Skip to main content
Log in

Biomass patterns in Srivilliputhur Wildlife Sanctuary: exploring factors and gradients with machine learning approach

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Forest biomass plays a crucial role in the global carbon cycle as a significant contributor derived from both soil and trees. This study focuses on investigating tree carbon stock (TCS) and estimating aboveground biomass (AGB) based on elevation within the Srivilliputhur Wildlife Sanctuary forest, while also exploring the various factors that influence their contribution. Utilizing a non-destructive approach for carbon estimation, we found that the total tree biomass in this region ranged from 220.9 Mg/ha (in Z6) to 720.6 Mg/ha (Z2), while tree carbon stock ranged from 103.8 to 338.7 Mg/ha. While Kruskal–Wallis tests did not reveal a significant relationship (p = 0.09) between TCS and elevation, linear regression showed a weak correlation (R2 = 0.002, p < 0.05) with elevation. To delve deeper into the factors influencing TCS and biomass distribution, we employed a random forest (RF) machine learning algorithm, demonstrating that stand structural attributes, such as basal area (BA), diameter at breast height (DBH), and density, held a more prominent role than climatic variables, including temperature, precipitation, and slope. Generalized linear models (GLM) were also utilized, confirming that BA, mean DBH, and elevation significantly influenced AGB (p ≤ 0.001), with species richness, precipitation, and temperature having lower significance (p ≤ 0.01) comparatively. Overall, the RF model exhibited superior performance (R2 = 0.92, RMSE = 0.12) in terms of root mean square error (RMSE) compared to GLM (R2 = 0.88, RMSE = 0.35). These findings shed light on the intricate dynamics of biomass distribution and the importance of both stand structural and climatic factors in shaping forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data presented in this study are available on a reasonable request from the corresponding author.

References

  • Arul, P. L. (2015). Tree carbon stock assessment from the tropical forests of Bodamalai hills located in India. Journal of Earth Science & Climatic Change, 6(10), 1.

    Google Scholar 

  • Augusto, L., & Boča, A. (2022). Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nature Communications, 13(1), 1–12. https://doi.org/10.1038/s41467-022-28748-0

    Article  CAS  Google Scholar 

  • Babu, K. N., Mandyam, S., Jetty, S., Dar, A. A., Ayushi, K., Narayanan, A., Somaiah, S., & Narayanaswamy, P. (2023). Carbon stocks of tree plantations in a Western Ghats landscape, India: Influencing factors and management implications. Environmental Monitoring and Assessment, 195(3), 404. https://doi.org/10.1007/s10661-023-10964-w

    Article  CAS  Google Scholar 

  • Bandopadhyay, S. (2016). Does elevation impact local level climate change? An analysis based on fifteen years of daily diurnal data and time series forecasts. Pacific Science Review a: Natural Science and Engineering, 18(3), 241–253. https://doi.org/10.1016/j.psra.2016.11.002

    Article  Google Scholar 

  • Barrufol, M., Schmid, B., Bruelheide, H., Chi, X., Hector, A., Ma, K., Michalski, S., Tang, Z., & Niklaus, P. A. (2013). Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE, 8(11), 1–9. https://doi.org/10.1371/journal.pone.0081246

    Article  CAS  Google Scholar 

  • Biecek, P. (2018). Dalex: Explainers for complex predictive models in R. Journal of Machine Learning Research, 19, 1–5.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Buragohain, M. K., Dar, A. A., Babu, K. N., & Parthasarathy, N. (2023). Tree community structure, carbon stocks and regeneration status of disturbed lowland tropical rain forests of Assam, India. Trees, Forests and People, 11, 100371. https://doi.org/10.1016/j.tfp.2023.100371

    Article  Google Scholar 

  • Cairns, M. A., Brown, S., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world’s upland forests. Oecologia, 111, 1–11.

    Article  Google Scholar 

  • Chaudhary, S., & Aryal, B. (2023). Factors affecting the tree and soil carbon stock in Shorea robusta Gaertn. forests along the elevational gradient in Eastern Nepal. Acta Ecologica Sinica, August, 1–12. https://doi.org/10.1016/j.chnaes.2023.09.001

  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x

    Article  CAS  Google Scholar 

  • Clark, C. M., Flynn, D. F. B., Butterfield, B. J., & Reich, P. B. (2012). Testing the link between functional diversity and ecosystem functioning in a Minnesota grassland experiment. PLoS ONE, 7(12), e52821. https://doi.org/10.1371/journal.pone.0052821

    Article  CAS  Google Scholar 

  • Curtis, J., & McIntosh, R. (1950). The interrelations of certain analytic and synthetic phytosociological characters author ( s ): J . T . Curtis and R . P . McIntosh Published by : Ecological Society of America Stable URL : http://www.jstor.org/stable/1931497 . Ecology, 31(3), 434–455.

  • Dar, A. A., & Parthasarathy, N. (2022). Patterns and drivers of tree carbon stocks in Kashmir Himalayan forests: Implications for climate change mitigation. Ecological Processes, 11(1), 58. https://doi.org/10.1186/s13717-022-00402-z

    Article  Google Scholar 

  • Devagiri, G. M., Money, S., Singh, S., Dadhawal, V. K., Patil, P., Khaple, A., Devakumar, A. S., & Hubballi, S. (2013). Assessment of above ground biomass and carbon pool in different vegetation types of south western part of Karnataka India Using Spectral Modeling. Tropical Ecology, 54(2), 149–165.

    Google Scholar 

  • Ding, Y., & Zang, R. (2021). Determinants of aboveground biomass in forests across three climatic zones in China. Forest Ecology and Management, 482, 118805. https://doi.org/10.1016/j.foreco.2020.118805

    Article  Google Scholar 

  • Dyderski, M. K., & Pawlik, Ł. (2021). Drivers of forest aboveground biomass and its increments in the Tatra Mountains after 15 years. Catena, 205, 105468.

  • Haq, S. M., Rashid, I., Waheed, M., & Khuroo, A. A. (2023). From forest floor to tree top: Partitioning of biomass and carbon stock in multiple strata of forest vegetation in Western Himalaya. Environmental Monitoring and Assessment, 195(7), 812. https://doi.org/10.1007/s10661-023-11376-6

    Article  CAS  Google Scholar 

  • Hui, D., Wang, J., Le, X., Shen, W., & Ren, H. (2012). Influences of biotic and abiotic factors on the relationship between tree productivity and biomass in China. Forest Ecology and Management, 264, 72–80. https://doi.org/10.1016/j.foreco.2011.10.012

    Article  Google Scholar 

  • IPCC. (2007). Summary for policymakers. In: Climate change 2007: Impacts, adaptation and vulnerability. Cambridge University Press, Cambridge.

  • IPCC. (2022). IPCC sixth assessment report: Impacts, adaptation and vulnerability. https://www.ipcc.ch/report/ar6/wg2/. Accessed 20 Sept 2023

  • Islam, T., Ali, L., Nawchoo, I. A., & Khuroo, A. A. (2023). Diversity and utilization patterns of fodder resources in a Himalayan protected area. Environmental Monitoring and Assessment, 195(9), 1117. https://doi.org/10.1007/s10661-023-11739-z

    Article  Google Scholar 

  • Jiang, F., Sun, H., Ma, K., Fu, L., & Tang, J. (2022). Improving aboveground biomass estimation of natural forests on the Tibetan Plateau using spaceborne LiDAR and machine learning algorithms. Ecological Indicators, 143, 109365. https://doi.org/10.1016/j.ecolind.2022.109365

    Article  CAS  Google Scholar 

  • Kaushal, S., & Baishya, R. (2021). Stand structure and species diversity regulate biomass carbon stock under major Central Himalayan forest types of India. Ecological Processes 10(1) https://doi.org/10.1186/s13717-021-00283-8

  • Kaveh, N., Ebrahimi, A., & Asadi, E. (2023). Comparative analysis of random forest, exploratory regression, and structural equation modeling for screening key environmental variables in evaluating rangeland above-ground biomass. Ecological Informatics, 77, 102251. https://doi.org/10.1016/j.ecoinf.2023.102251

    Article  Google Scholar 

  • Kazempour Larsary, M., Pourbabaei, H., Sanaei, A., Salehi, A., Yousefpour, R., & Ali, A. (2021). Tree-size dimension inequality shapes aboveground carbon stock across temperate forest strata along environmental gradients. Forest Ecology and Management, 496, 119482. https://doi.org/10.1016/j.foreco.2021.119482

    Article  Google Scholar 

  • Khadanga, S. S., & Jayakumar, S. (2020). Tree biomass and carbon stock: Understanding the role of species richness, elevation, and disturbance. Tropical Ecology, 61, 128–141.

    Article  CAS  Google Scholar 

  • Khadanga, S. S., Dar, A. A., Jaiswal, N., Dash, P. K., & Jayakumar, S. (2023). Elevation patterns of tree diversity, composition and stand structure in Mahendragiri Hill Forest, Eastern Ghats of Odisha India. Journal of Asia-Pacific Biodiversity, 16(3), 391–405. https://doi.org/10.1016/j.japb.2023.04.004

    Article  Google Scholar 

  • Kothandaraman, S., Dar, J. A., Sundarapandian, S., Dayanandan, S., & Khan, M. L. (2020). Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats India. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-70313-6

    Article  CAS  Google Scholar 

  • Kumar, A., Kumar, M., Pandey, R., ZhiGuo, Y., & Cabral-Pinto, M. (2021). Forest soil nutrient stocks along altitudinal range of Uttarakhand Himalayas: An aid to Nature Based Climate Solutions. CATENA, 207, 105667. https://doi.org/10.1016/j.catena.2021.105667

    Article  CAS  Google Scholar 

  • Liu, L., Zeng, F., Song, T., Wang, K., & Du, H. (2020). Stand structure and abiotic factors modulate karst forest biomass in Southwest China. Forests, 11(4), 1–11. https://doi.org/10.3390/F11040443

    Article  CAS  Google Scholar 

  • Marifatul Haq, S., Rashid, I., Soares Calixto, E., Ali, A., Kumar, M., Srivastava, G., Bussmann, R. W., & Ahmad Khuroo, A. (2022). Unravelling patterns of forest carbon stock along a wide elevational gradient in the Himalaya: Implications for climate change mitigation. Forest Ecology and Management, 521, 120442. https://doi.org/10.1016/j.foreco.2022.120442

    Article  Google Scholar 

  • Martin, A. R., & Thomas, S. C. (2011). A reassessment of carbon content in tropical trees. PLoS ONE, 6(8), e23533. https://doi.org/10.1371/journal.pone.0023533

    Article  CAS  Google Scholar 

  • Mensah, S., Veldtman, R., Du Toit, B., Kakaï, R. G., & Seifert, T. (2016). Aboveground biomass and carbon in a South African Mistbelt forest and the relationships with tree species diversity and forest structures. Forests, 7(4), 79. https://doi.org/10.3390/f7040079

    Article  Google Scholar 

  • Nath, P. C., Ahmed, A., Bania, J. K., et al. (2022). Tree diversity and biomass carbon stock along an altitudinal gradient in old-growth secondary semi-evergreen forests in North East India. Tropical Ecology, 63, 20–29. https://doi.org/10.1007/s42965-021-00185-y

    Article  CAS  Google Scholar 

  • Naveenkumar, J., Arunkumar, K. S., & Sundarapandian, S. M. (2017). Biomass and carbon stocks of a tropical dry forest of the Javadi Hills, Eastern Ghats India. Carbon Management, 8(5–6), 351–361. https://doi.org/10.1080/17583004.2017.1362946

    Article  CAS  Google Scholar 

  • Padmakumar, B., Sreekanth, N. P., Shanthiprabha, V., Paul, J., Sreedharan, K., Augustine, T., Jayasooryan, K. K., Rameshan, M., Mohan, M., Ramasamy, E. V., & Thomas, A. P. (2018). Tree biomass and carbon density estimation in the tropical dry forest of southern western Ghats India. Iforest, 11(4), 534–541. https://doi.org/10.3832/ifor2190-011

    Article  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., David McGuire, A., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993.

    Article  CAS  Google Scholar 

  • Poorter, L., van der Sande, M. T., Thompson, J., Arets, E. J., Alarcón, A., Álvarez-Sánchez, J., ... & Peña-Claros, M. (2015). Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24(11), 1314–1328.

  • Poorter, L., van der Sande, M. T., Arets, E. J., Ascarrunz, N., Enquist, B. J., Finegan, B., & Peña-Claros, M. (2017). Biodiversity and climate determine the functioning of Neotropical forests. Global Ecology and Biogeography, 26(12), 1423–1434.

    Article  Google Scholar 

  • Prabha, S. J., Kumar, S., Shrinidhi, R., & Megha, M. (2017). Quantitative analysis of carbon storage capacity in the standing biomass of semi-arid regions of Ramdurga Taluk, Belagavi District. Karnataka. Asian J Sci and Tech, 8(11), 6510–5.

    Google Scholar 

  • Pragasan, L. A. (2022). Tree carbon stock and its relationship to key factors from a tropical hill forest of Tamil Nadu, India. Geology, Ecology, and Landscapes, 6(1), 32–39. https://doi.org/10.1080/24749508.2020.1742510

    Article  Google Scholar 

  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.Org/

  • Saimun, M. S. R., Karim, M. R., Sultana, F., & Arfin-Khan, M. A. S. (2021). Multiple drivers of tree and soil carbon stock in the tropical forest ecosystems of Bangladesh. Trees, Forests and People, 5, 100108. https://doi.org/10.1016/j.tfp.2021.100108

    Article  Google Scholar 

  • Samuelsson, O., Björk, A., Zambrano, J., & Carlsson, B. (2017). Gaussian process regression for monitoring and fault detection of wastewater treatment processes. Water Science and Technology, 75(12), 2952–2963.

    Article  CAS  Google Scholar 

  • Sandoya, V., Saura-Mas, S., Granzow-de la Cerda, I., Arellano, G., Macía, M. J., Tello, J. S., & Lloret, F. (2021). Contribution of species abundance and frequency to aboveground forest biomass along an Andean elevation gradient. Forest Ecology and Management, 479, 118549. https://doi.org/10.1016/j.foreco.2020.118549

    Article  Google Scholar 

  • Shi, Y., Xu, L., Zhou, Y., Ji, B., Zhou, G., Fang, H., Yin, J., & Deng, X. (2018). Quantifying driving factors of vegetation carbon stocks of Moso bamboo forests using machine learning algorithm combined with structural equation model. Forest Ecology and Management, 429, 406–413. https://doi.org/10.1016/j.foreco.2018.07.035

    Article  Google Scholar 

  • Srinivas, K., & Sundarapandian, S. (2019). Biomass and carbon stocks of trees in tropical dry forest of East Godavari region, Andhra Pradesh, India. Geology, Ecology, and Landscapes, 3(2), 114–122. https://doi.org/10.1080/24749508.2018.1522837

    Article  Google Scholar 

  • Stegen, J. C., Swenson, N. G., Enquist, B. J., White, E. P., Phillips, O. L., Jørgensen, P. M., Weiser, M. D., Monteagudo Mendoza, A., & Núñez Vargas, P. (2011). Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 20(5), 744–754. https://doi.org/10.1111/j.1466-8238.2010.00645.x

    Article  Google Scholar 

  • Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J., Beckman, N. G., Coomes, D. A., Lines, E. R., Morris, W. K., Rüger, N., Álvarez, E., Blundo, C., Bunyavejchewin, S., Chuyong, G., Davies, S. J., Duque, Á., Ewango, C. N., Flores, O., Franklin, J. F., & Zavala, M. A. (2014). Rate of tree carbon accumulation increases continuously with tree size. Nature, 507(7490), 90–93. https://doi.org/10.1038/nature12914

    Article  CAS  Google Scholar 

  • Su, L., Heydari, M., Omidipour, R., Soheili, F., Cheraghi, J., Manuel Villa, P., & Prévosto, B. (2023). Stand structural diversity and elevation rather than functional diversity drive aboveground biomass in historically disturbed semiarid oak forests. Forest Ecology and Management, 543, 121139. https://doi.org/10.1016/j.foreco.2023.121139

    Article  Google Scholar 

  • Tang, Z., Mei, Z., Liu, W., & Xia, Y. (2020). Identification of the key factors affecting Chinese carbon intensity and their historical trends using random forest algorithm. Journal of Geographical Sciences, 30(5), 743–756. https://doi.org/10.1007/s11442-020-1753-4

    Article  Google Scholar 

  • Torres, B., Vasseur, L., López, R., Lozano, P., García, Y., Arteaga, Y., Bravo, C., Barba, C., & García, A. (2020). Structure and above ground biomass along an elevation small-scale gradient: Case study in an Evergreen Andean Amazon forest Ecuador. Agroforestry Systems, 94(4), 1235–1245. https://doi.org/10.1007/s10457-018-00342-8

    Article  Google Scholar 

  • Ullah, F., Gilani, H., Sanaei, A., Hussain, K., & Ali, A. (2021). Stand structure determines aboveground biomass across temperate forest typess and species mixture along a local-scale elevational gradient. Forest Ecology and Management, 486, 118984. https://doi.org/10.1016/j.foreco.2021.118984

    Article  Google Scholar 

  • Valizadeh, E., Asadi, H., Jaafari, A., & Tafazoli, M. (2023). Machine learning prediction of tree species diversity using forest structure and environmental factors: A case study from the Hyrcanian forest Iran. Environmental Monitoring and Assessment, 195(11), 1–15. https://doi.org/10.1007/s10661-023-11969-1

    Article  Google Scholar 

  • Vanitharani, J. (2018). Conservation status and guidelines for the maintenance of endangered grizzled giant squirrel Ratufa macroura in Srivilliputhur Wildlife Sanctuary. Indian Hotspots: Vertebrate Faunal Diversity, Conservation and Management, 2, 297–307. https://doi.org/10.1007/978-981-10-6983-3_17

    Article  Google Scholar 

  • Veronesi, F., & Schillaci, C. (2019). Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation. Ecological Indicators, 101, 1032–1044. https://doi.org/10.1016/j.ecolind.2019.02.026

    Article  CAS  Google Scholar 

  • Waring, B., Neumann, M., Prentice, I. C., Adams, M., Smith, P., & Siegert, M. (2020). Forests and decarbonization – Roles of natural and planted forests. Frontiers in Forests and Global Change, 3, 1–6. https://doi.org/10.3389/ffgc.2020.00058

    Article  Google Scholar 

  • Yang, J., El-Kassaby, Y. A., & Guan, W. (2020). The effect of slope aspect on vegetation attributes in a mountainous dry valley Southwest China. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-73496-0

    Article  CAS  Google Scholar 

  • Yuan, Z., Wang, S., Ali, A., Gazol, A., Ruiz-Benito, P., Wang, X., Lin, F., Ye, J., Hao, Z., & Loreau, M. (2018). Aboveground carbon storage is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests recovering from disturbances. Annals of Forest Science, 75 (3). https://doi.org/10.1007/s13595-018-0745-3

  • Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., & Chave, J. (2009). Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository https://doi.org/10.5061/dryad.234

  • Zhang, J., Huang, S., Hogg, E. H., Lieffers, V., Qin, Y., & He, F. (2014). Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences, 11(10), 2793–2808. https://doi.org/10.5194/bg-11-2793-2014

    Article  Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

Neha Jaiswal analyzed and collected data related to this study and wrote the first version of the manuscript. S. Jayakumar contributed to revising the manuscript and improved the writing. Both authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to S. Jayakumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, N., Jayakumar, S. Biomass patterns in Srivilliputhur Wildlife Sanctuary: exploring factors and gradients with machine learning approach. Environ Monit Assess 196, 434 (2024). https://doi.org/10.1007/s10661-024-12591-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12591-5

Keywords

Navigation