Skip to main content

Advertisement

Log in

Biogeochemical processes controlling the dynamics of dissolved organic matter in streams in the Shirakami Mountains, Japan

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Shirakami Mountain range, including the largest primeval beech forest in East-Asia, is undergoing ecological change. Dissolved organic matter (DOM) plays an important role in nutrient and material cycling in forest ecosystems. Because the quality of DOM varies based on its origin and diagenetic and runoff processes, changes in the environment surrounding DOM can be rapidly detected by monitoring its quality. Herein, concentrations and fluorescence composition of DOM at 14 sites in 13 streams in the Shirakami Mountain range were monitored monthly for over 2 years, excluding winter (December–March), to gain insight into the catchment hydrological and soil characteristics affecting DOM concentrations and composition in stream water. Based on the pattern of temporal changes in fluorescent component composition, monitoring sites were categorized into four groups (streams with small catchments, large catchments, catchments facing the Sea of Japan, and open waters in the catchment) with similar catchment characteristics affecting DOM dynamics. Multiple linear regression analysis showed that DOM concentrations in each group could be attributed to rainfall on the survey date, short-term (1–2 days) rainfall, midterm (~1 month) accumulated rainfall, midterm (7–11 days) accumulated temperature, and catchment characteristics as explanatory variables. The degree of influence of these variables differed among the four groups. The results of this study show that grouping streams according to catchment hydrological characteristics can help identify the impact of climate and environmental change on DOM dynamics in stream water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abe, Y., Maie, N., & Shima, E. (2011). Influence of irrigated paddy fields on the fluorescence properties of fluvial dissolved organic matter. Journal of Environmental Quality, 40, 1266–1272. https://doi.org/10.2134/jeq2010.0374

    Article  CAS  Google Scholar 

  • Aitkenhead-Peterson, J. A., McDowell, W. H., & Neff, J. C. (2003). Sources, production and regulation of allochthonous dissolved organic matter inputs to surface water. In S. E. G. Findlay & R. L. Sinsabaugh (Eds.), Aquatic ecosystems: Interactivity of dissolved organic matter (pp. 25–70). Academic Press.

    Chapter  Google Scholar 

  • Buffington, J. M., & Tonina, D. (2009). Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales, and rates of exchange. Geography Compass, 3, 1038–1062. https://doi.org/10.1111/j.1749-8198.2009.00225.x

    Article  Google Scholar 

  • Burrows, R. M., Rutlidge, H., Bond, N. R. E., Rberhard, S. M., Auhl, A., Andersen, M. S., Valdez, D. Z., & Kennard, M. J. (2017). High rates of organic carbon processing in the hyporheic zone of intermittent streams. Scientific Reports, 7, 13198. https://doi.org/10.1038/s41598-017-12957-5

    Article  CAS  Google Scholar 

  • Campbell, J. L., Driscoll, C. T., Jones, J. A., Boose, E. R., Dugan, H. A., Groffman, P. M., Jackson, C. R., Jones, J. B., Juday, G. P., Lottig, N. R., Penaluna, B. E., Ruess, R. W., Suding, K., Thompson, J. R., & Zimmerman, J. K. (2022). Forest and freshwater ecosystem responses to climate change and variability at US LTER sites. BioScience, 72, 851–870. https://doi.org/10.1093/biosci/biab124

    Article  Google Scholar 

  • Catalán, N., Obrador, B., & Pretus, J. L. (2014). Ecosystem processes drive dissolved organic matter quality in a highly dynamic water body. Hydrobiologia, 728(1), 111–124. https://doi.org/10.1007/s10750-014-1811-y

    Article  CAS  Google Scholar 

  • Cawley, K. M., Campbell, J., Zwilling, M., & Jaffé, R. (2014). Evaluation of forest disturbance legacy effects on dissolved organic matter characteristics in streams at the Hubbard brook experimental forest, New Hampshire. Aquatic Sciences, 76, 611–622. https://doi.org/10.1007/s00027-014-0358-3

    Article  CAS  Google Scholar 

  • Chen, M., Price, R. M., Yamashita, Y., & Jaffe, R. (2010). Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics. Applied Geochemistry, 25, 872–880. https://doi.org/10.1016/j.apgeochem.2010.03.005

    Article  CAS  Google Scholar 

  • Cincotta, M. M., Perdrial, J., Shavitz, A., Libenson, A., Landsman-Gerjoi, M., Perdrial, N., Armfield, J., Adler, T., & Shanley, J. B. (2019). Soil aggregates as a source of dissolved organic carbon to streams: An experimental study on the effect of solution chemistry on water extractable carbon. Frontiers in Environmental Science, 7, 116–129. https://doi.org/10.3389/fenvs.2019.00172

    Article  Google Scholar 

  • Clair, T. A., Pollock, T. L., & Ehrman, J. M. (1994). Exports of carbon and nitrogen from river basins in Canada’s Atlantic provinces. Global Biogeochemical Cycles, 8, 441–450. https://doi.org/10.1029/94GB02311

    Article  CAS  Google Scholar 

  • Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51, 325–346. https://doi.org/10.1016/0304-4203(95)00062-3

    Article  CAS  Google Scholar 

  • Cory, R. M., & Kaplan, L. A. (2012). Biological lability of stream water fluorescent dissolved organic matter. Limnology and Oceanography, 57, 1347–1360. https://doi.org/10.4319/lo.2012.57.5.1347

    Article  CAS  Google Scholar 

  • Cory, R. M., & McKnight, D. M. (2005). Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology, 39, 8142–8149. https://doi.org/10.1021/es0506962

    Article  CAS  Google Scholar 

  • Creed, I. F., McKnight, D. M., Pellerin, B. A., Green, M. B., Bergamaschi, B. A., Aiken, G. R., Burns, D. A., Findlay, S. E. G., Shanley, J. B., Striegl, R. G., Aulenbach, B. T., Clow, D. W., Laudon, H., McGlynn, B. L., McGuire, K. J., Smith, R. A., & Stackpoole, S. M. (2015). The river as a chemostat: Fresh perspectives on dissolved organic matter flowing down the river continuum. Canadian Journal of Fisheries and Aquatic Sciences, 72, 1272–1285. https://doi.org/10.1139/cjfas-2014-0400

    Article  Google Scholar 

  • Determann, S., Lobbes, J. M., Reuter, R., & Rullkotter, J. (1998). Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Marine Chemistry, 62, 137–156. https://doi.org/10.1016/S0304-4203(98)00026-7

    Article  CAS  Google Scholar 

  • Fasching, C., Ulseth, A. J., Schelker, J., Steniczka, G., & Battin, T. J. (2016). Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone. Limnology and Oceanography, 61, 558–571. https://doi.org/10.1002/lno.10232

    Article  Google Scholar 

  • Fellman, J. B., Hood, E., D’Amore, D. V., Edwards, R. T., & White, D. (2009). Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry, 95, 277–293. https://doi.org/10.1007/s10533-009-9336-6

    Article  CAS  Google Scholar 

  • Gomi, T., Sidle, R. C., & Richardson, J. S. (2002). Understanding processes and downstream linkages of headwater systems. BioScience, 52, 905–916.

    Article  Google Scholar 

  • Hawke, H. A., Radoman, N., Bergquist, J., Wallian, M. B., Tranvik, L. J., & Löfgren, S. (2018). Regional diversity of complex dissolved organic matter across forested hemiboreal headwater streams. Scientific Reports, 8, 16060. https://doi.org/10.1038/s41598-018-34272-3

    Article  CAS  Google Scholar 

  • Hedges, J. I., Keil, R. G., & Benner, R. (1997). What happens to terrestrial organic matter in the ocean? Organic Geochemistry, 27, 195–212. https://doi.org/10.1016/S0146-6380(97)00066-1

    Article  CAS  Google Scholar 

  • Huang, W., McDowell, W. H., Zou, Z., Ruan, H., Wng, J., & Ma, Z. (2015). Qualitative differences in headwater stream dissolved organic matter and riparian water-extractable soil organic matter under four different vegetation types along an altitudinal gradient in the Wuyi Mountains of China. Applied Geochemistry, 52, 67–75. https://doi.org/10.1016/j.apgeochem.2014.11.014

    Article  CAS  Google Scholar 

  • Kaal, J., Pérez-Rodríguez, M., & Biester, H. (2022). Molecular probing of DOM indicates a key role of spruce-derived lignin in the DOM and metal cycles of a headwater catchment; can spruce forest dieback exacerbate future trends in the browning of central European surface waters? Environmental Science & Technology, 56, 2747–2759. https://doi.org/10.1021/acs.est.1c04719

    Article  CAS  Google Scholar 

  • Kaiser, K., Guggenberger, G., & Zech, W. (2001). Organically bound nutrients in dissolved organic matter fractions in seepage and pore water of weakly developed forest soils. Acta Hydrochimica et Hydrobiologica, 28, 411–419.

    Article  Google Scholar 

  • Kaiser, K., & Kalbitz, K. (2012). Cycling downwards – Dissolved organic matter in soils. Soil Biology and Biochemistry, 52, 29–32. https://doi.org/10.1016/j.soilbio.2012.04.002

    Article  CAS  Google Scholar 

  • Kaplan, L. A., & Newbold, J. D. (2003). The role of monomers in stream ecosystem metabolism. In S. E. G. Findlay & R. L. Sinsabaugh (Eds.), Aquatic ecosystems: Interactivity of dissolved organic matter (pp. 97–119). Academic Press.

    Chapter  Google Scholar 

  • Kothawala, D. N., Stedmon, C. A., Muller, R. A., Weyhenmeyer, G. A., Kohler, S. J., & Tranvik, L. J. (2014). Controls of dissolved organic matter quality: Evidence from a large-scale boreal lake survey. Global Change Biology, 20, 1101–1114. https://doi.org/10.1111/gcb.12488

    Article  Google Scholar 

  • Lawaetz, A. J., & Stedmon, C. A. (2009). Fluorescence intensity calibration using the Raman scatter peak of water. Applied Spectroscopy, 63, 936–940. https://doi.org/10.1366/000370209788964548

    Article  CAS  Google Scholar 

  • Maie, N., Sekiguchi, S., Watanabe, A., Tsutsuki, K., Yamashita, Y., Melling, L., Cawley, K. M., Shima, E., & Jaffé, R. (2014). Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland-influenced coastal rivers. Journal of Sea Research, 91, 58–69. https://doi.org/10.1016/j.seares.2014.02.016

    Article  Google Scholar 

  • Matsui, T., Takahashi, K., Tanaka, N., Hijioka, Y., Horikawa, M., Yagihashi, T., & Harasawa, H. (2009). Evaluation of habitat sustainability and vulnerability for beech (Fagus crenata) forests under 110 hypothetical climatic change scenarios in Japan. Applied Vegetation Science, 12, 328–339. https://doi.org/10.1111/j.1654-109X.2009.01027.x

    Article  Google Scholar 

  • McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46, 38–48. https://doi.org/10.4319/lo.2001.46.1.0038

    Article  CAS  Google Scholar 

  • Mosher, J. J., Klein, G. C., Marshall, A. G., & Findlay, R. H. (2010). Influence of bedrock geology on dissolved organic matter quality in stream water. Organic Geochemistry, 41, 1177–1188. https://doi.org/10.1016/j.orggeochem.2010.08.004

    Article  CAS  Google Scholar 

  • Murdock, J. N., & Dodds, W. K. (2007). Linking benthic algal biomass to stream substratum topography. Journal of Phycology, 43, 449–460. https://doi.org/10.1111/j.1529-8817.2007.00357.x

    Article  Google Scholar 

  • Murphy, K. R., Bro, R., & Stedmon, C. A. (2014). Chemometric analysis of organic matter fluorescence. In P. Coble, A. Baker, J. Lead, D. Reynolds, & R. Spencer (Eds.), Aquatic organic matter fluorescence. Cambridge University Press.

    Google Scholar 

  • Murphy, K. R., Hambly, A., Singh, S., Henderson, R. K., Baker, A., Stuetz, R., & Khan, S. J. (2011). Organic matter fluorescence in municipal water recycling schemes: Towards a unified PARAFAC model. Environmental Science & Technology, 45, 2909–2916. https://doi.org/10.1021/es103015e

    Article  CAS  Google Scholar 

  • Nambu, K., & Yonebayashi, K. (1999). Role of dissolved organic matter in translocation of nutrient cations from organic layer materials in coniferous and broad leaf forest. Soil Science & Plant Nutrition, 45, 307–319.

    Article  Google Scholar 

  • Patel, K. F., Myers-Pigg, A., Bond-Lamberty, B., Fansler, S. J., Norris, C. G., McKever, S. A., Zheng, J., Rod, K. A., & Bailey, V. L. (2021). Soil carbon dynamics during dying vs. rewetting: Importance of antecedent moisture conditions. Soil Biology and Biochemistry, 156, 108165. https://doi.org/10.1016/j.soilbio.2021.108165

    Article  CAS  Google Scholar 

  • Perakis, S. S., & Hedin, L. O. (2002). Nitrogen loss from unpolluted south American forests mainly via dissolved organic compounds. Nature, 415, 416–419.

    Article  Google Scholar 

  • Santín, C., Yamashita, Y., Otero, X. L., Álvarez, M. Á., & Jaffé, R. (2009). Characterizing humic substances from estuarine soils and sediments by excitation-emission matrix spectroscopy and parallel factor analysis. Biogeochemistry, 96, 131–147. https://doi.org/10.1007/s10533-009-9349-1

    Article  CAS  Google Scholar 

  • Sasaki, C., Matsuyama, N., & Kato, C. (Eds.). (2014). Introduction to the soils of the Shirakami Mountains (p. 61). Hirosaki University Press (In Japanese).

    Google Scholar 

  • Schneider, S. C. (2015). Greener rivers in a changing climate?—Effects of climate and hydrological regime on benthic algal assemblages in pristine streams. Limnologica, 55, 21–32. https://doi.org/10.1016/j.limno.2015.10.004

    Article  Google Scholar 

  • Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnology and Oceanography: Methods, 6, 572–579. https://doi.org/10.4319/lom.2008.6.572

    Article  CAS  Google Scholar 

  • Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82, 239–254. https://doi.org/10.1016/S0304-4203(03)00072-0

    Article  CAS  Google Scholar 

  • Stedmon, C. A., Markager, S., Tranvik, L., Kronberg, L., Slatis, T., & Martinsen, W. (2007). Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Marine Chemistry, 104, 227–240.

    Article  CAS  Google Scholar 

  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topology. Geological Society of America Bulletin, 63, 1117–1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2

    Article  Google Scholar 

  • Thieme, L., Graeber, D., Hofmann, D., Bischoff, S., Schwarz, M. T., Steffen, B., Meyer, U.-N., Kaupenjohann, M., Wilcke, W., Michalzik, B., & Siemens, J. (2019). Dissolved organic matter characteristics of deciduous and coniferous forests with variable management: Different at the source, aligned in the soil. Biogeoscience, 16, 1411–1432. https://doi.org/10.5194/bg-16-1411-2019

    Article  CAS  Google Scholar 

  • Toosi, E. R., Schmidt, J. P., & Castellano, M. J. (2014). Soil temperature is an important regulatory control on dissolved organic carbon supply and uptake of soil solution nitrate. European Journal of Soil Biology, 61, 68–71. https://doi.org/10.1016/j.ejsobi.2014.01.003

    Article  CAS  Google Scholar 

  • Tsutsuki, K., Yoshida, E., Maie, N., Melling, L., & Watanabe, A. (2018). Characterization of dissolved organic matter in river water flowing through temperate and tropical peatlands based on size exclusion chromatography and fluorescence spectrometry. Humic Substances Research, 14, 19–32.

    Google Scholar 

  • Wei, S., Lu, Y., Chen, S., Shang, P., Xia, Y., & Zhang, Y. (2021). Fractional-derivative model simulations of reach-scale uptake and transport dynamics of natural fluorescent dissolved organic matter in a temperate forested stream in southeastern U.S. Journal of Hydrology, 603, 126878. https://doi.org/10.1016/j.jhydrol.2021.126878

    Article  CAS  Google Scholar 

  • Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology, 37, 4702–4708. https://doi.org/10.1021/es030360x

    Article  CAS  Google Scholar 

  • Wondzell, S. M. (2011). The role of the hyporheic zone across stream networks. Hydrological Processes, 25, 3525–3532. https://doi.org/10.1002/hyp.8119

    Article  Google Scholar 

  • Wong, J. C. Y., & Williams, D. D. (2010). Sources and seasonal patterns of dissolved organic matter (DOM) in the hyporheic zone. Hydrobiologia, 647, 99–111. https://doi.org/10.1007/s10750-009-9950-2

    Article  CAS  Google Scholar 

  • Zheng, D., Hunt, E. R., Jr., & Running, S. W. (1993). A daily soil temperature model based on air temperature and precipitation for continental applications. Climate Research, 2, 183–191.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Hattori, K. of the Ministry of Environment for his assistance in obtaining meteorological data. We also thank Dr. Shima, E. for his cooperation in conducting the survey.

Funding

Kitasato University School of Veterinary Medicine provided support for the research and analysis costs necessary to conduct this survey.

Author information

Authors and Affiliations

Authors

Contributions

N.M. designed the study, interpreted the data, and wrote the draft of the manuscript. S.N. made significant contributions in conducting the survey and water sample analyses; A.H.O. contributed significantly to the GIS analysis; K.S. contributed significantly to the statistical analyses. All authors commented on drafts on the manuscript, and approved the final version of the manuscript to be published.

Corresponding author

Correspondence to Nagamitsu Maie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 2092 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maie, N., Nishimura, S., Oide, A.H. et al. Biogeochemical processes controlling the dynamics of dissolved organic matter in streams in the Shirakami Mountains, Japan. Environ Monit Assess 195, 1450 (2023). https://doi.org/10.1007/s10661-023-12079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12079-8

Keywords

Navigation