Skip to main content
Log in

Characterization and use of activated carbon synthesized from sunflower seed shell in the removal of Pb(II), Cd(II), and Cr(III) ions from aqueous solution

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this work, carbon-based nanomaterials such as active carbon which is prepared from common sunflower (Helianthus annuus) seed shell, and the characterization of the activated carbon NPs were studied using FTIR (Fourier transform infrared spectroscopy), XRD, SEM, EDS, and DTA techniques. Activated carbon NPs have been used in the adsorption of Pb(II), Cd(II), and Cr(III) ions from the aqueous phase. The results showed the highest adsorption efficiency was 99.9%, 92.45%, and 98% for Pb(II), Cd(II), and Cr(III) ions respectively at a temperature of 25 °C, pH = 7–9, and a time of 60 and 180 min, in addition to the accordance of the adsorption models for activated carbon with the Freundlich isotherm model at the value of R2 (0.9976, 0.9756, and 0.9907) and Langmuir isotherm model (0.966, 0.999, and 0.9873) of the Pb(II), Cd(II), and Cr(III) ions, respectively. We conclude the possibility of using activated carbon to have an extremely high sorption capacity across the conditions tested, with the highest adsorption efficiency having been >99% for Pb(II), Cd(II), and Cr(III) ions within the pH range 7–9 and a contact time of 60 to 180 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets/information used for this study are available within the manuscript.

References

  • Abdelbassit, M. S. A., Alhooshani, K. R., & Saleh, T. A. (2016). Silica nanoparticles loaded on activated carbon for simultaneous removal of dichloromethane, trichloromethane, and carbon tetrachloride. Advanced Powder Technology, 27(4), 1719–1729.

    Article  CAS  Google Scholar 

  • Abdullah, N., Yusof, N., Lau, W. J., Jaafar, J., & Ismail, A. F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 17–38.

    Article  CAS  Google Scholar 

  • Ahmad, S., Pandey, A., Pathak, V. V., Tyagi, V. V., & Kothari, R. (2020). Phycoremediation: algae as eco-friendly tools for the removal of heavy metals from wastewaters. Bioremediation of Industrial Waste for Environmental Safety, 53–76.

  • Al-Rawi, A. S., Al-Khateeb, I. K. I., & Zaidan, T. A. (2021). Nanocellulose acetate membranes: Preparation and application. Environmental Nanotechnology, Monitoring & Management, 16, 100529.

    Article  CAS  Google Scholar 

  • Ali, F. F., Al-Rawi, A. S., Aljumialy, A. M., Fadhel Ali, F., Al-Rawi, A. S., & Aljumialy, A. M. (2022). Limestone residues of sculpting factories utilization as sorbent for removing Pb (II) ion from Aqueous Solution. Results in Chemistry, 4(August), 100621.

    Google Scholar 

  • Aljumialy, A. M., & Mokaya, R. (2020). Porous carbons from sustainable sources and mild activation for targeted high-performance CO2 capture and storage. Materials Advances, 1(9), 3267–3280.

    Article  CAS  Google Scholar 

  • Alkherraz, A. M., Ali, A. K., & Elsherif, K. M. (2020). Removal of Pb (II), Zn (II), Cu (II) and Cd (II) from aqueous solutions by adsorption onto olive branches activated carbon: equilibrium and thermodynamic studies. Chemistry International, 6(1), 11–20.

    CAS  Google Scholar 

  • Alothman, Z. A., Bahkali, A. H., Khiyami, M. A., Alfadul, S. M., Wabaidur, S. M., Alam, M., & Alfarhan, B. Z. (2020). Low cost biosorbents from fungi for heavy metals removal from wastewater. Separation Science and Technology, 55(10), 1766–1775.

    Article  CAS  Google Scholar 

  • Altwala, A., & Mokaya, R. (2022a). Direct and mild non-hydroxide activation of biomass to carbons with enhanced CO 2 storage capacity. Energy Advances, 1(4), 216–224.

    Article  CAS  Google Scholar 

  • Altwala, A., & Mokaya, R. (2022b). Modulating the porosity of activated carbons via pre-mixed precursors for simultaneously enhanced gravimetric and volumetric methane uptake. Journal of Materials Chemistry A, 10(26), 13744–13757.

    Article  CAS  Google Scholar 

  • Apaydın-Varol, E., & Pütün, A. E. (2012). Preparation and characterization of pyrolytic chars from different biomass samples. Journal of Analytical and Applied Pyrolysis, 98, 29–36.

    Article  Google Scholar 

  • Ayawei, N., Angaye, S. S., Wankasi, D., & Dikio, E. D. (2015). Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of Congo red in aqueous solution. Open Journal of Physical Chemistry, 05(03), 56–70.

    Article  CAS  Google Scholar 

  • Balahmar, N., Al-Jumialy, A. S., & Mokaya, R. (2017). Biomass to porous carbon in one step: Directly activated biomass for high performance CO2 storage. Journal of Materials Chemistry A, 5(24), 12330–12339.

    Article  CAS  Google Scholar 

  • Calvo, L. F., Sánchez, M. E., Morán, A., & García, A. I. (2004). TG-MS as a technique for a better monitor-ing of the pyrolysis, gasification and combustion of two kinds of sewage sludge. In. Journal of Thermal Analysis and Calorimetry, 78.

  • Da, A. (2001). Adsorption from theory to practice. Advances in Colloid and Interface Science, 93(1-3), 135–224.

    Article  Google Scholar 

  • Duan, C., Ma, T., Wang, J., & Zhou, Y. (2020). Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. Journal of Water Process Engineering, 37, 101339.

    Article  Google Scholar 

  • Faisal, S., Abdullah, J. H., Shah, S. A., Shah, S., Rizwan, M., Zaman, N., Hussain, Z., Uddin, M. N., & Bibi, N. (2021). Bio-catalytic activity of novel Mentha arvensis intervened biocompatible magnesium oxide nanomaterials. Catalysts, 11(7), 780.

    Article  CAS  Google Scholar 

  • Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial & Engineering Chemistry Fundamentals, 5(2), 212–223.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2006). Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Research, 40(1), 119–125.

    Article  CAS  Google Scholar 

  • Jain, G. (2013). Removal of copper and zinc from wastewater using chitosan.

    Google Scholar 

  • Javadian, H., Ghasemi, M., Ruiz, M., Sastre, A. M., Asl, S. M. H., & Masomi, M. (2018). Fuzzy logic modeling of Pb (II) sorption onto mesoporous NiO/ZnCl2-Rosa Canina-L seeds activated carbon nanocomposite prepared by ultrasound-assisted co-precipitation technique. Ultrasonics Sonochemistry, 40, 748–762.

    Article  CAS  Google Scholar 

  • Javadian, H., Koutenaei, B. B., Shekarian, E., Sorkhrodi, F. Z., Khatti, R., & Toosi, M. (2017). Application of functionalized nano HMS type mesoporous silica with N-(2-aminoethyl)-3-aminopropyl methyldimethoxysilane as a suitable adsorbent for removal of Pb (II) from aqueous media and industrial wastewater. Journal of Saudi Chemical Society, 21, S219–S230.

    Article  CAS  Google Scholar 

  • Jiang, C., Yakaboylu, G. A., Yumak, T., Zondlo, J. W., Sabolsky, E. M., & Wang, J. (2020). Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renewable Energy, 155, 38–52.

    Article  CAS  Google Scholar 

  • Kushwaha, S., Chaudhary, M., Tyagi, I., Bhutiani, R., Goscianska, J., Ahmed, J., & Chaudhary, S. (2022). Utilization of Phyllanthus emblica fruit stone as a potential biomaterial for sustainable remediation of lead and cadmium ions from aqueous solutions. Molecules, 27(10), 3355.

    Article  CAS  Google Scholar 

  • Kyzas, G. Z., Bomis, G., Kosheleva, R. I., Efthimiadou, E. K., Favvas, E. P., Kostoglou, M., & Mitropoulos, A. C. (2019). Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chemical Engineering Journal, 356, 91–97.

    Article  CAS  Google Scholar 

  • Ma, J., Qin, G., Zhang, Y., Sun, J., Wang, S., & Jiang, L. (2018). Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash. Journal of Cleaner Production, 182, 776–782.

    Article  CAS  Google Scholar 

  • Malik, P. K. (2004). Dye removal from wastewater using activated carbon developed from sawdust: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 113(1–3), 81–88.

    Article  CAS  Google Scholar 

  • Martins, S., & Fernandes, J. B. (2013). A simple method to prepare high surface area activated carbon from carboxyl methyl cellulose by low temperature physical activation. Journal of Thermal Analysis and Calorimetry, 112, 1007–1011.

    Article  CAS  Google Scholar 

  • Mckay, G., Blair, H. S., & Gardner, J. R. (1982). Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 27(8), 3043–3057.

    Article  CAS  Google Scholar 

  • Mohammed, A. T., Salman, A. M., & Al-Muhandis, O. (2012). Determination of the optimum conditions for the recovery of silver from photographic fixer solutions used in hospitals and clinics at Anbar, Iraq. Asian Journal of Chemistry, 24(12), 5922–5926.

    CAS  Google Scholar 

  • Mondal, D. K., Nandi, B. K., & Purkait, M. K. (2013). Removal of mercury (II) from aqueous solution using bamboo leaf powder: Equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 1(4), 891–898.

    Article  CAS  Google Scholar 

  • Nyirenda, J., Zombe, K., Kalaba, G., Siabbamba, C., & Mukela, I. (2021). Exhaustive valorization of cashew nut shell waste as a potential bioresource material. Scientific Reports, 11(1), 11986.

    Article  CAS  Google Scholar 

  • de Oliveira, G. F., de Andrade, R. C., Trindade, M. A. G., Andrade, H. M. C., & de Carvalho, C. T. (2017). Thermogravimetric and spectroscopic study (TG–DTA/FT–IR) of activated carbon from the renewable biomass source babassu. Química Nova, 40, 284–292.

    Google Scholar 

  • WHO. (2004). Guidelines for drinking-water quality (Vol. 1). World Health Organization..

    Google Scholar 

  • Saod, W. M., Oliver, I. W., Thompson, D. F., Contini, A., & Zholobenko, V. (2023a). Zinc oxide–mesoporous silica nanocomposite: Preparation, characterisation and application in water treatment for lead, cadmium and chromium removal. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2023.2246016

  • Saod, W. M., Oliver, I. W., Thompson, D. F., Holborn, S., Contini, A., & Zholobenko, V. (2023b). Magnesium oxide loaded mesoporous silica: Synthesis, characterisation and use in removing lead and cadmium from water supplies. Environmental Nanotechnology, Monitoring & Management, 20, 100817.

    Article  CAS  Google Scholar 

  • Sevilla, M., Al-Jumialy, A. S. M., Fuertes, A. B., & Mokaya, R. (2018). Optimization of the pore structure of biomass-based carbons in relation to their use for CO2 capture under low-and high-pressure regimes. ACS Applied Materials & Interfaces, 10(2), 1623–1633.

    Article  CAS  Google Scholar 

  • Sevilla, M., Mokaya, R., & Fuertes, A. B. (2011). Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. Energy & Environmental Science, 4(8), 2930–2936.

    Article  CAS  Google Scholar 

  • Shahrokhi-Shahraki, R., Benally, C., El-Din, M. G., & Park, J. (2021). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere, 264, 128455.

    Article  CAS  Google Scholar 

  • Sharma, G., & Naushad, M. (2020). Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: Isotherm and kinetic modelling. Journal of Molecular Liquids, 310, 113025.

    Article  CAS  Google Scholar 

  • Suárez, L., & Centeno, T. A. (2020). Unravelling the volumetric performance of activated carbons from biomass wastes in supercapacitors. Journal of Power Sources, 448, 227413.

    Article  Google Scholar 

  • Umeh, T. C., Nduka, J. K., & Akpomie, K. G. (2021). Kinetics and isotherm modeling of Pb (II) and Cd (II) sequestration from polluted water onto tropical ultisol obtained from Enugu Nigeria. Applied Water Science, 11(4), 1–8.

    Article  Google Scholar 

  • Üner, O., Geçgel, Ü., & Bayrak, Y. (2016). Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: Kinetic, isotherm, thermodynamic, and mechanism analysis. Water, Air, & Soil Pollution, 227, 1–15.

    Article  Google Scholar 

  • Vanderborght, B. M., & Van Grieken, R. E. (1977). Enrichment of trace metals in water by adsorption on activated carbon. Analytical Chemistry, 49(2), 311–316.

    Article  CAS  Google Scholar 

  • Wadhawan, S., Jain, A., Nayyar, J., & Mehta, S. K. (2020). Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. Journal of Water Process Engineering, 33, 101038.

    Article  Google Scholar 

  • Worch, E. (2021). 3 Adsorption equilibrium I: General aspects and single-solute adsorption. In Adsorption Technology in Water Treatment (pp. 49–88). De Gruyter.

    Chapter  Google Scholar 

  • Wu, S. H., Hsieh, C. C., Chiang, C. C., Horng, J. J., Pan, W. P., & Shu, C. M. (2012). Thermal analyses of home-made zeolite by DSC and TG. Journal of Thermal Analysis and Calorimetry, 109(2), 945–950.

    Article  CAS  Google Scholar 

  • Yahya, A. S. (2016). Study affecting factors on the recovery of some heavy metal ions from aqueous solutions using natural clay. Journal of University of Anbar for Pure Science, 10(3).

  • Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y. S., Jiang, Y., & Gao, B. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal, 366, 608–621.

    Article  CAS  Google Scholar 

  • Yu, B., Zhang, Y., Shukla, A., Shukla, S. S., & Dorris, K. L. (2000). The removal of heavy metal from aqueous solutions by sawdust adsorption—removal of copper. Journal of Hazardous Materials, 80(1–3), 33–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the School of Geography, Geology & the Environment and the School of Chemical & Physical Sciences/Keele University, UK for enabling Wahran Saod to use multiple analytical techniques and instruments in research. The authors thank Jenny Hillman and Simon Holborn (Keele University) for technical assistance and analytical support.

Funding

The work was supported by the University of Anbar, Iraq.

Author information

Authors and Affiliations

Authors

Contributions

Ibtihal A. Mawlood: discussing the results and following up on publishing the research.

Wahran M. Saod: practical aspect, testing, and writing the main manuscript text.

Ahmed S. Al-Rawi: practical aspects, testing, and writing the main manuscript text.

Abdulsalam M. Aljumialy: wrote the main manuscript text and reference format.

Nahla Hilal: providing raw materials.

All authors reviewed the manuscript.

Corresponding author

Correspondence to Ibtihal A. Mawlood.

Ethics declarations

Ethics approval and consent to participate

There were no human or animal participants in the research, nor was there any data collected about humans or animals

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mawlood, I.A., Saod, W.M., Al-Rawi, A.S. et al. Characterization and use of activated carbon synthesized from sunflower seed shell in the removal of Pb(II), Cd(II), and Cr(III) ions from aqueous solution. Environ Monit Assess 196, 364 (2024). https://doi.org/10.1007/s10661-024-12525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12525-1

Keywords

Navigation