Skip to main content

Advertisement

Log in

Moss as a passive biomonitoring tool for the atmospheric deposition and spatial distribution pattern of toxic metals in an industrial city

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Anthropogenic pollution impacts human and environmental health, climate change, and air quality. Karabük, an industrial area from the Black Sea Region in northern Türkiye, is vulnerable to environmental pollution, particularly soil and air. In this research on methodological aspects, we analyzed the concentrations of six potential toxic metals in the atmospheric deposition of the city using the passive method of moss biomonitoring. The ground-growing terrestrial moss, Hypnum cupressiforme Hedw., was collected during the dry season of August 2023 at 20 urban points. The concentrations of Cr, Cu, Cd, Ni, Pb, and Co were determined in mosses by the ICP-MS method. Descriptive statistical analysis was employed to evaluate the status and variance in the spatial distribution of the studied metals, and multivariate analysis, Pearson correlation, and cluster analysis were used to investigate the associations of elements and discuss the most probable sources of these elements in the study area. Cd and Co showed positive and significant inter-element correlations (r > 0.938), representing an anthropogenic association mostly present in the air particles emitted from several metal plants. The results showed substantial impacts from local industry, manufactured activity, and soil dust emissions. Steel and iron smelter plants and cement factories are the biggest emitters of trace metals in the Karabük area and the primary sources of Cr, Cd, Ni, and Co deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Adžemović, S., Aliefendić, S., Mehić, E., Ranica, A., Vehab, I., Alagić, N., ... & Huremović, J. (2023). Estimation of atmospheric deposition utilizing lichen Hypogymnia physodes, moss Hypnum cupressiforme and soil in Bosnia and Herzegovina. International Journal of Environmental Science and Technology, 20(2), 1905–1918. https://doi.org/10.1007/s13762-022-04133-8

  • Agnan, Y., Séjalon-Delmas, N., Claustres, A., & Probst, A. (2015). Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Science of the Total Environment, 529, 285–296. https://doi.org/10.1016/j.scitotenv.2015.05.083

    Article  CAS  Google Scholar 

  • Akbay, C., Aytop, H., & Dikici, H. (2023). Evaluation of radioactive and heavy metal pollution in agricultural soil surrounding the lignite-fired thermal power plant using pollution indices. International Journal of Environmental Health Research, 33(12), 1490–1501. https://doi.org/10.1080/09603123.2022.2102157

    Article  CAS  Google Scholar 

  • Ali, M. U., Liu, G., Yousaf, B., Ullah, H., Abbas, Q., & Munir, M. A. M. (2019). A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environmental Geochemistry and Health, 41, 1131–1162. https://doi.org/10.1007/s10653-018-0203-z

    Article  CAS  Google Scholar 

  • Allajbeu, S., Yushin, N. S., Qarri, F., Duliu, O. G., Lazo, P., & Frontasyeva, M. V. (2016). Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology. Environmental Science and Pollution Research, 23, 14087–14101. https://doi.org/10.1007/s11356-016-6509-4

    Article  CAS  Google Scholar 

  • Allajbeu, S., Qarri, F., Marku, E., Bekteshi, L., Ibro, V., Frontasyeva, M. V., ... & Lazo, P. (2017). Contamination scale of atmospheric deposition for assessing air quality in Albania evaluated from most toxic heavy metal and moss biomonitoring. Air Quality, Atmosphere & Health, 10, 587–599. https://doi.org/10.1007/s11869-016-0453-9

  • ANPA, (2001). IBL. Indice di Biodiversità Lichenica. ANPA Serie: Manuali e Linee Guida 2/2001.

  • Ares, A., Varela, Z., Aboal, J. R., Carballeira, A., & Fernández, J. A. (2015). Active biomonitoring with the moss Pseudoscleropodium purum: Comparison between different types of transplants and bulk deposition. Ecotoxicology and Environmental Safety, 120, 74–79. https://doi.org/10.1016/j.ecoenv.2015.05.033

    Article  CAS  Google Scholar 

  • Asamoah, B. D., Dodd, M., Yevugah, L. L., Borquaye, L. S., Boateng, A., Nkansah, M. A., & Darko, G. (2023). Distribution and in-vitro bioaccessibility of potentially toxic metals in surface soils from a mining and a non-mining community in Ghana: Implications for human health. Environmental Geochemistry and Health, 45(12), 9875–9889. https://doi.org/10.1007/s10653-023-01776-5

    Article  CAS  Google Scholar 

  • Ávila-Pérez, P., Ortiz-Oliveros, H. B., Zarazúa-Ortega, G., Tejeda-Vega, S., Villalva, A., & Sánchez-Muñoz, R. (2019). Determining of risk areas due to exposure to heavy metals in the Toluca Valley using epiphytic mosses as a biomonitor. Journal of Environmental Management, 241, 138–148. https://doi.org/10.1016/j.jenvman.2019.04.018

    Article  CAS  Google Scholar 

  • Ayanlade, A., Sergi, C. M., Di Carlo, P., Ayanlade, O. S., & Agbalajobi, D. T. (2020). When climate turns nasty, what are recent and future implications? Ecological and human health review of climate change impacts. Current Climate Change Reports, 6, 55–65. https://doi.org/10.1007/s40641-020-00158-8

    Article  Google Scholar 

  • Banerjee, S., Banerjee, A., & Palit, D. (2021). Ecosystem services and impact of industrial pollution on urban health: Evidence from Durgapur, West Bengal. India. Environmental Monitoring and Assessment, 193(11), 744. https://doi.org/10.1007/s10661-021-09526-9

    Article  Google Scholar 

  • Barandovski, L., Frontasyeva, M. V., Stafilov, T., Šajn, R., Pavlov, S., & Enimiteva, V. (2012). Trends of atmospheric deposition of trace elements in Macedonia studied by the moss biomonitoring technique. Journal of Environmental Science and Health, Part A, 47(13), 2000–2015. https://doi.org/10.1080/10934529.2012.695267

    Article  CAS  Google Scholar 

  • Bargagli, R. (2016). Moss and lichen biomonitoring of atmospheric mercury: A review. Science of the Total Environment, 572, 216–231. https://doi.org/10.1016/j.scitotenv.2016.07.202

    Article  CAS  Google Scholar 

  • Bargagli, R., Ancora, S., Bianchi, N., & Rota, E. (2019). Deposition, abatement and environmental fate of pollutants in urban green ecosystems: Suggestions from long-term studies in Siena (Central Italy). Urban Forestry & Urban Greening, 46, 126483. https://doi.org/10.1016/j.ufug.2019.126483

    Article  Google Scholar 

  • Barkan, V. S., & Lyanguzova, I. V. (2018). Concentration of heavy metals in dominant moss species as an indicator of aerial technogenic load. Russian Journal of Ecology, 49, 128–134. https://doi.org/10.1134/S1067413618020030

    Article  CAS  Google Scholar 

  • Bidwell, A. L., Callahan, S. T., Tobin, P. C., Nelson, B. K., & DeLuca, T. H. (2019). Quantifying the elemental composition of mosses in western Washington USA. Science of the Total Environment, 693, 133404. https://doi.org/10.1016/j.scitotenv.2019.07.210

    Article  CAS  Google Scholar 

  • Bonanno, G., Lo Giudice, R., & Pavone, P. (2012). Trace element biomonitoring using mosses in urban areas affected by mud volcanoes around Mt. Etna. The case of the Salinelle. Italy. Environmental Monitoring and Assessment, 184, 5181–5188. https://doi.org/10.1007/s10661-011-2332-z

    Article  CAS  Google Scholar 

  • Boogaard, H., Walker, K., & Cohen, A. J. (2019). Air pollution: The emergence of a major global health risk factor. International Health, 11(6), 417–421. https://doi.org/10.1093/inthealth/ihz078

    Article  Google Scholar 

  • Boquete, M. T., Fernández, J. Á., Carballeira, A., & Aboal, J. R. (2013). Assessing the tolerance of the terrestrial moss Pseudoscleropodium purum to high levels of atmospheric heavy metals: A reciprocal transplant study. Science of the Total Environment, 461, 552–559. https://doi.org/10.1016/j.scitotenv.2013.05.039

    Article  CAS  Google Scholar 

  • Capozzi, F., Adamo, P., Di Palma, A., Aboal, J. R., Bargagli, R., Fernandez, J. A., ... & Giordano, S. (2017). Sphagnum palustre clone vs native Pseudoscleropodium purum: A first trial in the field to validate the future of the moss bag technique. Environmental Pollution, 225, 323–328. https://doi.org/10.1016/j.envpol.2017.02.057

  • Cecconi, E., Incerti, G., Capozzi, F., Adamo, P., Bargagli, R., Benesperi, R., ... & Tretiach, M. (2019). Background element content in the lichen Pseudevernia furfuracea: A comparative analysis of digestion methods. Environmental monitoring and assessment, 191, 260. https://doi.org/10.1007/s10661-019-7405-4

  • Chaligava, O., Shetekauri, S., Badawy, W. M., Frontasyeva, M. V., Zinicovscaia, I., Shetekauri, T., ... & Yushin, N. (2021). Characterization of trace elements in atmospheric deposition studied by moss biomonitoring in Georgia. Archives of environmental contamination and toxicology, 80, 350–367. https://doi.org/10.1007/s00244-020-00788-x

  • Chen, X., Lu, X., Li, L. Y., & Yang, G. (2013). Spatial distribution and contamination assessment of heavy metals in urban topsoil from inside the Xi’an second ringroad, NW China. Environmental Earth Sciences, 68, 1979–1988.

    Article  CAS  Google Scholar 

  • Coker, E. A., Nkuah, B. C., Amoanimaah, S. A., Oppong, J. B., Gyamfi, O., Ansah, E., ... & Darko, G. (2023). Human exposure to mercury in the atmosphere and soils in Konongo: An age-old mining centre in the Ashanti Region of Ghana. Environmental Geochemistry and Health, 45(6), 3555–3565. https://doi.org/10.1007/s10653-022-01441-3

  • Coskun, M., Cayir, A., Coskun, M., & Kilic, O. (2011). Heavy metal deposition in moss samples from East and South Marmara Region, Turkey. Environmental Monitoring and Assessment, 174, 219–227. https://doi.org/10.1007/s10661-010-1452-1

    Article  CAS  Google Scholar 

  • Cowden, P., & Aherne, J. (2019a). Assessment of atmospheric metal deposition by moss biomonitoring in a region under the influence of a long standing active aluminium smelter. Atmospheric Environment, 201, 84–91. https://doi.org/10.1016/j.atmosenv.2018.12.022

    Article  CAS  Google Scholar 

  • Cowden, P., & Aherne, J. (2019b). Interspecies comparison of three moss species (Hylocomium splendens, Pleurozium schreberi, and Isothecium stoloniferum) as biomonitors of trace element deposition. Environmental Monitoring and Assessment, 191, 1–13. https://doi.org/10.1007/s10661-019-7354-y

    Article  CAS  Google Scholar 

  • Di Palma, A., Pardo, D. C., Spagnuolo, V., Adamo, P., Bargagli, R., Cafasso, D., ... & Giordano, S. (2016). Molecular and chemical characterization of a Sphagnum palustre clone: Key steps towards a standardized and sustainable moss bag technique. Ecological Indicators, 71, 388–397. https://doi.org/10.1016/j.ecolind.2016.06.044

  • Du, H., & Lu, X. (2022). Spatial distribution and source apportionment of heavy metal (loid) s in urban topsoil in Mianyang. Southwest China. Scientific Reports, 12(1), 10407.

    Article  CAS  Google Scholar 

  • EN 16414:2014 (2014). Ambient air. Biomonitoring with mosses. Accumulation of atmospheric contaminants in mosses collected in situ: from the collection to the preparation of samples 978 0 580 77794 3. British Standards Institution.

  • Fernández, J. A., Boquete, M. T., Carballeira, A., & Aboal, J. R. (2015). A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation. Science of the Total Environment, 517, 132–150. https://doi.org/10.1016/j.scitotenv.2015.02.050

    Article  CAS  Google Scholar 

  • Ferreira, M. L., Ribeiro, A. P., Rakauskas, F., Bollamann, H. A., Theophilo, C. Y. S., Moreira, E. G., ... & Lafortezza, R. (2024). Spatiotemporal monitoring of subtropical urban forests in mitigating air pollution: Policy implications for nature-based solutions. Ecological Indicators, 158, 111386. https://doi.org/10.1016/j.ecolind.2023.111386

  • Foan, L., Domercq, M., Bermejo, R., Santamaría, J. M., & Simon, V. (2015). Mosses as an integrating tool for monitoring PAH atmospheric deposition: Comparison with total deposition and evaluation of bioconcentration factors A Year-Long Case-Study. Chemosphere, 119, 452–458. https://doi.org/10.1016/j.chemosphere.2014.06.071

    Article  CAS  Google Scholar 

  • Fuller, R., Landrigan, P. J., Balakrishnan, K., Bathan, G., Bose-O’Reilly, S., Brauer, M., ... & Yan, C. (2022). Pollution and health: A progress update. The Lancet Planetary Health, 6(6), e535-e547. https://doi.org/10.1016/S2542-5196(22)00090-0

  • George, A., Shen, B., Kang, D., Yang, J., & Luo, J. (2020). Emission control strategies of hazardous trace elements from coal-fired power plants in China. Journal of Environmental Sciences, 93, 66–90. https://doi.org/10.1016/j.jes.2020.02.025

    Article  CAS  Google Scholar 

  • Gerdol, R., Marchesini, R., Iacumin, P., & Brancaleoni, L. (2014). Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Chemosphere, 108, 388–395. https://doi.org/10.1016/j.chemosphere.2014.02.035

    Article  CAS  Google Scholar 

  • Gómez-Arroyo, S., Zavala-Sánchez, M. Á., Alonso-Murillo, C. D., Cortés-Eslava, J., Amador-Muñoz, O., Jiménez-García, L. F., & Morton-Bermea, O. (2021). Moss (Hypnum amabile) as biomonitor of genotoxic damage and as bioaccumulator of atmospheric pollutants at five different sites of Mexico City and metropolitan area. Environmental Science and Pollution Research, 28, 9849–9863. https://doi.org/10.1007/s11356-020-11441-4

    Article  CAS  Google Scholar 

  • Hristozova, G., Marinova, S., Svozilík, V., Nekhoroshkov, P., & Frontasyeva, M. V. (2020). Biomonitoring of elemental atmospheric deposition: Spatial distributions in the 2015/2016 moss survey in Bulgaria. Journal of Radioanalytical and Nuclear Chemistry, 323, 839–849. https://doi.org/10.1007/s10967-019-06978-9

    Article  CAS  Google Scholar 

  • Hussain, S., & Hoque, R. R. (2022). Biomonitoring of metallic air pollutants in unique habitations of the Brahmaputra Valley using moss species—Atrichum angustatum: Spatiotemporal deposition patterns and sources. Environmental Science and Pollution Research, 29, 10617–10634. https://doi.org/10.1007/s11356-021-16153-x

    Article  CAS  Google Scholar 

  • ICP Vegetation. (2020). Heavy metals, nitrogen and POPs in European mosses. In Monitoring manual survey 2020 (pp. 1–27). Bangor (United Kingdom) and Dubna (Russian Federation).

  • Isinkaralar, O., & Isinkaralar, K. (2023). Projection of bioclimatic patterns via CMIP6 in the Southeast Region of Türkiye: A guidance for adaptation strategies for climate policy. Environmental Monitoring and Assessment, 195(12), 1448. https://doi.org/10.1007/s10661-023-11999-9

    Article  Google Scholar 

  • Isinkaralar, O., Isinkaralar, K., & Bayraktar, E. P. (2023). Monitoring the spatial distribution pattern according to urban land use and health risk assessment on potential toxic metal contamination via street dust in Ankara. Türkiye. Environmental Monitoring and Assessment, 195(9), 1085. https://doi.org/10.1007/s10661-023-11705-9

    Article  Google Scholar 

  • Isinkaralar, K., Isinkaralar, O., & Bayraktar, E. P. (2024a). Ecological and health risk assessment in road dust samples from various land use of Düzce City Center: Towards the sustainable urban development. Water, Air, & Soil Pollution, 235(1), 84. https://doi.org/10.1007/s11270-023-06879-4

    Article  CAS  Google Scholar 

  • Isinkaralar, O., Isinkaralar, K. & Ambade, B. (2024b). Assessment of societal health risks: Spatial distribution and potential hazards of toxic metals in street dust across diverse communities. Water Air Soil Pollution, 235, 302. https://doi.org/10.1007/s11270-024-07104-6

  • Istanbullu, S. N., Sevik, H., Isinkaralar, K., & Isinkaralar, O. (2023). Spatial distribution of heavy metal contamination in road dust samples from an urban environment in Samsun, Türkiye. Bulletin of Environmental Contamination and Toxicology, 110(4), 78. https://doi.org/10.1007/s00128-023-03720-w

    Article  CAS  Google Scholar 

  • Jeong, C. H., Wang, J. M., Hilker, N., Debosz, J., Sofowote, U., Su, Y., ... & Evans, G. J. (2019). Temporal and spatial variability of traffic-related PM2. 5 sources: Comparison of exhaust and non-exhaust emissions. Atmospheric Environment, 198, 55–69. https://doi.org/10.1016/j.atmosenv.2018.10.038

  • Jiang, Y., Fan, M., Hu, R., Zhao, J., & Wu, Y. (2018). Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas. International Journal of Environmental Research and Public Health, 15(6), 1105. https://doi.org/10.3390/ijerph15061105

    Article  CAS  Google Scholar 

  • Juginović, A., Vuković, M., Aranza, I., & Biloš, V. (2021). Health impacts of air pollution exposure from 1990 to 2019 in 43 European countries. Scientific Reports, 11(1), 22516. https://doi.org/10.1038/s41598-021-01802-5

    Article  CAS  Google Scholar 

  • Kapusta, P., & Godzik, B. (2020). Temporal and cross-regional variability in the level of air pollution in Poland—A study using moss as a bioindicator. Atmosphere, 11(2), 157. https://doi.org/10.3390/atmos11020157

    Article  CAS  Google Scholar 

  • Kelepertzis, E., Argyraki, A., Chrastný, V., Botsou, F., Skordas, K., Komárek, M., & Fouskas, A. (2020). Metal (loid) and isotopic tracing of Pb in soils, road and house dusts from the industrial area of Volos (central Greece). Science of the Total Environment, 725, 138300. https://doi.org/10.1016/j.scitotenv.2020.138300

    Article  CAS  Google Scholar 

  • Kempter, H., Krachler, M., Shotyk, W., & Zaccone, C. (2017). Major and trace elements in Sphagnum moss from four southern German bogs, and comparison with available moss monitoring data. Ecological Indicators, 78, 19–25. https://doi.org/10.1016/j.ecolind.2017.02.029

    Article  CAS  Google Scholar 

  • Konadu, F. N., Gyamfi, O., Ansah, E., Borquaye, L. S., Agyei, V., Dartey, E., ... & Darko, G. (2023). Human health risk assessment of potentially toxic elements in soil and air particulate matter of automobile hub environments in Kumasi, Ghana. Toxicology Reports, 11, 261–269. https://doi.org/10.1016/j.toxrep.2023.09.010

  • Kosior, G., Samecka-Cymerman, A., & Brudzińska-Kosior, A. (2018). Transplanted moss hylocomium splendens as a bioaccumulator of trace elements from different categories of sampling sites in the Upper Silesia Area (SW Poland): Bulk and dry deposition impact. Bulletin of Environmental Contamination and Toxicology, 101, 479–485. https://doi.org/10.1007/s00128-018-2429-y

    Article  CAS  Google Scholar 

  • Lequy, E., Saby, N. P., Ilyin, I., Bourin, A., Sauvage, S., & Leblond, S. (2017). Spatial analysis of trace elements in a moss bio-monitoring data over France by accounting for source, protocol and environmental parameters. Science of the Total Environment, 590, 602–610. https://doi.org/10.1016/j.scitotenv.2017.02.240

    Article  CAS  Google Scholar 

  • Mahapatra, B., Dhal, N. K., Dash, A. K., Panda, B. P., Panigrahi, K. C. S., & Pradhan, A. (2019). Perspective of mitigating atmospheric heavy metal pollution: Using mosses as biomonitoring and indicator organism. Environmental Science and Pollution Research, 26, 29620–29638. https://doi.org/10.1007/s11356-019-06270-z

    Article  Google Scholar 

  • Mao, H. T., Wang, X. M., Wu, N., Chen, L. X., Yuan, M., Hu, J. C., & Chen, Y. E. (2022). Temporal and spatial biomonitoring of atmospheric heavy metal pollution using moss bags in Xichang. Ecotoxicology and Environmental Safety, 239, 113688. https://doi.org/10.1016/j.ecoenv.2022.113688

    Article  CAS  Google Scholar 

  • Maxhuni, A., Lazo, P., Kane, S., Qarri, F., Marku, E., & Harmens, H. (2016). First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring. Environmental Science and Pollution Research, 23, 744–755. https://doi.org/10.1007/s11356-015-5257-1

    Article  CAS  Google Scholar 

  • Mentese, S., Yayintas, Ö. T., Bas, B., İrkin, L. C., & Yilmaz, S. (2021). Heavy metal and mineral composition of soil, atmospheric deposition, and mosses with regard to integrated pollution assessment approach. Environmental Management, 67, 833–851. https://doi.org/10.1007/s00267-021-01453-2

    Article  Google Scholar 

  • Michel, L., Renaudin, M., Darnajoux, R., Blasi, C., Vacherand, G., Le Monier, P., ... & Bellenger, J. P. (2024). Evaluating the effect of moss functional traits and sampling on elemental concentrations in Pleurozium schreberi and Ptilium crista-castrensis in Eastern Canada (Québec) black spruce forest. Science of The Total Environment, 907, 167900. https://doi.org/10.1016/j.scitotenv.2023.167900

  • Mondal, S., & Singh, G. (2021). Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India. Environmental Geochemistry and Health, 43, 2081–2103. https://doi.org/10.1007/s10653-020-00785-y

    Article  CAS  Google Scholar 

  • Motyka, O., Pavlíková, I., Bitta, J., Frontasyeva, M., & Jančík, P. (2020). Moss biomonitoring and air pollution modelling on a regional scale: Delayed reflection of industrial pollution in moss in a heavily polluted region? Environmental Science and Pollution Research, 27, 32569–32578. https://doi.org/10.1007/s11356-020-09466-w

    Article  Google Scholar 

  • Nguyen Viet, H., Frontasyeva, M. V., Trinh Thi, T. M., Gilbert, D., & Bernard, N. (2010). Atmospheric heavy metal deposition in Northern Vietnam: Hanoi and Thainguyen case study using the moss biomonitoring technique, INAA and AAS. Environmental Science and Pollution Research, 17, 1045–1052. https://doi.org/10.1007/s11356-009-0258-6

    Article  CAS  Google Scholar 

  • Nieder, R., & Benbi, D. K. (2023). Potentially toxic elements in the environment–A review of sources, sinks, pathways and mitigation measures. Reviews on Environmental Health. https://doi.org/10.1515/reveh-2022-0161

    Article  Google Scholar 

  • Oduro, P. A., Ankar-Brewoo, G., Dodd, M., Ansah, E., Darko, C., Borquaye, L. S., & Darko, G. (2023). Health risks of potentially toxic metals in cereal-based breakfast meals in the Kumasi Metropolis. Ghana. Discover Food, 3(1), 25. https://doi.org/10.1007/s44187-023-00067-3

    Article  Google Scholar 

  • Potapowicz, J., Szumińska, D., Szopińska, M., & Polkowska, Ż. (2019). The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: Part I. Case study of Antarctica. Science of the Total Environment, 651, 1534–1548. https://doi.org/10.1016/j.scitotenv.2018.09.168

    Article  CAS  Google Scholar 

  • Qarri, F., Lazo, P., Allajbeu, S., Bekteshi, L., Kane, S., & Stafilov, T. (2019). The evaluation of air quality in Albania by moss biomonitoring and metals atmospheric deposition. Archives of Environmental Contamination and Toxicology, 76, 554–571. https://doi.org/10.1007/s00244-019-00608-x

    Article  CAS  Google Scholar 

  • Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191, 1–21. https://doi.org/10.1007/s10661-019-7528-7

    Article  CAS  Google Scholar 

  • Rajak, R., & Chattopadhyay, A. (2020). Short and long term exposure to ambient air pollution and impact on health in India: A systematic review. International Journal of Environmental Health Research, 30(6), 593–617. https://doi.org/10.1080/09603123.2019.1612042

    Article  Google Scholar 

  • Rajfur, M., Zinicovscaia, I., Yushin, N., Świsłowski, P., & Wacławek, M. (2023). Moss-bag technique as an approach to monitor elemental concentration indoors. Environmental Research, 238, 117137. https://doi.org/10.1016/j.envres.2023.117137

    Article  CAS  Google Scholar 

  • Ren, X., Wang, J., Zhong, Q., Bi, Q., Zhu, R., & Du, J. (2021). Radionuclide and trace metal accumulation in a variety of mosses used as bioindicators for atmospheric deposition. Science of the Total Environment, 797, 149224. https://doi.org/10.1016/j.scitotenv.2021.149224

    Article  CAS  Google Scholar 

  • Rivera, M., Zechmeister, H., Medina-Ramón, M., Basagaña, X., Foraster, M., Bouso, L., ... & Künzli, N. (2011). Monitoring of heavy metal concentrations in home outdoor air using moss bags. Environmental Pollution, 159(4), 954–962. https://doi.org/10.1016/j.envpol.2010.12.004

  • Rota, E., Braccino, B., Dei, R., Ancora, S., & Bargagli, R. (2018). Organisms in wall ecosystems as biomonitors of metal deposition and bioavailability in urban environments. Environmental Science and Pollution Research, 25, 10946–10955. https://doi.org/10.1007/s11356-017-1170-0

    Article  CAS  Google Scholar 

  • Salo, H., & Mäkinen, J. (2014). Magnetic biomonitoring by moss bags for industry-derived air pollution in SW Finland. Atmospheric Environment, 97, 19–27. https://doi.org/10.1016/j.atmosenv.2014.08.003

    Article  CAS  Google Scholar 

  • Schröder, W., & Nickel, S. (2019). Spatial structures of heavy metals and nitrogen accumulation in moss specimens sampled between 1990 and 2015 throughout Germany. Environmental Sciences Europe, 31(1), 1–15. https://doi.org/10.1186/s12302-019-0216-y

    Article  CAS  Google Scholar 

  • Sergeeva, A., Zinicovscaia, I., Vergel, K., Yushin, N., & Urošević, M. A. (2021). The effect of heavy industry on air pollution studied by active moss biomonitoring in Donetsk Region (Ukraine). Archives of Environmental Contamination and Toxicology, 80, 546–557. https://doi.org/10.1007/s00244-021-00834-2

    Article  CAS  Google Scholar 

  • Shabanda, I. S., Koki, I. B., Low, K. H., Zain, S. M., Khor, S. M., & Abu Bakar, N. K. (2019). Daily exposure to toxic metals through urban road dust from industrial, commercial, heavy traffic, and residential areas in Petaling Jaya, Malaysia: A health risk assessment. Environmental Science and Pollution Research, 26, 37193–37211. https://doi.org/10.1007/s11356-019-06718-2

    Article  CAS  Google Scholar 

  • Słonina, N., Świsłowski, P., & Rajfur, M. (2021). Passive and active biomonitoring of atmospheric aerosol with the use of mosses. Ecological Chemistry and Engineering S, 28(2), 163–172. https://doi.org/10.2478/eces-2021-0012

    Article  CAS  Google Scholar 

  • Stafilov, T., Šajn, R., Puteska, A., & Dimovska, B. (2023). Moss biomonitoring of air pollution with potentially toxic elements in the Pelagonia Region. North Macedonia. Chemistry and Ecology, 39(3), 302–318. https://doi.org/10.1080/02757540.2023.2178650

    Article  CAS  Google Scholar 

  • Świsłowski, P., & Rajfur, M. (2023). Assessment of the air quality in an industrial zone using active moss biomonitoring. International Journal of Environmental Science and Technology, 1–10. https://doi.org/10.1007/s13762-023-05276-y

  • Świsłowski, P., Vergel, K., Zinicovscaia, I., Rajfur, M., & Wacławek, M. (2022). Mosses as a biomonitor to identify elements released into the air as a result of car workshop activities. Ecological Indicators, 138, 108849. https://doi.org/10.1016/j.ecolind.2022.108849

    Article  CAS  Google Scholar 

  • Tabors, G., Brūmelis, G., Nikodemus, O., Dobkeviča, L., & Viligurs, K. (2023). Decreased atmospheric deposition of heavy metals in Latvia shown by long-term monitoring using the moss Pleurozium schreberi. Environmental Science and Pollution Research, 30(41), 94361–94370. https://doi.org/10.1007/s11356-023-28922-x

    Article  CAS  Google Scholar 

  • Urošević, M. A., Lazo, P., Stafilov, T., Nečemer, M., Andonovska, K. B., Balabanova, B., ... & Vogel-Mikuš, K. (2023). Active biomonitoring of potentially toxic elements in urban air by two distinct moss species and two analytical techniques: A pan-Southeastern European study. Air Quality, Atmosphere & Health, 16(3), 595–612. https://doi.org/10.1007/s11869-022-01291-z

  • Varela, Z., Carballeira, A., Fernández, J. A., & Aboal, J. R. (2013). On the use of epigaeic mosses to biomonitor atmospheric deposition of nitrogen. Archives of Environmental Contamination and Toxicology, 64, 562–572. https://doi.org/10.1007/s00244-012-9866-0

    Article  CAS  Google Scholar 

  • Vergel, K., Zinicovscaia, I., Yushin, N., & Frontasyeva, M. V. (2019). Heavy metal atmospheric deposition study in Moscow region, Russia. Bulletin of Environmental Contamination and Toxicology, 103, 435–440. https://doi.org/10.1007/s00128-019-02672-4

    Article  CAS  Google Scholar 

  • Vergel, K., Zinicovscaia, I., Yushin, N., Chaligava, O., Nekhoroshkov, P., & Grozdov, D. (2022). Moss biomonitoring of atmospheric pollution with trace elements in the Moscow Region. Russia. Toxics, 10(2), 66. https://doi.org/10.3390/toxics10020066

    Article  CAS  Google Scholar 

  • Vithanage, M., Bandara, P. C., Novo, L. A., Kumar, A., Ambade, B., Naveendrakumar, G., ... & Magana-Arachchi, D. N. (2022). Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment. Chemosphere, 303, 135051. https://doi.org/10.1016/j.chemosphere.2022.135051

  • Vuković, G., Urošević, M. A., Goryainova, Z., Pergal, M., Škrivanj, S., Samson, R., & Popović, A. (2015). Active moss biomonitoring for extensive screening of urban air pollution: Magnetic and chemical analyses. Science of the Total Environment, 521, 200–210. https://doi.org/10.1016/j.scitotenv.2015.03.085

    Article  CAS  Google Scholar 

  • Wang, C., Shao, N., Xu, J., Zhang, Z., & Cai, Z. (2020). Pollution emission characteristics, distribution of heavy metals, and particle morphologies in a hazardous waste incinerator processing phenolic waste. Journal of Hazardous Materials, 388, 121751. https://doi.org/10.1016/j.jhazmat.2019.121751

    Article  CAS  Google Scholar 

  • Wiklund, J. A., Kirk, J. L., Muir, D. C., Gleason, A., Carrier, J., & Yang, F. (2020). Atmospheric trace metal deposition to remote Northwest Ontario, Canada: Anthropogenic fluxes and inventories from 1860 to 2010. Science of the Total Environment, 749, 142276. https://doi.org/10.1016/j.scitotenv.2020.142276

    Article  CAS  Google Scholar 

  • Xiao, J., Han, X., Sun, S., Wang, L., & Rinklebe, J. (2021). Heavy metals in different moss species in alpine ecosystems of Mountain Gongga, China: Geochemical characteristics and controlling factors. Environmental Pollution, 272, 115991. https://doi.org/10.1016/j.envpol.2020.115991

    Article  CAS  Google Scholar 

  • Yan, Y., Zhang, Q., Wang, G. G., & Fang, Y. M. (2016). Atmospheric deposition of heavy metals in Wuxi, China: Estimation based on native moss analysis. Environmental Monitoring and Assessment, 188, 1–8. https://doi.org/10.1007/s10661-016-5315-2

    Article  CAS  Google Scholar 

  • Zhang, T., Wang, P., Wang, M., Liu, J., Gong, L., & Xia, S. (2023). Spatial distribution, source identification, and risk assessment of heavy metals in riparian soils of the Tibetan plateau. Environmental Research, 237, 116977.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Oznur Isinkaralar: conceptualization; methodology; validation; formal analysis; visualization; investigation; data curation; writing—original draft; writing—reviewing and editing. Paweł Świsłowski: data curation, writing—reviewing and editing. Kaan Isinkaralar: validation; formal analysis; investigation; data curation; writing—original draft; writing—reviewing and editing. Małgorzata Rajfur: data curation, writing—reviewing and editing.

Corresponding author

Correspondence to Oznur Isinkaralar.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isinkaralar, O., Świsłowski, P., Isinkaralar, K. et al. Moss as a passive biomonitoring tool for the atmospheric deposition and spatial distribution pattern of toxic metals in an industrial city. Environ Monit Assess 196, 513 (2024). https://doi.org/10.1007/s10661-024-12696-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12696-x

Keywords

Navigation