Skip to main content
Log in

Assessment of historical and projected changes in extreme temperatures of Balochistan, Pakistan using extreme value theory

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The fundamental consequences of global warming include an upsurge in the intensity and frequency of temperature extremes. This study provides an insight into historical trends and projected changes in extreme temperatures on annual and seasonal scales across “Balochistan, Pakistan”. Historical trends are analyzed through the Mann Kendal test, and extreme temperatures (Tmax and Tmin) are evaluated using generalized extreme value (GEV) distribution for historical period (1991–2020) from the observational data and the two projected periods as near-future (2041–2070) and far-future (2071–2100) using a six-member bias-corrected ensemble of regional climate models (RCMs) projections from the coordinate regional downscaling experiment (CORDEX) based on the worst emission scenario (RCP8.5). The evaluation of historical temperature trends suggests that Tmax generally increase on yearly scale and give mixed signals on seasonal scale (winter, spring, summer, and autumn); however, Tmin trends gave mixed signals at both yearly and seasonal scale. Compared to the historical period, the return levels are generally expected to be higher for Tmax and Tmin during the both projection periods in the order as far-future > near-future > historical on yearly and seasonal basis; however, the changes in Tmin are more evident. Station-averaged anomalies of + 1.9 °C and + 3.6 °C were estimated in 100-year return levels for yearly Tmax for near-future and far-future, respectively, while the anomalies in Tmin were found to be + 3.5 °C and + 4.8 °C which suggest the intensified heatwaves but milder colder extreme in future. The findings provide guidance on improved quantification of changing frequencies and severity in temperature extremes and the associated impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Code/data availability

Historical data for extreme temperature is obtained from the Pakistan Meteorological Department (PMD). The authors do not have the authority to openly distribute this data. The CORDEX Climate Model data used in the study is freely available at: https://www.euro-cordex.net/

Primary codes for GEV distribution fitting are available at: https://cran.r-project.org/web/packages/ismev/index.html

References

  • Abbas, F. (2013). Analysis of a historical (1981–2010) temperature record of the Punjab province of Pakistan. Earth Interactions, 17(15), 1–23.

    Article  Google Scholar 

  • Adnan, S., Ullah, K., & Gao, S. (2015). Characterization of drought and its assessment over Sindh, Pakistan during 1951–2010. Journal of Meteorological Research, 29(5), 837–857.

    Article  Google Scholar 

  • Ahmed, A., Devadason, E. S., & Al-Amin, A. Q. (2016a). Implications of climate change damage for agriculture: Sectoral evidence from Pakistan. Environmental Science and Pollution Research, 23, 20688–20699.

    Article  Google Scholar 

  • Ahmed, K., Shahid, S., Harun, Sb., & Wang, X.-j. (2016b). Characterization of seasonal droughts in Balochistan Province, Pakistan. Stochastic Environmental Research and Risk Assessment, 30, 747–762.

    Article  Google Scholar 

  • Alhaji, U., Yusuf, A., Edet, C., Oche, C. O., & Agbo, E. (2018). Trend analysis of temperature in Gombe state using Mann Kendall trend test. Journal of Scientific Research and Reports, 20(3), 1–9.

    Article  Google Scholar 

  • Arshad, A., Ashraf, M., Sundari, R. S., Qamar, H., Wajid, M., & Hasan, M.-U. (2020). Vulnerability assessment of urban expansion and modelling green spaces to build heat waves risk resiliency in Karachi. International Journal of Disaster Risk Reduction, 46, 101468.

    Article  Google Scholar 

  • Ashraf, M., Arshad, A., Patel, P. M., Khan, A., Qamar, H., Siti-Sundari, R., … Babar, J. R. (2021). Quantifying climate-induced drought risk to livelihood and mitigation actions in Balochistan. Natural Hazards, 109, 2127–2151.

  • Ashraf, M., & Routray, J. K. (2013). Perception and understanding of drought and coping strategies of farming households in north-west Balochistan. International Journal of Disaster Risk Reduction, 5, 49–60.

    Article  Google Scholar 

  • Aziz, R., & Yucel, I. (2021). Assessing nonstationarity impacts for historical and projected extreme precipitation in Turkey. Theoretical and Applied Climatology, 143, 1213–1226.

    Article  Google Scholar 

  • Aziz, R., & Yucel, I. (2023). Assessment of changes in return levels of historical and projected high and low flows of upper Euphrates basin in Turkey using nonstationary models. Environmental Monitoring and Assessment, 195(5), 576.

    Article  Google Scholar 

  • Aziz, R., Yucel, I., & Yozgatligil, C. (2020). Nonstationarity impacts on frequency analysis of yearly and seasonal extreme temperature in Turkey. Atmospheric Research, 238, 104875.

    Article  Google Scholar 

  • Brown, S. J., Caesar, J. & Ferro, C. A. T. (2008). Global changes in extreme daily temperature since 1950. Journal of Geophysical Research: Atmospheres, 113, D05115. https://doi.org/10.1029/2006JD008091

  • Cannon, A. J. (2011). GEVcdn: An R package for nonstationary extreme value analysis by generalized extreme value conditional density estimation network. Computers & Geosciences, 37, 1532–1533.

  • Christianson, K. R., & Johnson, B. M. (2020). Combined effects of early snowmelt and climate warming on mountain lake temperatures and fish energetics. Arctic, Antarctic, and Alpine Research, 52, 130–145.

  • Cooley, D. (2012). Return periods and return levels under climate change Extremes in a changing climate: Detection, analysis and uncertainty (pp. 97–114). Springer.

  • Da Silva, R. M., Santos, C. A., Moreira, M., Corte-Real, J., Silva, V. C., & Medeiros, I. C. (2015). Rainfall and river flow trends using Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Natural Hazards, 77, 1205–1221.

    Article  Google Scholar 

  • Del Rio, S., Anjum Iqbal, M., Cano-Ortiz, A., Herrero, L., Hassan, A., & Penas, A. (2013). Recent mean temperature trends in Pakistan and links with teleconnection patterns. International Journal of Climatology, 33(2), 277–290.

    Article  Google Scholar 

  • Dutta, D., & Bhattacharjya, R. K. (2022). A statistical bias correction technique for global climate model predicted near-surface temperature in India using the generalized regression neural network. Journal of Water and Climate Change, 13(2), 854–871. https://doi.org/10.2166/wcc.2022.214

    Article  Google Scholar 

  • Fahad, S., & Wang, J. (2018). Farmers’ risk perception, vulnerability, and adaptation to climate change in rural Pakistan. Land Use Policy, 79, 301–309.

    Article  Google Scholar 

  • Fang, G., Yang, J., Chen, Y., & Zammit, C. (2015). Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences, 19(6), 2547–2559.

    Article  Google Scholar 

  • Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, SC., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., Rummukaines, M. (2013). Evaluation of climate models. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

  • Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., … Do, H. X. (2021). Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2(2), 107–122.

  • Gilleland E., Katz R. (2011) New software to analyze how extremes change over time. EOS, Transactions, American Geophysical Union, 92(2), 13–14.

  • Gordon, N., Shaykewich, J. (2000). Guidelines on performance assessment of public weather services. WMO/TD No. 1023, 32.

  • Goubanova, K., & Li, L. (2007). Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Global and Planetary Change, 57(1–2), 27–42.

    Article  Google Scholar 

  • Haider, S., & Ullah, K. (2021). Historical and projected shift in agro-climatic zones and associated variations of daily temperature and precipitation extremes using CORDEX-SA over pakistan. Asia-Pacific Journal of Atmospheric Sciences, 57, 757–771.

  • Heffernan J., Stephenson A. (2012). ismev: an introduction to statistical modeling of extreme values. R package version 1.39, Original S functions written by Janet E. Heffernan with R port and R documentation provided by Alec G. Stephenson.  https://CRAN.Rproject.org/package=ismev

  • Huang, G. (2021). Missing data filling method based on linear interpolation and lightgbm. Paper presented at the Journal of Physics: Conference Series.

  • IPCC. (2014). Impacts, adaptation and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental Panel on Climate Change, 1132.

  • IPCC. (2022). Climate change 2022: Mitigation of climate change. contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change. https://www.ipcc.ch/report/ar6/wg3/. Accessed 15 May 2023.

  • Islam, Su., Rehman, N., & Sheikh, M. M. (2009). Future change in the frequency of warm and cold spells over Pakistan simulated by the PRECIS regional climate model. Climatic Change, 94(1–2), 35–45.

    Article  Google Scholar 

  • Jahangir, M., Ali, S. M., & Khalid, B. (2016). Annual minimum temperature variations in early 21st century in Punjab, Pakistan. Journal of Atmospheric and Solar-Terrestrial Physics, 137, 1–9.

    Article  Google Scholar 

  • Jamro, S., Channa, F. N., Dars, G. H., Ansari, K., & Krakauer, N. Y. (2020). Exploring the evolution of drought characteristics in Balochistan, Pakistan. Applied Sciences, 10(3), 913.

    Article  Google Scholar 

  • Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal Meteorological Society, 81(348), 158–171.

    Article  Google Scholar 

  • Katz, R. W., & Brown, B. G. (1992). Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21(3), 289–302.

    Article  Google Scholar 

  • Katz, R. W. (2013). Statistical methods for nonstationary extremes. In A. AghaKouchak, D. Easterling, K. Hsu, S. Schubert, & S. Sorooshian (Eds.), Extremes in a Changing Climate. Water Science and Technology Library (vol. 65). Springer. https://doi.org/10.1007/978-94-007-4479-0_2

  • Kendall, M. G. (1975). Rank correlation methods. Griffin, London. Kendall MG.

  • Khan, N., Shahid, S., Ismail, Tb., & Wang, X.-J. (2019a). Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theoretical and Applied Climatology, 136, 899–913.

    Article  Google Scholar 

  • Khan, N., Shahid, S., Ismail, T., Ahmed, K., & Nawaz, N. (2019b). Trends in heat wave related indices in Pakistan. Stochastic Environmental Research and Risk Assessment, 33, 287–302.

    Article  Google Scholar 

  • Khan, F., Ali, S., Ullah, H., & Muhammad, S. (2023). Twenty-first century climate extremes’ projections and their spatio-temporal trend analysis over Pakistan. Journal of Hydrology: Regional Studies, 45, 101295.

    Google Scholar 

  • Kharin, V. V., Zwiers, F. W., Zhang, X., & Wehner, M. (2013). Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345–357.

    Article  Google Scholar 

  • Khattak, M. S., & Ali, S. (2015). Assessment of temperature and rainfall trends in Punjab province of Pakistan for the period 1961–2014. Journal of Himalayan Earth Sciences, 48(2), 42.

    Google Scholar 

  • Li, J., Hsu, H.-H., Wang, W.-C., Ha, K.-J., Li, T., & Kitoh, A. (2018). East Asian climate under global warming: Understanding and projection (Vol. 51, pp. 3969–3972). Springer.

  • Lionello, P., & Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Regional Environmental Change, 18, 1481–1493.

    Article  Google Scholar 

  • Llano, M. P., & Penalba, O. C. (2011). A climatic analysis of dry sequences in Argentina. International Journal of Climatology, 31(4), 504–513.

    Article  Google Scholar 

  • Luhunga, P., Botai, J., & Kahimba, F. (2016). Evaluation of the performance of CORDEX regional climate models in simulating present climate conditions of Tanzania. Journal of Southern Hemisphere Earth Systems Science, 66(1), 32–54.

    Article  Google Scholar 

  • Mahessar, A. A., Qureshi, A. L., Siming, I. A., Kori, S. M., Dars, G. H., Channa, M., & Laghari, A. N. (2019). Flash flood climatology in the lower region of Southern Sindh. Engineering, Technology & Applied Science Research, 9(4), 4474–4479.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259. https://doi.org/10.2307/1907187

  • Masson-Delmotte, V., Zhai, P., Pirani, S., Connors, C., Péan, S., Berger, N., … Scheel Monteiro, P. M. (2021). IPCC, 2021: Summary for policymakers. in: Climate change 2021: The physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change.

  • Mearns, L. O., Katz, R. W., & Schneider, S. H. (1984). Extreme high-temperature events: Changes in their probabilities with changes in mean temperature. Journal of Applied Meteorology and Climatology, 23(12), 1601–1613.

    Article  Google Scholar 

  • Mendez, M., Maathuis, B., Hein-Griggs, D., & Alvarado-Gamboa, L.-F. (2020). Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water, 12(2), 482.

    Article  Google Scholar 

  • Min, E., Hazeleger, W., Van Oldenborgh, G., & Sterl, A. (2013). Evaluation of trends in high temperature extremes in north-western Europe in regional climate models. Environmental Research Letters, 8(1), 014011.

    Article  Google Scholar 

  • Naz, F., Dars, G. H., Ansari, K., Jamro, S., & Krakauer, N. Y. (2020). Drought trends in Balochistan. Water, 12(2), 470.

    Article  Google Scholar 

  • Niedzielski, T., & Halicki, M. (2023). Improving linear interpolation of missing hydrological data by applying integrated autoregressive models. Water Resources Management, 37(14), 5707–5724.

    Article  Google Scholar 

  • Nikulin*, G., Kjellström, E., Hansson, U., Strandberg, G., & Ullerstig, A. (2011). Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A: Dynamic Meteorology and Oceanography, 63(1), 41–55.

  • Orkodjo, T. P., Kranjac-Berisavijevic, G., & Abagale, F. K. (2022). Impact of climate change on future precipitation amounts, seasonal distribution, and streamflow in the Omo-Gibe basin. Ethiopia. Heliyon, 8(6), e09711.

    Article  Google Scholar 

  • Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., … Dasgupta, P. (2014). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc.

  • Patra, J. P., Mishra, A., Singh, R., & Raghuwanshi, N. (2012). Detecting rainfall trends in twentieth century (1871–2006) over Orissa State, India. Climatic Change, 111, 801–817.

    Article  Google Scholar 

  • Patt, A. G., & Schröter, D. (2008). Perceptions of climate risk in Mozambique: Implications for the success of adaptation strategies. Global Environmental Change, 18(3), 458–467.

    Article  Google Scholar 

  • Perkins, S. E., Alexander, L. V., & Nairn, J. (2012). Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters, 39. https://doi.org/10.1029/2012GL053361

  • Pfleiderer, P., Schleussner, C.-F., Kornhuber, K., & Coumou, D. (2019). Summer weather becomes more persistent in a 2 C world. Nature Climate Change, 9(9), 666–671.

    Article  Google Scholar 

  • Pumo, D., Carlino, G., Blenkinsop, S., Arnone, E., Fowler, H., & Noto, L. V. (2019). Sensitivity of extreme rainfall to temperature in semi-arid Mediterranean regions. Atmospheric Research, 225, 30–44.

    Article  Google Scholar 

  • Pz, S., & Kv, J. (2021). Comparative study of innovative trend analysis technique with Mann-Kendall tests for extreme rainfall. Arabian Journal of Geosciences, 14, 1–15.

    Google Scholar 

  • Revadekar, J., Hameed, S., Collins, D., Manton, M., Sheikh, M., Borgaonkar, H., … Ashraf, J. (2013). Impact of altitude and latitude on changes in temperature extremes over South Asia during 1971–2000. International Journal of Climatology, 33(1), 199–209.

  • Rusticucci, M., & Tencer, B. (2008). Observed changes in return values of annual temperature extremes over Argentina. Journal of Climate, 21(21), 5455–5467.

    Article  Google Scholar 

  • Saddique, N., Khaliq, A., & Bernhofer, C. (2020). Trends in temperature and precipitation extremes in historical (1961–1990) and projected (2061–2090) periods in a data scarce mountain basin, northern Pakistan. Stochastic Environmental Research and Risk Assessment, 34, 1441–1455.

    Article  Google Scholar 

  • Salas, J. D., & Obeysekera, J. (2014). Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. Journal of Hydrologic Engineering, 19(3), 554–568. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820

  • Saleem, F., Adrees, M., Abbas, F., Ibrahim, M., & Zeng, X. (2017). Changing trend of percentile-based temperature indices over Pakistan. Paper presented at the EGU general assembly conference abstracts.

  • Sen, O. L., Unal, A., Bozkurt, D., & Kindap, T. (2011). Temporal changes in the Euphrates and Tigris discharges and teleconnections. Environmental Research Letters, 6(2), 024012. https://doi.org/10.1088/1748-9326/6/2/024012

  • Shah, A., Naveed, R., Khalid, I., & Khan, A. (2021). A review on consequences of climate change in Pakistan. International Journal of Engineering Research Updates, 01(01), 026–042. https://doi.org/10.53430/ijeru.2021.1.1.0054

  • Sheikh, M., Manzoor, N., Ashraf, J., Adnan, M., Collins, D., Hameed, S., … Borgaonkar, H. (2015). Trends in extreme daily rainfall and temperature indices over South Asia. International Journal of Climatology, 35(7), 1625–1637.

  • Shen, C., Duan, Q., Miao, C., Xing, C., Fan, X., Wu, Y., & Han, J. (2020). Bias correction and ensemble projections of temperature changes over ten subregions in CORDEX East Asia. Advances in Atmospheric Sciences, 37, 1191–1210.

    Article  Google Scholar 

  • Sugg, M. M., Konrad, C. E., 2nd., & Fuhrmann, C. M. (2016). Relationships between maximum temperature and heat-related illness across North Carolina, USA. International Journal of Biometeorology, 60(5), 663–675.

    Article  Google Scholar 

  • Sung, T. I., Wu, P. C., Lung, S. C., Lin, C. Y., Chen, M. J., & Su, H. J. (2013). Relationship between heat index and mortality of 6 major cities in Taiwan. Science of the Total Environment, 442, 275–281.

    Article  CAS  Google Scholar 

  • Sunyer, M. A., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., … Kriaučiūnienė, J. (2015). Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrology and Earth System Sciences, 19(4), 1827–1847.

  • Tabaldi, C., Hayhoe, K., Arblaster, J., & Meehl, G. (2006). Going to the extremes. Climate Change, 79, 185–211.

    Article  Google Scholar 

  • Tariq, S., Nawaz, H., Mehmood, U., Ul Haq, Z., Pata, U. K., & Murshed, M. (2023). Remote sensing of air pollution due to forest fires and dust storm over Balochistan (Pakistan). Atmospheric Pollution Research, 14(2), 101674.

    Article  CAS  Google Scholar 

  • Udmale, P., Ichikawa, Y., Manandhar, S., Ishidaira, H., & Kiem, A. S. (2014). Farmers׳ perception of drought impacts, local adaptation and administrative mitigation measures in Maharashtra State, India. International Journal of Disaster Risk Reduction, 10, 250–269.

    Article  Google Scholar 

  • Vincent, L. A., & Mekis, É. (2019). Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. In Data, Models and Analysis (pp. 61–77). Routledge

  • Wehner, M., Gleckler, P., & Lee, J. (2020). Characterization of long period return values of extreme daily temperature and precipitation in the CMIP6 models: Part 1, model evaluation. Weather and Climate Extremes, 30, 100283.

    Article  Google Scholar 

  • Yucel, I., Güventürk, A., & Sen, O. L. (2015). Climate change impacts on snowmelt runoff for mountainous transboundary basins in eastern Turkey. International Journal of Climatology, 35(2), 215–228. https://doi.org/10.1002/JOC.3974

Download references

Acknowledgements

The authors acknowledges the Pakistan Meteorological Department for provision of observational data.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this manuscript. The data management and all the analyses were done by D.N. The interpretation of results and visualization was done by M.A. and R. A. The methodology development, overall supervision, and draft and manuscript preparation were done by R.A. Draft review and interpretation of results were carried out by S.R.A.

Corresponding author

Correspondence to Rizwan Aziz.

Ethics declarations

Ethical responsibilities of authors

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Consent to participate

Not applicable.

Consent for publication

All authors gave their consent for publication in the journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, D., Aziz, R., Awais, M. et al. Assessment of historical and projected changes in extreme temperatures of Balochistan, Pakistan using extreme value theory. Environ Monit Assess 196, 375 (2024). https://doi.org/10.1007/s10661-024-12512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12512-6

Keywords

Navigation