Skip to main content
Log in

Biochar imparted constructed wetlands (CWs) for enhanced biodegradation of organic and inorganic pollutants along with its limitation

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar’s feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

CWs:

Constructed wetlands

CFW:

Constructed floating wetland

TSS:

Total suspended solids

BOD5 :

Biochemical oxygen demand

SSF-CWs:

Sub-surface flow constructed wetlands

FWF-CWs:

Free water surface flow constructed wetlands

HF-CWs:

Horizontal flow constructed wetlands

VF-CWs:

Vertical flow constructed wetlands

DO:

Dissolved oxygen

CWMs:

Constructed wetland microcosms

AOX:

Adsorbable organic halogen

EW:

Emergent wetland

CWEs:

Constructed wetland ecotechnologies

CEC:

Cation exchange capacity

HRT:

Hydraulic retention time

HLR:

Hydraulic loading rate

COD:

Chemical oxygen demand

TN:

Total nitrogen

N2O:

Nitrous oxide

TP:

Total phosphorus

EC:

Electrical conductivity

VBF-CW:

Vertical baffle flow constructed wetland

E-BHFCWs:

Electrolysis-integrated, biochar-amended, horizontal (sub-surface) flow constructed wetlands

AC:

Activated carbon

VF-FWS-CWs:

Vertical flow and free water surface constructed wetland system

IRCWs:

Integrated recirculating constructed wetlands

References

  • Abedi, T., & Mojiri, A. (2019). Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment. Environmental Technology & Innovation, 16, 100472.

    Article  Google Scholar 

  • Ajibade, F. O., Wang, H.-C., Guadie, A., Ajibade, T. F., Fang, Y.-K., Sharif, H. M. A., Liu, W.-Z., & Wang, A.-J. (2021). Total nitrogen removal in biochar amended non-aerated vertical flow constructed wetlands for secondary wastewater effluent with low C/N ratio: Microbial community structure and dissolved organic carbon release conditions. Bioresource Technology, 322, 124430.

    Article  Google Scholar 

  • Ali, N., Khan, S., Li, Y., Zheng, N., & Yao, H. (2019). Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils. Science of the Total Environment, 647, 551–560.

    Article  CAS  Google Scholar 

  • Almuktar, S. A., Abed, S. N., & Scholz, M. (2018). Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environmental Science and Pollution Research, 25, 23595–23623.

    Article  CAS  Google Scholar 

  • Álvarez-Rogel, J., Gómez, M. d. C. T., Conesa, H. M., Párraga-Aguado, I., González-Alcaraz, M. N. (2018). Biochar from sewage sludge and pruning trees reduced porewater Cd, Pb and Zn concentrations in acidic, but not basic, mine soils under hydric conditions. Journal of Environmental Management, 223, 554-565

  • Bi, R., Zhou, C., Jia, Y., Wang, S., Li, P., Reichwaldt, E. S., & Liu, W. (2019). Giving waterbodies the treatment they need: A critical review of the application of constructed floating wetlands. Journal of Environmental Management, 238, 484–498.

    Article  CAS  Google Scholar 

  • Bolan, S., Hou, D., Wang, L., Hale, L., Egamberdieva, D., Tammeorg, P., Li, R., Wang, B., Xu, J., & Wang, T. (2023). The potential of biochar as a microbial carrier for agricultural and environmental applications. Science of the Total Environment, 886, 163968.

    Article  CAS  Google Scholar 

  • Bolton, L., Joseph, S., Greenway, M., Donne, S., Munroe, P., & Marjo, C. E. (2019). Phosphorus adsorption onto an enriched biochar substrate in constructed wetlands treating wastewater. Ecological Engineering: X, 1, 100005.

    Article  Google Scholar 

  • Chang, J., Peng, D., Deng, S., Chen, J., Duan, C. (2022). Efficient treatment of mercury (II).-containing wastewater in aerated constructed wetland microcosms packed with biochar. Chemosphere, 290, 133302

  • Cheng, R., Hou, S., Wang, J., Zhu, H., Shutes, B., Yan, B (2022) Biochar-amended constructed wetlands for eutrophication control and microcystin (MC-LR) removal. Chemosphere, 295, 133830

  • Cui, L., Yin, C., Chen, T., Quan, G., Ippolito, J. A., Liu, B., Yan, J., Ding, C., Hussain, Q., & Umer, M. (2019). Remediation of organic halogen-contaminated wetland soils using biochar. Science of the Total Environment, 696, 134087.

    Article  CAS  Google Scholar 

  • Davies, L., Pedro, I., Novais, J., & Martins-Dias, S. (2006). Aerobic degradation of acid orange 7 in a vertical-flow constructed wetland. Water Research, 40, 2055–2063.

    Article  CAS  Google Scholar 

  • De Rozari, P., Greenway, M., & El Hanandeh, A. (2015). An investigation into the effectiveness of sand media amended with biochar to remove BOD5, suspended solids and coliforms using wetland mesocosms. Water Science and Technology, 71, 1536–1544.

    Article  Google Scholar 

  • Deng, C., Huang, L., Liang, Y., Xiang, H., Jiang, J., Wang, Q., Hou, J., & Chen, Y. (2019). Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands: Microbial community structure and metabolite characteristics. Science of the Total Environment, 694, 133687.

    Article  CAS  Google Scholar 

  • Deng, S., Chen, J., & Chang, J. (2021). Application of biochar as an innovative substrate in constructed wetlands/biofilters for wastewater treatment: Performance and ecological benefits. Journal of Cleaner Production, 293, 126156.

    Article  CAS  Google Scholar 

  • El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., Zimmerman, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–554.

    Article  CAS  Google Scholar 

  • Fan, C., He, S., Wu, S., & Huang, J. (2021). Improved denitrification in surface flow constructed wetland planted with calamus. Journal of Cleaner Production, 291, 125944.

    Article  CAS  Google Scholar 

  • Feng, L., He, S., Wei, L., Zhang, J., & Wu, H. (2021). Impacts of aeration and biochar on physiological characteristics of plants and microbial communities and metabolites in constructed wetland microcosms for treating swine wastewater. Environmental Research, 200, 111415.

    Article  CAS  Google Scholar 

  • Feng, L., Gao, Z., Hu, T., He, S., Liu, Y., Jiang, J., Zhao, Q., & Wei, L. (2023). Performance and mechanisms of biochar-based materials additive in constructed wetlands for enhancing wastewater treatment efficiency: A review. Chemical Engineering Journal, 471, 144772.

    Article  CAS  Google Scholar 

  • Fernandez-Fernandez, M., de la Vega, P. M., Jaramillo-Morán, M., & Garrido, M. (2020). Hybrid constructed wetland to improve organic matter and nutrient removal. Water, 12, 2023.

    Article  Google Scholar 

  • Gao, Y., Zhang, W., Gao, B., Jia, W., Miao, A., Xiao, L., & Yang, L. (2018). Highly efficient removal of nitrogen and phosphorus in an electrolysis-integrated horizontal subsurface-flow constructed wetland amended with biochar. Water Research, 139, 301–310.

    Article  CAS  Google Scholar 

  • Gao, Y., Yan, C., Wei, R., Zhang, W., Shen, J., Wang, M., Gao, B., Yang, Y., & Yang, L. (2019). Photovoltaic electrolysis improves nitrogen and phosphorus removals of biochar-amended constructed wetlands. Ecological Engineering, 138, 71–78.

    Article  Google Scholar 

  • Ge, Y., Wang, X., Zheng, Y., Dzakpasu, M., Zhao, Y., & Xiong, J. (2015). Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment. Environmental Science and Pollution Research, 22, 12982–12991.

    Article  CAS  Google Scholar 

  • Gotore, O., Rameshprabu, R., & Itayama, T. (2022). Adsorption performances of corn cob-derived biochar in saturated and semi-saturated vertical-flow constructed wetlands for nutrient removal under erratic oxygen supply. Environmental Chemistry and Ecotoxicology, 4, 155–163.

    Article  CAS  Google Scholar 

  • Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46–59.

    Article  CAS  Google Scholar 

  • Guo, F., Zhang, J., Yang, X., He, Q., Ao, L., & Chen, Y. (2020a). Impact of biochar on greenhouse gas emissions from constructed wetlands under various influent chemical oxygen demand to nitrogen ratios. Bioresource Technology, 303, 122908.

    Article  CAS  Google Scholar 

  • Guo, X., Cui, X., & Li, H. (2020b). Effects of fillers combined with biosorbents on nutrient and heavy metal removal from biogas slurry in constructed wetlands. Science of the Total Environment, 703, 134788.

    Article  CAS  Google Scholar 

  • Guo, F., Luo, Y., Nie, M., Zheng, F., Zhang, G., & Chen, Y. (2023). A comprehensive evaluation of biochar for enhancing nitrogen removal from secondary effluent in constructed wetlands. Chemical Engineering Journal, 478, 147469.

    Article  CAS  Google Scholar 

  • Gupta, P., Ann, T.-W., Lee, S.-M., Gupta, P., Ann, T.-W., & Lee, S.-M. (2015). Use of biochar to enhance constructed wetland performance in wastewater reclamation. Environmental Engineering Research, 21, 36–44.

    Article  Google Scholar 

  • Hoffman, A. (2019). Water, energy, and environment: A primer. IWA publishing

  • Hu, Z.-Y., Chen, X., & Jiang, H. (2022). A life cycle assessment of the combined utilization of biomass waste-derived hydrochar as a carbon source and soil remediation. ACS ES&T Engineering, 3, 165–173.

    Article  Google Scholar 

  • Ji, B., Chen, J., Mei, J., Chang, J., Li, X., Jia, W., & Qu, Y. (2020). Roles of biochar media and oxygen supply strategies in treatment performance, greenhouse gas emissions, and bacterial community features of subsurface-flow constructed wetlands. Bioresource Technology, 302, 122890.

    Article  CAS  Google Scholar 

  • Jia, W., & Yang, L. (2021). Community composition and spatial distribution of N-removing microorganisms optimized by Fe-modified biochar in a constructed wetland. International Journal of Environmental Research and Public Health, 18, 2938.

    Article  CAS  Google Scholar 

  • Ju, X., Wu, S., Huang, X., Zhang, Y., & Dong, R. (2014). How the novel integration of electrolysis in tidal flow constructed wetlands intensifies nutrient removal and odor control. Bioresource Technology, 169, 605–613.

    Article  CAS  Google Scholar 

  • Kasak, K., Truu, J., Ostonen, I., Sarjas, J., Oopkaup, K., Paiste, P., Kõiv-Vainik, M., Mander, Ü., & Truu, M. (2018). Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Science of the Total Environment, 639, 67–74.

    Article  CAS  Google Scholar 

  • Kizito, S., Wu, S., Kirui, W. K., Lei, M., Lu, Q., Bah, H., & Dong, R. (2015). Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of the Total Environment, 505, 102–112.

    Article  CAS  Google Scholar 

  • Kizito, S., Lv, T., Wu, S., Ajmal, Z., Luo, H., & Dong, R. (2017). Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation. Science of the Total Environment, 592, 197–205.

    Article  CAS  Google Scholar 

  • Knox, O. G., Weitz, H. J., Anderson, P., Borlinghaus, M., & Fountaine, J. (2018). Improved screening of biochar compounds for potential toxic activity with microbial biosensors. Environmental Technology & Innovation, 9, 254–264.

    Article  Google Scholar 

  • Kumar, S., & Dutta, V. (2019). Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: An overview. Environmental Science and Pollution Research, 26, 11662–11673.

    Article  CAS  Google Scholar 

  • Li, J., Dai, J., Liu, G., Zhang, H., Gao, Z., Fu, J., He, Y., & Huang, Y. (2016). Biochar from microwave pyrolysis of biomass: A review. Biomass and Bioenergy, 94, 228–244.

    Article  CAS  Google Scholar 

  • Li, J., Fan, J., Liu, D., Hu, Z., & Zhang, J. (2019a). Enhanced nitrogen removal in biochar-added surface flow constructed wetlands: Dealing with seasonal variation in the north China. Environmental Science and Pollution Research, 26, 3675–3684.

    Article  CAS  Google Scholar 

  • Li, J., Hu, Z., Li, F., Fan, J., Zhang, J., Li, F., & Hu, H. (2019b). Effect of oxygen supply strategy on nitrogen removal of biochar-based vertical subsurface flow constructed wetland: Intermittent aeration and tidal flow. Chemosphere, 223, 366–374.

    Article  CAS  Google Scholar 

  • Liang, Y., Wang, Q., Huang, L., Liu, M., Wang, N., & Chen, Y. (2020). Insight into the mechanisms of biochar addition on pollutant removal enhancement and nitrous oxide emission reduction in subsurface flow constructed wetlands: Microbial community structure, functional genes and enzyme activity. Bioresource Technology, 307, 123249.

    Article  CAS  Google Scholar 

  • Liu, L., Tan, Z., Gong, H., & Huang, Q. (2018). Migration and transformation mechanisms of nutrient elements (N, P, K). within biochar in straw–biochar–soil–plant systems: A review. ACS Sustainable Chemistry & Engineering, 7, 22–32.

    Article  Google Scholar 

  • Liu, T., Xu, S., Lu, S., Qin, P., Bi, B., Ding, H., Liu, Y., Guo, X., & Liu, X. (2019). A review on removal of organophosphorus pesticides in constructed wetland: Performance, mechanism and influencing factors. Science of the Total Environment, 651, 2247–2268.

    Article  CAS  Google Scholar 

  • Lu, L., & Chen, B. (2018). Enhanced bisphenol A removal from stormwater in biochar-amended biofilters: Combined with batch sorption and fixed-bed column studies. Environmental Pollution, 243, 1539–1549.

    Article  CAS  Google Scholar 

  • Lu, S., Zhang, X., Wang, J., & Pei, L. (2016). Impacts of different media on constructed wetlands for rural household sewage treatment. Journal of Cleaner Production, 127, 325–330.

    Article  Google Scholar 

  • Lucke, T., Walker, C., & Beecham, S. (2019). Experimental designs of field-based constructed floating wetland studies: A review. Science of the Total Environment, 660, 199–208.

    Article  CAS  Google Scholar 

  • Lv, T., Zhang, Y., Zhang, L., Carvalho, P. N., Arias, C. A., & Brix, H. (2016). Removal of the pesticides imazalil and tebuconazole in saturated constructed wetland mesocosms. Water Research, 91, 126–136.

    Article  CAS  Google Scholar 

  • Meng, P., Pei, H., Hu, W., Shao, Y., & Li, Z. (2014). How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresource Technology, 157, 316–326.

    Article  CAS  Google Scholar 

  • Meng, F., Feng, L., Yin, H., Chen, K., Hu, G., Yang, G., & Zhou, J. (2019). Assessment of nutrient removal and microbial population dynamics in a non-aerated vertical baffled flow constructed wetland for contaminated water treatment with composite biochar addition. Journal of Environmental Management, 246, 355–361.

    Article  CAS  Google Scholar 

  • Minakshi, D., Sharma, P. K., Rani, A., Malaviya, P., Srivastava, V., & Kumar, M. (2022). Performance evaluation of vertical constructed wetland units with hydraulic retention time as a variable operating factor. Groundwater for Sustainable Development, 19, 100834.

    Article  Google Scholar 

  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U., Jr. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–A critical review. Bioresource Technology, 160, 191–202.

    Article  CAS  Google Scholar 

  • Moreno-Jiménez, E., Fernández, J. M., Puschenreiter, M., Williams, P. N., & Plaza, C. (2016). Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: Impact of biochar, organic and mineral fertilizers. Agriculture, Ecosystems & Environment, 219, 171–178.

    Article  Google Scholar 

  • Munir, R., Ali, K., Naqvi, S. A. Z., Muneer, A., Bashir, M. Z., Maqsood, M. A., & Noreen, S. (2023). Green metal oxides coated biochar nanocomposites preparation and its utilization in vertical flow constructed wetlands for reactive dye removal: Performance and kinetics studies. Journal of Contaminant Hydrology, 256, 104167.

    Article  CAS  Google Scholar 

  • Narayan, M., Srivastava, P. S. R. (2019). A review of constructed wetland coupled with microbial fuel cell: A recently emerged technology

  • Nelson, N. O., Agudelo, S. C., Yuan, W., & Gan, J. (2011). Nitrogen and phosphorus availability in biochar-amended soils. Soil Science, 176, 218–226.

    Article  CAS  Google Scholar 

  • Nguyen, X. C., Tran, T. P., Hoang, V. H., Nguyen, T. P., Chang, S. W., Nguyen, D. D., Guo, W., Kumar, A., La, D. D., & Bach, Q.-V. (2020). Combined biochar vertical flow and free-water surface constructed wetland system for dormitory sewage treatment and reuse. Science of the Total Environment, 713, 136404.

    Article  CAS  Google Scholar 

  • Novak, J., Sigua, G., Spokas, K., Busscher, W., Cantrell, K., Watts, D., Glaz, B., & Hunt, P. (2015). Plant macro-and micronutrient dynamics in a biochar-amended wetland muck. Water, Air, & Soil Pollution, 226, 2228.

    Article  Google Scholar 

  • Osman, A. I., Fawzy, S., Farghali, M., El-Azazy, M., Elgarahy, A. M., Fahim, R. A., Maksoud, M. A., Ajlan, A. A., Yousry, M., & Saleem, Y. (2022). Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environmental Chemistry Letters, 20, 2385–2485.

    Article  CAS  Google Scholar 

  • Ouyang, P., Narayanan, M., Shi, X., Chen, X., Li, Z., Luo, Y., & Ma, Y. (2023). Integrating biochar and bacteria for sustainable remediation of metal-contaminated soils. Biochar, 5, 63.

    Article  CAS  Google Scholar 

  • Phiri, Z., Moja, N. T., Nkambule, T. T., de Kock, L.-A. (2024). Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon

  • Qi, Y., Zhong, Y., Luo, L., He, J., Feng, B., Wei, Q., Zhang, K., & Ren, H. (2024). Subsurface constructed wetlands with modified biochar added for advanced treatment of tailwater: Performance and microbial communities. Science of the Total Environment, 906, 167533.

    Article  CAS  Google Scholar 

  • Qi, Y., Zhong, Y., Luo, L., He, J., Feng, B., Wei, Q., Zhang, K., Ren, H. (2023). Subsurface constructed wetlands with modified biochar added for advanced treatment of tailwater: Performance and microbial communities. Science of The Total Environment, 167533

  • Qiao, J.-T., Liu, T.-X., Wang, X.-Q., Li, F.-B., Lv, Y.-H., Cui, J.-H., Zeng, X.-D., Yuan, Y.-Z., & Liu, C.-P. (2018). Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere, 195, 260–271.

    Article  CAS  Google Scholar 

  • Qiu, Y., Zheng, Z., Zhou, Z., & Sheng, G. D. (2009). Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresource Technology, 100, 5348–5351.

    Article  CAS  Google Scholar 

  • Razmi, R., Ramavandi, B., Ardjmand, M., & Heydarinasab, A. (2019). Efficient phenol removal from petrochemical wastewater using biochar-La/ultrasonic/persulphate system: Characteristics, reusability, and kinetic study. Environmental Technology, 40, 822–834.

    Article  CAS  Google Scholar 

  • Saba, B., Jabeen, M., Khalid, A., Aziz, I., & Christy, A. D. (2015). Effectiveness of rice agricultural waste, microbes and wetland plants in the removal of reactive black-5 azo dye in microcosm constructed wetlands. International Journal of Phytoremediation, 17, 1060–1067.

    Article  CAS  Google Scholar 

  • Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 112, 429–448.

    Article  CAS  Google Scholar 

  • Saeed, T., Haque, I., & Khan, T. (2019a). Organic matter and nutrients removal in hybrid constructed wetlands: Influence of saturation. Chemical Engineering Journal, 371, 154–165.

    Article  CAS  Google Scholar 

  • Saeed, T., Yasmin, N., Sun, G., & Hasnat, A. (2019b). The use of biochar and crushed mortar in treatment wetlands to enhance the removal of nutrients from sewage. Environmental Science and Pollution Research, 26, 586–599.

    Article  CAS  Google Scholar 

  • Sathishkumar, K., Li, Y., & Sanganyado, E. (2020). Electrochemical behavior of biochar and its effects on microbial nitrate reduction: Role of extracellular polymeric substances in extracellular electron transfer. Chemical Engineering Journal, 395, 125077.

    Article  CAS  Google Scholar 

  • Sehar, S., Nasser, H. (2019). Wastewater treatment of food industries through constructed wetland: A review. International Journal of Environmental Science and Technology, 1–20

  • Shang, Z., Wang, Y., Wang, S., Jin, F., & Hu, Z. (2022). Enhanced phosphorus removal of constructed wetland modified with novel lanthanum-ammonia-modified hydrothermal biochar: Performance and mechanism. Chemical Engineering Journal, 449, 137818.

    Article  CAS  Google Scholar 

  • Sharma, P. (2022). Role and significance of biofilm-forming microbes in phytoremediation-A review. Environmental Technology & Innovation, 25, 102182.

    Article  CAS  Google Scholar 

  • Sharma, S., & Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Applied Water Science, 7, 1043–1067.

    Article  CAS  Google Scholar 

  • Sonu, K., Sogani, M., Syed, Z., Rajvanshi, J., & Sengupta, N. (2022). Effectiveness of rice husk in the removal of methyl orange dye in constructed wetland-microbial fuel cell. Bioresource Technology Reports, 20, 101223.

    Article  CAS  Google Scholar 

  • Tan, Z., Lin, C. S., Ji, X., & Rainey, T. J. (2017). Returning biochar to fields: A review. Applied Soil Ecology, 116, 1–11.

    Article  Google Scholar 

  • Tang, X., Yang, Y., Tao, R., Chen, P., Dai, Y., Jin, C., & Feng, X. (2016). Fate of mixed pesticides in an integrated recirculating constructed wetland (IRCW). Science of the Total Environment, 571, 935–942.

    Article  CAS  Google Scholar 

  • Tang, X.-Y., Huang, W.-D., Guo, J.-J., Yang, Y., Tao, R., & Feng, X. (2017a). Use of Fe-impregnated biochar to efficiently sorb chlorpyrifos, reduce uptake by Allium fistulosum L., and enhance microbial community diversity. Journal of Agricultural and Food Chemistry, 65, 5238–5243.

    Article  CAS  Google Scholar 

  • Tang, X., Yang, Y., Huang, W., McBride, M. B., Guo, J., Tao, R., & Dai, Y. (2017b). Transformation of chlorpyrifos in integrated recirculating constructed wetlands (IRCWs). as revealed by compound-specific stable isotope (CSIA). and microbial community structure analysis. Bioresource Technology, 233, 264–270.

    Article  CAS  Google Scholar 

  • Vijay, M. V., Sudarsan, J., & Nithiyanantham, S. (2017). Sustainability of constructed wetlands in using biochar for treating wastewater. Rasayan Journal of Chemistry, 10, 1056–1061.

    CAS  Google Scholar 

  • Vijay, M. V., Sudarsan, J., & Nithiyanantham, S. (2019). Sustainability of constructed wetlands using biochar as effective absorbent for treating wastewaters. International Journal of Energy and Water Resources, 3, 153–164.

    Article  Google Scholar 

  • Vymazal, J. (2013). Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering, 61, 582–592.

    Article  Google Scholar 

  • Vymazal, J. (2014). Constructed wetlands for treatment of industrial wastewaters: A review. Ecological Engineering, 73, 724–751.

    Article  Google Scholar 

  • Wang, J., Song, X., Li, Q., Bai, H., Zhu, C., Weng, B., Yan, D., & Bai, J. (2019). Bioenergy generation and degradation pathway of phenanthrene and anthracene in a constructed wetland-microbial fuel cell with an anode amended with nZVI. Water Research, 150, 340–348.

    Article  CAS  Google Scholar 

  • Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., & Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 175, 594–601.

    Article  CAS  Google Scholar 

  • Wu, S., Vymazal, J., & Brix, H. (2019). Critical review: Biogeochemical networking of iron in constructed wetlands for wastewater treatment. Environmental Science & Technology, 53, 7930–7944.

    Article  CAS  Google Scholar 

  • Xiang, L., Harindintwali, J. D., Wang, F., Redmile-Gordon, M., Chang, S. X., Fu, Y., He, C., Muhoza, B., Brahushi, F., & Bolan, N. (2022). Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environmental Science & Technology, 56, 16546–16566.

    Article  CAS  Google Scholar 

  • Xing, C., Xu, X., Xu, Z., Wang, R., & Xu, L. (2021). Study on the decontamination effect of biochar-constructed wetland under different hydraulic conditions. Water, 13, 893.

    Article  CAS  Google Scholar 

  • Xu, J., Liu, X., Huang, J., Huang, M., Wang, T., Bao, S., Tang, W., & Fang, T. (2020). The contributions and mechanisms of iron-microbes-biochar in constructed wetlands for nitrate removal from low carbon/nitrogen ratio wastewater. RSC Advances, 10, 23212–23220.

    Article  CAS  Google Scholar 

  • Yadav, G., Yadav, N., Sultana, M., Ahmaruzzaman, M. (2023). A comprehensive review on low-cost waste-derived catalysts for environmental remediation. Materials Research Bulletin, 112261

  • Yang, Y., Zhao, Y., Liu, R., & Morgan, D. (2018). Global development of various emerged substrates utilized in constructed wetlands. Bioresource Technology, 261, 441–452.

    Article  CAS  Google Scholar 

  • Ye, S., Zeng, G., Wu, H., Liang, J., Zhang, C., Dai, J., Xiong, W., Song, B., Wu, S., & Yu, J. (2019). The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resources, Conservation and Recycling, 140, 278–285.

    Article  Google Scholar 

  • Yu, P., Qin, K., Niu, G., Gu, M. (2023). Alleviate environmental concerns with biochar as a container substrate: A review. Frontiers in Plant Science, 14

  • Yuan, Y., Yang, B., Wang, H., Lai, X., Li, F., Salam, M. M. A., Pan, F., & Zhao, Y. (2020). The simultaneous antibiotics and nitrogen removal in vertical flow constructed wetlands: Effects of substrates and responses of microbial functions. Bioresource Technology, 310, 123419.

    Article  CAS  Google Scholar 

  • Zhang, D. Q., Tan, S. K., Gersberg, R. M., Zhu, J., Sadreddini, S., & Li, Y. (2012). Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. Journal of Environmental Management, 96, 1–6.

    Article  Google Scholar 

  • Zhang, Z., Solaiman, Z. M., Meney, K., Murphy, D. V., & Rengel, Z. (2013). Biochars immobilize soil cadmium, but do not improve growth of emergent wetland species Juncus subsecundus in cadmium-contaminated soil. Journal of Soils and Sediments, 13, 140–151.

    Article  Google Scholar 

  • Zhang, X., Sarmah, A. K., Bolan, N. S., He, L., Lin, X., Che, L., Tang, C., & Wang, H. (2016). Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar. Chemosphere, 142, 28–34.

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, M., Dong, L., Han, C., Li, M., & Wu, H. (2021). Effects of biochar dosage on treatment performance, enzyme activity and microbial community in aerated constructed wetlands for treating low C/N domestic sewage. Environmental Technology & Innovation, 24, 101919.

    Article  CAS  Google Scholar 

  • Zheng, C., Zhang, X., Gan, L., He, Z., Zhu, J., Zhang, W., Gao, Y., & Yang, L. (2021). Effects of biochar on the growth of Vallisneria natans in surface flow constructed wetland. Environmental Science and Pollution Research, 28, 66158–66170.

    Article  Google Scholar 

  • Zheng, F., Fang, J., Guo, F., Yang, X., Liu, T., Chen, M., Nie, M., & Chen, Y. (2022). Biochar based constructed wetland for secondary effluent treatment: Waste resource utilization. Chemical Engineering Journal, 432, 134377.

    Article  CAS  Google Scholar 

  • Zheng, H., Zhang, C., Liu, B., Liu, G., Zhao, M., Xu, G., Luo, X., Li, F., Xing, B. (2020). Biochar for water and soil remediation: Production, characterization, and application, a new paradigm for environmental chemistry and toxicology. Springer, pp. 153–196

  • Zhou, X., Jia, L., Liang, C., Feng, L., Wang, R., & Wu, H. (2018a). Simultaneous enhancement of nitrogen removal and nitrous oxide reduction by a saturated biochar-based intermittent aeration vertical flow constructed wetland: Effects of influent strength. Chemical Engineering Journal, 334, 1842–1850.

    Article  CAS  Google Scholar 

  • Zhou, X., Liang, C., Jia, L., Feng, L., Wang, R., & Wu, H. (2018b). An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment: Impact of influent strengths. Bioresource Technology, 247, 844–850.

    Article  CAS  Google Scholar 

  • Zhou, X., Chen, Z., Li, Z., & Wu, H. (2020). Impacts of aeration and biochar addition on extracellular polymeric substances and microbial communities in constructed wetlands for low C/N wastewater treatment: Implications for clogging. Chemical Engineering Journal, 396, 125349.

    Article  CAS  Google Scholar 

  • Zhuang, L.-L., Li, M., Li, Y., Zhang, L., Xu, X., Wu, H., Liang, S., Su, C., & Zhang, J. (2022). The performance and mechanism of biochar-enhanced constructed wetland for wastewater treatment. Journal of Water Process Engineering, 45, 102522.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ruba Munir: data curation, conceptualization, writing (original draft), and resources. Saima Noreen: supervision, conceptualization, and writing (reviewing and editing). Amna Muneer: data curation and writing (review and editing). Bushra Sadia: writing (reviewing and editing). Muhammad Zahid: writing (reviewing and editing). Muhammad Yaseen: writing (review and editing). Fazila Younas: investigation and writing (review and editing).

Corresponding author

Correspondence to Saima Noreen.

Ethics declarations

Ethical approval

Research does not involve Human Participants or/and Animals.

Consent to participate

Not applicable.

Consent for publication

All authors have read, understood, and complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the instructions for authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Application of biochar-augmented constructed wetlands.

• Investigating the diversity of biochar feedstock, the impacts of heating and temperature variations, and optimizing conditions as a substrate.

• CW system design criteria with biochar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, R., Muneer, A., Sadia, B. et al. Biochar imparted constructed wetlands (CWs) for enhanced biodegradation of organic and inorganic pollutants along with its limitation. Environ Monit Assess 196, 425 (2024). https://doi.org/10.1007/s10661-024-12595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12595-1

Keywords

Navigation