholar 

  27. Belbruno E, Miller J (1993) Sun-perturbed Earth-to-Moon transfers with ballistic capture. J Guid Control Dyn 16(4):770–775

    Article  ADS  Google Scholar 

  28. Koon WS, Lo MW, Marsden JE, Ross SD (2001) Low energy transfer to the Moon. Celest Mech Dyn Astron 81:63–73

  29. Uesugi K (1996) Results of the MUSES-A ‘HITEN’ mission. Adv Space Res 18(11):69–72

    Article  ADS  Google Scholar 

  30. Alessi EM, Gómez G, Masdemont JJ (2009) Leaving the Moon by means of invariant manifolds of libration point orbits. Commun Nonlinear Sci Numer Simul 14(12):4153–4167

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Alessi EM, Gómez G, Masdemont JJ (2010) Two-manoeuvres transfers between LEOs and Lissajous orbits in the Earth–Moon system. Adv Space Res 45(10):1276–1291

    Article  ADS  Google Scholar 

  32. Lei HL, Xu B (2013) Low thrust transfer to the libration point orbits of Sun Mars system from the Earth. J Astronaut 34(6):763–772

    Google Scholar 

  33. Dellnitz M, Junge O, Post M, Thiere B (2006) On target for Venus-set oriented computation of energy efficient low thrust trajectories. Celest Mech Dyn Astron 95(1–4):357–370

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Demeyer J, Gurfil P (2007) Transfer to distant retrograde orbits using manifold theory. J Guid Control Dyn 30(5):1261–1267

    Article  ADS  Google Scholar 

  35. Finocchietti C, Pergola P, Andrenucci M (2014) Venus transfer design by combining invariant manifolds and low-thrust arcs. Acta Astronaut 94(1):351–362

    Article  ADS  Google Scholar 

  36. Zanzottera A, Mingotti G, Castelli R, Dellnitz M (2012) Intersecting invariant manifolds in spatial restricted three-body problems: design and optimization of Earth-to-halo transfers in the Sun–Earth–Moon scenario. Commun Nonlinear Sci Numer Simul 17(2):832–843

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ozimek MT, Howell KC (2010) Low-thrust transfers in the Earth–Moon systems, including applications to libration point orbits. J Guid Control Dyn 33(2):533–549

    Article  ADS  Google Scholar 

  38. Mingotti G, Topputo F, Bernelli-Zazzera F (2011) Optimal low-thrust invariant manifold trajectories via attainable sets. J Guid Control Dyn 34(6):1644–1656

    Article  ADS  MATH  Google Scholar 

  39. Mingotti G, Topputo F, Bernelli-Zazzera F (2011) Earth–Mars transfers with ballistic escape and low-thrust capture. Celest Mech Dyn Astron 110(2):169–188

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Mingotti G, Gurfil P (2011) Mixed low-thrust invariant-manifold transfer to distant prograde orbits around Mars. J Guid Control Dyn 33(6):1753–1764

    Article  ADS  Google Scholar 

  41. Mingotti G, Topputo F, Bernelli-Zazzera F (2009) Low-energy, low-thrust transfers to the Moon. Celest Mech Dyn Astron 105(1–3):61–74

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Mingotti G, Topputo F, Bernelli-Zazzera F (2012) Efficient invariant-manifold, low-thrust planar trajectories to the Moon. Commun Nonlinear Sci Numer Simul 17(2):817–831

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Mingotti G, Topputo F, Bernelli-Zazzera F (2012) Transfers to distant periodic orbits around the Moon via their invariant manifolds. Acta Astronaut 79:20–32

    Article  ADS  MATH  Google Scholar 

  44. Davis KE, Anderson RL, Scheeres DJ, Born GH (2010) The use of invariant manifolds for transfers between unstable periodic orbits of different energies. Celest Mech Dyn Astron 107(4):471–485

  45. Davis KE, Anderson RL, Scheeres DJ (2011) Optimal transfers between unstable periodic orbits using invariant manifolds. Celest Mech Dyn Astron 109(3):241–264

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Stuart JR, Ozimek MT, Howell KC (2010) Optimal, low-thrust, path-constrained transfers between libration point orbits using invariant manifolds. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference

  47. Pergola P, Geurts K, Casaregola C, Andrenucci M (2009) Earth–Mars halo to halo low thrust manifold transfers. Celest Mech Dyn Astron 105(1–3):19–32

  48. Howell KC, Kakoi M (2006) Transfers between the Earth–Moon and Sun–Earth systems using manifolds and transit orbits. Acta Astronaut 59(1):367–380

    Article  ADS  Google Scholar 

  49. Canalias E, Masdemont JJ (2008) Computing natural transfers between Sun–Earth and Earth–Moon Lissajous libration point orbits. Acta Astronaut 63(1):238–248

    Article  ADS  Google Scholar 

  50. Fantino E, Gómez G, Masdemont JJ, Ren Y (2010) A note on libration point orbits, temporary capture and low-energy transfers. Acta Astronaut 67(9):1038–1052

  51. Ren Y, Pergola P, Fantino E, Thiere B (2012) Optimal low-thrust transfers between libration point orbits. Celest Mech Dyn Astron 112(1):1–21

    Article  ADS  MathSciNet  Google Scholar 

  52. Zhang P, Li J, Baoyin H, Tang G (2013) A low-thrust transfers between the Earth–Moon and Sun–Earth systems based on invariant manifolds. Acta Astronaut 91:77–88

    Article  ADS  Google Scholar 

  53. Szebehely V (1967) Theory of orbits. Academic, New York

    Google Scholar 

  54. Simó C, Gómez G, Jorba À (1995) The bicircular model near the triangular libration points of the RTBP. In: Roy AE, Steves BA (eds) From Newton to chaos: modern techniques for understanding and coping with chaos in \(n\)-body dynamical systems. Plenum, New York (North Atalantic Treaty Organization, Scientific Affairs Division)

  55. Kitayama S, Arakawa M, Yamazaki K (2006) Penalty function approach for the mixed descrete nonlinear problems by particle swarm optimization. Struct Multidiscip Optim 32(3):191–202

    Article  MathSciNet  MATH  Google Scholar 

  56. Betts JT (1998) Survey of numerical methods for trajectory optimization. J Guid Control Dyn 21(2):193–207

    Article  ADS  MATH  Google Scholar 

  57. Jiang FH, Baoyin HX, Li JF (2012) Practical techniques for low-thrust trajectory optimization with homotopic approach. J Guid Control Dyn 35(1):245–258

    Article  ADS  Google Scholar 

  58. Hull DG (1997) Conversion of optimal control problems into parameter optimization problems. J Guid Control Dyn 20(1):57–60

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The authors are much obliged to the reviewers for their many insightful comments that substantially improved the quality of this paper. This work was carried out with financial support from the National Basic Research Program 973 of China (2013CB834103), the National High Technology Research and Development Program 863 of China (2012AA121602), the National Natural Science Foundation of China (Grant No. 11078001), and the Research and Innovation Project for College Graduates of Jiangsu Province (Grant No. CXZZ13_0042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Xu, B. Transfers between libration point orbits of Sun–Earth and Earth–Moon systems by using invariant manifolds. J Eng Math 98, 163–186 (2016). https://doi.org/10.1007/s10665-015-9816-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-015-9816-8

Keywords

Mathematics Subject Classification

Navigation