Skip to main content

Advertisement

Log in

Soil organic carbon and nutrient characteristics of Anogeissus groves in old Opara forest reserve, Nigeria

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Forest-savanna transition zones of West Africa are uniquely characterized by forest groves, forest patches, or forest islands, the importance of which for sustainable resource management and their potential for carbon sequestration and nutrient cycling is often underrated. Our study conducted a comparative analysis of the soil organic carbon and nutrient characteristics of the Anogeissus groves in the old Opara forest reserve and their adjoining arable lands. We established 30 sampling frames of 100 m × 100 m plots with 15 frames per land use type. For each sampling frame, six observation points were randomly selected, and composite soil samples were collected at soil depths of 0–20 cm and 20–50 cm per observation point. Our results showed Anogeissus groves and their adjoining arable lands to exist on similar landscapes while the groves have enriched soil morphological characteristics (e.g., soil color), higher soil organic carbon (SOC), and better nutrient characteristics. There were strong positive relationships between SOC, effective cation exchange capacity, total nitrogen, calcium, magnesium and calcium, zinc, electrical conductivity, and copper. The significant soil organic matter accumulation in the groves accounts for the overall improved soil characteristics over the adjoining arable lands. Preserving the groves and similar African ecosystems may be important in climate regulation, resources and biodiversity conservation, and ethnopharmacology for rural communities. Thus, a question arises: should more land be set aside for ecological conservation or for agricultural productivity?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Map 1
Plate 1
Plate 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available upon request.

Code availability

Not applicable.

References

  • Adeoye, G. O., & Chude, V. O. (2006). Nutrient rationalization in Nigerian compound fertilizers (NPK) with special focus on phosphorus and potassium utilization. Policy analysis and comments: Claude Freeman, USAID Markets: Agricultural Inputs Advisor

  • Ajiboye, G. A., Ogunwale, J. A., Talbot, J., & Mesele, S. A. (2016). Effect of iron and aluminium oxide fractions and clay type on phosphorus sorption in some Alfisols in the Guinea Savanna ecology of Nigeria. Nigeria Journal of Soil and Environmental Research, 14, 54–58.

    Google Scholar 

  • Ajiboye, G. A., Adegbite, K. A., Oyedepo, J. A., & Mesele, S. A. (2017). Edaphic factors militating against sustainable maize production and recommended management practices on an Alfisol at Yagba, Kogi State, Nigeria. Nigeria Journal of Soil and Environmental Research, 15, 163–170.

    Google Scholar 

  • Ajiboye, G. A., Faniyi, T., & Mesele, S. A. (2018a). Phosphorus sorption under changing soil drainage condition of a wetland—implications for sustainable intensification of Agriculture. International Journal of Plant and Soil Science, 22(2), 1–10.

    Article  Google Scholar 

  • Ajiboye, G. A., Ogunwale, J. A., Talbot, J., & Mesele, S. A. (2018b). Wrong pedogenetic assumptions: A case study of the soils developed over talc in Southern Guinea Savanna of Nigeria using clay mineralogy. South African Journal of Plant and Soil, 35(1), 61–69. https://doi.org/10.1080/02571862.2017.1333637

    Article  Google Scholar 

  • Ajiboye, G. A., Oyetunji, C. A., Mesele, S. A., & Talbot, J. (2019). The role of soil mineralogical characteristics in sustainable soil fertility management: A case study of some tropical alfisols in Nigeria. Communications in Soil Science and Plant Analysis, 50(3), 333–349. https://doi.org/10.1080/00103624.2018.1563100

    Article  CAS  Google Scholar 

  • Alo, A. A. (2017). Spatial distribution of forest reserves and sawmills in Oyo State. Forests and Forest Products Journal, 10, 60–72.

    Google Scholar 

  • Anokye, J., Logah, V., & Opoku, A. (2021). Soil carbon stock and emission: estimates from three land-use systems in Ghana. Ecological Processes, 10(2021), 1–13.

  • Arbab, A. H. (2014). Review on Anogeissus leiocarpus a potent African traditional drug. International Journal Research of Pharmacy Chemistry, 4(3), 496–500.

    Google Scholar 

  • Arowolo, A. O., & Deng, X. (2018). Land use/land cover change and statistical fricana of cultivated land change drivers in Nigeria. Regional Environmental Change, 18, 247–259.

    Article  Google Scholar 

  • Aryal, K., Thapa, P. S., & Lamichhane, D. (2019). Revisiting agroforestry for building climate resilient communities: a case of package based integrated agroforestry practices in Nepal. Emerging Science Journal, 3(5), 303–11. https://doi.org/10.28991/esj-2019-01193

    Article  Google Scholar 

  • Asare, M. O. (2022). Anthropogenic dark earth: Evolution, distribution, physical, and chemical properties. European Journal of Soil Science, 73(5), e13308.

    Article  CAS  Google Scholar 

  • Baude, M., Meyer, B. C., & Schindewolf, M. (2019). Land use change in an agricultural landscape causing degradation of soil-based ecosystem services. Science of the Total Environment, 659, 1526–1536.

    Article  CAS  Google Scholar 

  • Baveye, P. C., Schnee, L. S., Boivin, P., Laba, M., & Radulovich, R. (2020). Soil organic matter research and climate change: Merely re-storing carbon versus restoring soil functions. Frontiers in Environmental Science, 8, 579904.

    Article  Google Scholar 

  • Boakye, E. A., Ceesay, A., Osemwegie, I., Kapoury, S., Hounkpevi, A., Matchi, I. I., & Tetteh, E. N. (2023). Climate change has limited effect on the growth of Afzelia fricana Sm. And Anogeissus leiocarpus (DC.) Guill. And Perr. In riparian forests in the savannas of Ghana. Forestry, 96(3), 316–325.

    Article  Google Scholar 

  • Boakye, E. A., Gebrekirstos, A., Hyppolite, D. N. D., Barnes, V. R., Kouamé, F. N., Kone, D., ... & Bräuning, A. (2016). Influence of climatic factors on tree growth in riparian forests in the humid and dry savannas of the Volta basin, Ghana. Trees, 30, 1695–1709.

  • Bougma, A. B., Ouattara, K., Compaore, H., Nacro, H. B., Melenya, C., Mesele, S. A., Logah, V., Azeez, J. O., Veenendaal, E., & Lloyd, J. (2022). Soil aggregate stability of forest islands and adjacent ecosystems in West Africa. Plant and Soil, 473, 533–546. https://doi.org/10.1007/s11104-022-05302-x

    Article  CAS  Google Scholar 

  • Bremner, J. M. (1996). Nitrogen‐total. Methods of soil analysis: Part 3 Chemical methods, 5(1996), 1085–1121.

  • Collinge, S. K. (2009). The ecology of fragmented landscapes. Baltimore, M.D: The Johns Hopkins University Press. Available from: http://www.effects-of-defo-restation.com/reforestation.php. Accessed1 June 2009.

  • Dagnachew, M., Moges, A., & Kassa, A. K. (2019). Effects of land uses on soil quality indicators: The case of Geshy subcatchment, Gojeb River Catchment Ethiopia. Applied and Environmental Soil Science, 2019(2019), 11. https://doi.org/10.1155/2019/2306019

    Article  Google Scholar 

  • Dayamba, S. D., Djoudi, H., Zida, M., Sawadogo, L., & Verchot, L. (2016). Biodiversity and carbon stocks in different land use types in the Sudanian Zone of Burkina Faso West Africa. Agriculture, Ecosystems & Environment, 2016(216), 61–72. https://doi.org/10.1016/j.agee.2015.09.023

    Article  Google Scholar 

  • Deng, L., Peng, C., Kim, D. G., Li, J., Liu, Y., Hai, X., Liu, Q., Huang, C., Shangguan, Z., & Kuzyakov, Y. (2021). Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews, 214, 103501.

    Article  CAS  Google Scholar 

  • Dimobe, K., Ouédraogo, A., Soma, S., Goetze, D., Porembski, S., & Thiombiano, A. (2015). Identification of driving factors of land degradation and deforestation in the Wildlife Reserve of Bontioli (Burkina Faso, West Africa). Global Ecology and Conservation, 4, 559–571.

    Article  Google Scholar 

  • ESA/ESRIN. (2016). Land cover map of Opara forest reserve, 20 m resolution. 

  • Fahr, J., & Kalko, E. K. (2011). Biome transitions as centres of diversity: Habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography, 34(2), 177–195.

    Article  Google Scholar 

  • Fairhead, J., & Leach, M. (1996). Misreading the African landscape: Society and ecology in a forest-savanna mosaic (p. 5). Cambridge University Press.

    Book  Google Scholar 

  • Fairhead, J., & Leach, M. (2009). Amazonian Dark Earths in Africa? In Amazonian Dark Earths: WimSombroek’s Vision (pp. 265–278). Springer.

    Book  Google Scholar 

  • FAO. (2015). Guidelines for soil description. FAO Publications.

    Google Scholar 

  • Frausin, V., Fraser, J. A., Narmah, W., Morrison, K. L., Thomas, R. W., Fairhead, J., & Leach, M. (2014). God made the soil, but we made it fertile”: Gender, knowledge, and practice in the formation and use of African Dark Earths in Liberia and Sierra Leone. Human Ecology, 42(5), 695–710.

    Article  Google Scholar 

  • Gautier, L., & Spichiger, R. (2004). The forest-savanna transition in West Africa. Biodiversity of West African forests: An ecological atlas of woody plant species (pp. 33–40). CABI Publishing.

    Chapter  Google Scholar 

  • Govindarajan, R., Vijayakumar, M., Singh, M., Rao, C. V., Shirwaikar, A., Rawat, A. K. S., & Pushpangadan, P. (2006). Antiulcer and antimicrobial activity of Anogeissus latifolia. Journal of Ethnopharmacology, 106(1), 57–61.

    Article  CAS  Google Scholar 

  • Haygarth, P. M., Bardgett, R. D., & Condron, L. M. (2013). Nitrogen & phosphorus cycles & their management. Soil Conditions & Plant Growth, (2013), 132–159.

  • Huising, E. J., Mesele, S. A., & Alabi, T. (2019). Land and soil suitability assessment of the agricultural development zone within the Opara Forest Reserve. Oyo State commissioned study, IITA-BIP, Ibadan, p. 52. https://hdl.handle.net/20.500.12478/8402. Accessed 3 Oct 2023.

  • Huising, J. E., & Mesele, S. A. (2021). Soil quality assessment and management plans for IITA research farms, Nigeria: IITA Ibadan campus, Ikenne and Kano (Minjibir) stations. IITA, Ibadan, p. 57. https://hdl.handle.net/10568/132851. Accessed 2 Oct 2023.

  • Huising, E. J., & Mesele, S. A. (2022) Protocol for field survey. Guidelines for Field Surveyors on Soil Sample Collection and Field Assessment of Agricultural Lands in Africa. https://www.soils4africa-h2020.eu/serverspecific/soils4africa/images/Documents/4.2AENGProtocolsforfieldsurvey_v3_20_03_2023.pdf. Accessed 15 June 2023.

  • Huluka, G., & Miller, R. (2014). Particle size determination by hydrometer method. Southern Cooperative Series Bulletin, 419, 180–184.

    Google Scholar 

  • Hunt, C. A. (2009). Carbon sinks and climate change: Forests in the fight against global warming. Edward Elgar Publishing.

  • Joy, E. J., Stein, A. J., Young, S. D., Er, E. L., Watts, M. J., & Broadley, M. R. (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant & Soil, 389(1–2), 1–24.

    Article  CAS  Google Scholar 

  • Kleemann, J., Baysal, G., Bulley, H. N., & Fürst, C. (2017). Assessing driving forces of l& use & l& cover change by a mixed-method approach in north-eastern Ghana, West Africa. Journal of Environmental Management, 196, 411–442.

    Article  Google Scholar 

  • Kremen, C., Iles, A., & Bacon, C. (2012). Diversified farming systems: An agroecological, systems-based alternative to modern industrial agriculture. Ecology & Society, 17(4).

  • Lal, R. (2016). Soil health and carbon management. Food and Energy Security, 5(4), 212–222.

    Article  Google Scholar 

  • Le, S., Josse, J., & Husson, F. (2008). FactoMineR: an R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01

    Article  Google Scholar 

  • Liu, Y., Li, S., Sun, X., et al. (2016). Variations of forest soil organic carbon & its influencing factors in east China. Annals of Forest Science, 73, 501–511.

    Article  Google Scholar 

  • Lloyd, J., Domingues, T. F., Schrodt, F., Ishida, F. Y., Feldpausch, T. R., Saiz, G., Quesada, C. A., Schwarz, M., Torello-Raventos, M., Gilpin, M., & Marimon, B. S. (2015). Edaphic, structural & physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure & function. Biogeosciences, 12(22), 6529–6571.

    Article  Google Scholar 

  • Logah, V., Tetteh, E. N., Adegah, E. Y., Mawunyefia, J., Ofosu, E. A., & Asante, D. (2020). Soil carbon stock & nutrient characteristics of Senna siamea grove in the semi-deciduous forest zone of Ghana. Open Geosciences, 2020(12), 443–451.

    Article  Google Scholar 

  • Lorenz, K., Lal, R., Lorenz, K., & Lal, R. (2010). The importance of carbon sequestration in forest ecosystems. Carbon Sequestration in Forest Ecosystems, (2010), 241–270.

  • Mengistu, D., Bewket, W., & Lal, R. (2015). Conservation effects on soil quality & climate change adaptability of Ethiopian watersheds. Land Degradation & Development, 27(6), 1603–21.

    Article  Google Scholar 

  • Mertz, O., Mbow, C., Nielsen, J. Ø., Maiga, A., Diallo, D., Reenberg, A., Diouf, A., Barbier, B., Moussa, I. B., Zorom, M., & Ouattara, I. (2010). Climate factors play a limited role for past adaptation strategies in West Africa. Ecology & Society, 15(4).

  • Mesele, S. A., & Ajiboye, G. A. (2020). Pedo-transfer functions for predicting total soil nitrogen in different land use types under some tropical environments. Ghana Journal of Science, 61(2), 45–56. https://doi.org/10.4314/gis.v61i2.5

    Article  Google Scholar 

  • Mesele, S. A., & Quansah, C. (2015). Variability in rainfall characteristics in the semi-deciduous forest zone of Ghana. European Water, 50, 25–33.

    Google Scholar 

  • Mesele, S. A., Amegashie, B. F., Quansah, C., & Adigun, J. K. (2016). Soil & nutrients losses under different management practices in Ghana. Acta Agrophysica, 23(4), 631–645.

    Google Scholar 

  • Mesele, S. A., Melenya, C., Bougma, A., Azeez, J. O., Ajiboye, G. A., Dubbin, W., Logah, V., Compaore, H., Veenendaal, E. M., & Lloyd, J. (2024). Soil mineralogical & nutrient characteristics of forest islands & surrounding ecosystem types in West Africa suggest anthropogenic soil improvement. Plant Soil, 495, 157–175. https://doi.org/10.1007/s11104-023-06042-2

    Article  CAS  Google Scholar 

  • Mesele, S. A., Ocansey, M. C., Bougma, A., Azeez, J. O., Ajiboye, G. A., Logah, V., Compaore, H., Veenendaal, E. M., & Lloyd, J. (2024b). Emerging ecological trends in West Africa: Implications on soil organic matter and other soil quality indicators. Plant and Soil. https://doi.org/10.1007/s11104-024-06568-z

    Article  Google Scholar 

  • Mesele, S. A., & Adigun, J. K. (2017). Temporal variations in soil organic matter content of different land use types in southwest Nigeria. Global symposium on soil organic carbon 2017, Rome, Italy, 21–23 March. Food and Agriculture Organization of the United Nations (FAO) (pp. 308–310).

  • Mesele, S. A. (2024). Changes in soil susceptibility to erosion under tillage and soil fertility management practices. Circular Agricultural Systems, 4, e004. https://doi.org/10.48130/cas-0024-0004

  • Moran, E. F., Brondizio, E. S., Tucker, J. M., da Silva-Forsberg, M. C., McCracken, S., & Falesi, I. (2000). Effects of soil fertility & l&-use on forest succession in Amazonia. Forest Ecology & Management, 139(1–3), 93–108.

    Article  Google Scholar 

  • Mukhtar, Y., Abdu, K., & Maigari, A. K. (2017). Efficacy of Anogeissus leiocarpus (DC.) as a potential therapeutic agent against Trypanosomiasis diseases: A review. Journal of Health and Pharmaceutical Research, 3, 1–9.

    Google Scholar 

  • Negasa, T., Ketema, H., Legesse, A., Sisay, M., & Temesgen, H. (2017). Variation in soil properties under different l& use types managed by smallholder farmers along the toposequence in southern Ethiopia. Geoderma, 290, 40–50.

    Article  CAS  Google Scholar 

  • Olayiwola, V. A., Mesele, S. A., & Ajayi, E. O. (2023). Towards a clean environment: To what extent can trees serve as phytoremediators for chemically polluted soils? Environmental Challenges, 13, 100764. https://doi.org/10.1016/j.envc.2023.100764

    Article  CAS  Google Scholar 

  • Oliver, T. H., & Morecroft, M. D. (2014). Interactions between climate change & l& use change on biodiversity: Attribution problems, risks, & opportunities. Wires Climate Change, 2014(5), 317–335. https://doi.org/10.1002/wcc.271

    Article  Google Scholar 

  • Olivoto, T., & Dal’Col Lúcio, A. (2020). metan: an R package for multi-environment trial analysis. Methods in Ecology & Evolution, 11(6), 783–789. https://doi.org/10.1111/2041-210X.13384

    Article  Google Scholar 

  • Pareek, N. (2007). Soil mineralizable sulphur: A sulphur availability index. Journal of the Indian Society of Soil Science, 55(3), 289–293.

    Google Scholar 

  • Pfanz, H., & Aschan, G. (2001). The existence of bark and stem photosynthesis in woody plants and its significance for the overall carbon gain (pp. 477–510). Genetics Physiology Systematics Ecology: An eco-physiological and ecological approach. Progress in Botany.

    Google Scholar 

  • Sacande, M., Parfondry, M., Cicatiello, C., Scarascia-Mugnozza, G., Garba, A., Olorunfemi, P. S., Diagne, M., & Martucci, A. (2021). Socio-economic impacts derived from large scale restoration in three Great Green Wall countries. Journal of Rural Studies, 87, 160–168.

    Article  Google Scholar 

  • Sims, J. T. (2000). Soil test phosphorus: Bray and Kurtz P-1. Methods of phosphorus analysis for soils, sediments, residuals, and waters.

  • Singh, D., Baghel, U. S., Gautam, A., Baghel, D. S., Yadav, D., Malik, J., & Yadav, R. (2016). The genus Anogeissus: A review on ethnopharmacology, phytochemistry & pharmacology. Journal of Ethnopharmacology, 194, 30–56.

    Article  CAS  Google Scholar 

  • Sobey, D. G. (1978). Anogeissus groves on ab&oned village sites in the Mole National Park, Ghana. Biotropica, 10, 87–99. https://doi.org/10.2307/2388011

    Article  Google Scholar 

  • Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global l& change from 1982 to 2016. Nature, 560(7720), 639–643.

    Article  CAS  Google Scholar 

  • Soon, Y. K., & Abboud, S. (1991). A comparison of some methods for soil organic carbon determination. Communications in Soil Science and Plant Analysis, 22(9–10), 943–954.

    Article  CAS  Google Scholar 

  • Sumner, M. E. (2000). Handbook of soil science CRC Press: Boca Raton (p. 98). FL.

    Google Scholar 

  • Torello-Raventos, M., Feldpausch, T. R., Veenendaal, E., Schrodt, F., Saiz, G., Domingues, T. F., Djagbletey, G., Ford, A., Kemp, J., Marimon, B. S., & Hur Marimon Junior, B. (2013). On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecology & Diversity, 6(1), 101–137.

    Article  Google Scholar 

  • Vaissie, P., Monge, A., & Husson, F. (2021). Factoshiny: perform factorial analysis from FactoMineR with a shiny application. R package version, 2(4).

  • Veenendaal, E. M., Torello-Raventos, M., Feldpausch, T., Domingues, T. F., Gerard, F. F., Schrodt, F., Saiz, G., Quesada, C. A., Djagbletey, G., Ford, A., Kemp, J., Marimon, B. S., Marimon Junior, B. H., Lenza, E., Ratter, J. A., Maracahipes, L., Sasaki, D., Sonké, B., Zapfack, L., … Lloyd, J. (2015). Structural, physiognomic & aboveground biomass variation in savanna-forest transition zones on three continents. How different are co-occurring savanna & forest formations? Biogeosciences, 12, 2927–2951.

    Article  Google Scholar 

  • Vesterdal, L., Rosenqist, L., Salms, C., Hansen, K., Groenenberg, B. J., & Johansson, M. B. (2007). Carbon sequestration in soil &biomass following afforestation: Experiences from Oak & Norway spruce chronosequences in Denmark, Sweden & theNethelands. In G. W. Heil, B. Muys, & K. Hansen (Eds.), Environmental effects of afforestation in North-Western Europe (pp. 19–51). Kluwer Academic Publishers.

  • White, P. J., & Brown, P. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7), 1073–1080.

  • Young, A. (1997). Agroforestry for soil management (No. Ed. 2). Wallingford, UK: CAB International & Nairobi, Kenya: ICRAF.

  • Ziadi, N., & Tran, T. S. (2008). Mehlich 3-extractable elements. Soil Sampling & Methods of Analysis, 2, 81–88.

    Google Scholar 

Download references

Acknowledgements

We appreciate the Government of Oyo State Nigeria for providing the funds for this study through the Ministry of Agriculture. The authors are grateful to the Aleniboro community head and members of the community who provided security and logistic support during the execution of the field campaign in 2019. We also thank the staff of the Forestry Department of the Ministry of Agriculture Oyo State Nigeria for their technical and administrative support. The views expressed in this article are solely those of the authors and do not represent any opinion of the Government of Oyo State Nigeria.

Funding

The study was funded by the Government of Oyo State Nigeria through the Ministry of Agriculture.

Author information

Authors and Affiliations

Authors

Contributions

SAM and EJH conceptualized the work and jointly wrote the main manuscript. SAM performed the quality control of the data, and statistical data analysis, and wrote the first draft of the manuscript. Both authors wrote, read and approved the final manuscript version.

Corresponding author

Correspondence to Samuel Ayodele Mesele.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors read and approve the work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesele, S.A., Huising, E.J. Soil organic carbon and nutrient characteristics of Anogeissus groves in old Opara forest reserve, Nigeria. Environ Monit Assess 196, 490 (2024). https://doi.org/10.1007/s10661-024-12636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12636-9

Keywords

Navigation