Skip to main content
Log in

The performance of artificial neural networks for modeling daily concentrations of particulate matter from meteorological data

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The use of techniques based on artificial intelligence and machine learning for the simulation of many processes is becoming increasingly important in environmental sciences, with applications in the study of time series of atmospheric properties, such as pollution levels. The present work aimed to evaluate the efficiency of a model based on Artificial Neural Networks (ANN) in the simulation PM10 from meteorological data observed between 2018 and 2019 in Guaíba, southern Brazil, thus also having an estimate of the influence of atmospheric conditions on local air pollution. For this purpose, meteorological and PM10 data obtained from the stations Parque 35, sustained by Celulose Riograndense (CMPC), and A-801, sustained by the National Institute of Meteorology (INMET), were used. The ANN used for the simulation was of the Multilayer Perceptron type, trained by the backpropagation algorithm with cross-validation. The results obtained indicate that the simulation was satisfactory with a Nash–Sutcliffe index (NSE) of 0.64, a linear correlation coefficient (R) of 0.81, a relative error (Er) of 26% and a root mean square error (RMSE) of 7.40 µg/m3. Thus, even with some difficulty in estimating extreme concentrations, the model was suitable for the largest range observed, of 10 µg/m3 to 50 µg/m3. For this dataset, the model proved to be an useful assessment tool and has the potential to be applied operationally to contribute to the monitoring and control of air quality levels both in the study area and in other regions of Brazil and the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Agudelo-Castañeda, D. M., Teixeira, E. C., Rolim, S. B. A., Pereira, F. N., & Wiegand, F. (2013). Measurement of particle number and related pollutant concentrations in an urban area in South Brazil. Atmospheric Environment, 70, 254–262. https://doi.org/10.1016/j.atmosenv.2013.01.029

    Article  CAS  Google Scholar 

  • Agudelo-Castañeda, D. M., Teixeira, E. C., Schneider, I. L., Pereira, F. N., Oliveira, M. L. S., Taffarel, S. R., Sehn, J. L., Ramos, C. G., & Silva, L. F. O. (2016). Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Science of the Total Environment, 543, 161–170. https://doi.org/10.1016/j.scitotenv.2015.11.030

    Article  CAS  Google Scholar 

  • Bai, Y., Li, Y., Wang, X., Xie, J., & Li, C. (2016). Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmospheric Pollution Research, 7, 1–10. https://doi.org/10.1016/j.apr.2016.01.004

    Article  Google Scholar 

  • Borsato, V. A., & Mendonça, F. A. (2015). Participação da Massa Polar Atlântica na dinâmica dos sistemas atmosféricos no Centro Sul do Brasil. Mercator (fortaleza), 14(1), 113–130. https://doi.org/10.4215/RM2015.1401.0008

    Article  Google Scholar 

  • Braga, A. L., Saldiva, P. H., Pereira, L. A., Menezes, J. J., Conceição, G. M., Lin, C. A., Zanobetti, A., Schwartz, J., & Dockery, D. W. (2001). Health effects of air pollution exposure on children and adolescents in São Paulo, Brazil. Pediatric Pulmonology, 31, 106–113. https://doi.org/10.1002/1099-0496(200102)31:2%3c106

    Article  CAS  Google Scholar 

  • BRASIL. Conselho Nacional do Meio Ambiente - CONAMA. (2018). Resolução nº 491, de 19 de novembro de 2018. Revoga a resolução nº 03 de 1990 e os itens 2.2.1 e 2.3 da resolução nº 05 de 1989. In: Brasil: Padrões de qualidade do ar previstos no CONAR. Diário Oficial da União, seção 1, 155–156. 21 de novembro de 2018.

  • Bravo Alvarez, H., Sosa Echeverria, R., Sanchez Alvarez, P., & Krupa, S. (2013). Air quality standards for particulate matter (PM) at high altitude cities. Environmental Pollution, 173, 255–256. https://doi.org/10.1016/j.envpol.2012.09.025

    Article  CAS  Google Scholar 

  • Bueno, A., Coelho, G. P., & Bertini Junior, J. R. (2020). Dynamic ensemble mechanisms to improve particulate matter forecasting. Applied Soft Computing Journal, 91, 106123. https://doi.org/10.1016/j.asoc.2020.106123

    Article  Google Scholar 

  • Chellali, M. R., Abderrahim, H., Hamou, A., Nebatti, A., & Janovec, J. (2016). Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers. Environmental Science & Pollution Research, 23, 14008–14017. https://doi.org/10.1007/s11356-016-6565-9

    Article  CAS  Google Scholar 

  • Comrie, A. C. (1997). Comparing Neural Networks and Regression Models for Ozone Forecasting. Journal of the Air & Waste Management Association, 47(6), 653–663. https://doi.org/10.1080/10473289.1997.10463925

    Article  CAS  Google Scholar 

  • De Gennaro, G., Trizio, L., Di Gilio, A., Pey, J., Pérez, N., Cusack, M., Alastuey, A., & Querol, X. (2013). Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean. Science of the Total Environment, 463–464, 875–883. https://doi.org/10.1016/j.scitotenv.2013.06.093

    Article  CAS  Google Scholar 

  • De Simoni, W. et al. (2021). O Estado da Qualidade do Ar no Brasil. (2021). Working Paper. WRI Brasil.

  • Dedovic, M.M., Turkovic, I., Konjic, T., Avdakovic, S., Dautbasic, N. (2016). Forecasting PM10 concentrations using neural networks and system for improving air quality. XI International Symposium on Telecommunications (BIHTEL), Sarajevo, Bosnia and Herzegovina. https://doi.org/10.1109/BIHTEL.2016.7775721

  • Durão, R. M., Mendes, M. T., & João Pereira, M. (2016). Forecasting O3 levels in industrial area surroundings up to 24 h in advance, combining classification trees and MLP models. Atmospheric Pollution Research, 7, 961–970. https://doi.org/10.1016/j.apr.2016.05.008

    Article  Google Scholar 

  • Elangasinghe, M. A., Singhal, N., Dirks, K. N., Salmond, J. A., & Samarasinghe, S. (2014). Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering. Atmospheric Environment, 94, 106–116. https://doi.org/10.1016/j.atmosenv.2014.04.051

    Article  CAS  Google Scholar 

  • Fallahizadeh, S., Kermani, M., Esrafili, A., Asadgol, Z., & Gholami, M. (2021). The effects of meteorological parameters on PM10: Health impacts assessment using AirQ+ model and prediction by an artificial neural network (ANN). Urban Climate, 38, 100905. https://doi.org/10.1016/j.uclim.2021.100905

    Article  Google Scholar 

  • Franceschi, F., Cobo, M., & Figueredo, M. (2018). Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmospheric Pollution Research, 9, 912–922. https://doi.org/10.1016/j.apr.2018.02.006

    Article  CAS  Google Scholar 

  • Freitas, C., Ponce, A., Juger, W., & Gouveia, N. (2016). Poluição do ar e impactos na saúde em Vitória. Espírito Santo. Revista De Saúde Pública, 50, 4. https://doi.org/10.1590/S1518-8787.2016050005909

    Article  Google Scholar 

  • Fundação Estadual De Proteção Ambiental Henrique Luiz Roessler - FEPAM. (2002) Rede Estadual de Monitoramento Automático da Qualidade do Ar - Relatório 2021. Rio Grande do Sul, Brazil.

  • Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) — a review of applications in the atmospheric sciences. Atmospheric Environment, 32, 2627–2636. https://doi.org/10.1016/s1352-2310(97)00447-0

    Article  CAS  Google Scholar 

  • Gouveia, N., & Fletcher, T. (2000). Respiratory diseases in children and outdoor air pollution in Sao Paulo, Brazil: A time series analysis. Occupational and Environmental Medicine, 57, 477–483. https://doi.org/10.2307/27731347

    Article  CAS  Google Scholar 

  • Gouveia, N., Mendonça, G., Leon, A., Correia, J., Junger, W., Freitas, C., Daumas, R., Martins, L., Giussepe, L., Conceição, G., Manerich, A., & Cunha-Cruz, J. (2003). Poluição do ar e efeitos na saúde nas populações de duas grandes metrópoles brasileiras. Epidemiologia e Serviços De Saúde, 12(1), 29–40. https://doi.org/10.5123/S1679-49742003000100004

    Article  Google Scholar 

  • Goyal, P., Chan, A. T., & Jaiswal, N. (2006). Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmospheric Environment, 40, 2068–2077. https://doi.org/10.1016/j.atmosenv.2005.11.041

    Article  CAS  Google Scholar 

  • Grivas, G., & Chaloulakou, A. (2006). Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospheric Environment, 40, 1216–1229. https://doi.org/10.1016/j.atmosenv.2005.10.036

    Article  CAS  Google Scholar 

  • Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., & Brasseur, O. (2005). A neural network forecast for daily average PM10 concentrations in Belgium. Atmospheric Environment, 39, 3279–3289. https://doi.org/10.1016/j.atmosenv.2005.01.050

    Article  CAS  Google Scholar 

  • Hoshyaripour, G., Brasseur, G., Andrade, M. F., Gavidia-Calderón, M. M., Bouarar, I., & Ynoue, R. Y. (2016). Prediction of ground-level ozone concentration in São Paulo, Brazil: Deterministic versus statistic models. Atmospheric Environment, 145, 365–375. https://doi.org/10.1016/j.atmosenv.2016.09.061

    Article  CAS  Google Scholar 

  • Jeong, C. H., Evans, G. J., Hopke, P. K., Chalupa, D., & Utell, M. J. (2006). Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, United States, and Toronto, Canada. Journal of the Air & Waste Management Association, 56, 431–443. https://doi.org/10.1080/10473289.2006.10464519

    Article  CAS  Google Scholar 

  • Kermani, M., Jafari, A. J., Gholami, M., Arfaeinia, H., Yousefi, M., Shahsavani, A., & Fanaei, F. (2021). Spatio-seasonal variation, distribution, levels, and risk assessment of airborne asbestos concentration in the most industrial city of Iran: Effect of meteorological factors. Environmental Science & Pollution Research, 28, 16434–16446. https://doi.org/10.1007/s11356-020-11941-3

    Article  CAS  Google Scholar 

  • Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Niska, H., Dorling, S., Chatterton, T., Foxall, R., & Cawley, G. (2003). Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmospheric Environment, 37(32), 4539–4550. https://doi.org/10.1016/S1352-2310(03)00583-1

    Article  CAS  Google Scholar 

  • Landim, A. A., Teixeira, E. C., Agudelo-Castañeda, D., Schneider, I., Silva, L. F. O., Wiegand, F., & Kumar, P. (2018). Spatio-temporal variations of sulfur dioxide concentrations in industrial and urban area via a new statistical approach. Air Quality, Atmosphere & Health, 11, 801–813. https://doi.org/10.1007/s11869-018-0584-2

    Article  CAS  Google Scholar 

  • Li, X., Ma, Y., Wang, Y., Liu, N., & Hong, Y. (2017). Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China. Atmospheric Research, 198, 185–193. https://doi.org/10.1016/j.atmosres.2017.08.023

    Article  CAS  Google Scholar 

  • Lima, B. D., Teixeira, E. C., Hower, J. C., Civeira, M. S., Ramírez, O., Yang, C.-X., Oliveira, M. L. S., & Silva, L. F. O. (2021). Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution. Geoscience Frontiers, 12, 101129. https://doi.org/10.1016/j.gsf.2020.12.010

    Article  CAS  Google Scholar 

  • Lou, C., Liu, H., Li, Y., et al. (2017). Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta China. Environmental Monitoring and Assessment, 189, 582. https://doi.org/10.1007/s10661-017-6281-z

    Article  CAS  Google Scholar 

  • Luna, A. S., Paredes, M. L. L., de Oliveira, G. C. G., & Corrêa, S. M. (2014). Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil. Atmospheric Environment, 98, 98–104. https://doi.org/10.1016/j.atmosenv.2014.08.060

    Article  CAS  Google Scholar 

  • Mcculloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophisics, 5, 115–133. https://doi.org/10.1007/bf02478259

    Article  Google Scholar 

  • McKendry, I. G. (2002). Evaluation of Artificial Neural Networks for Fine Particulate Pollution (PM10 and PM2.5) Forecasting. Journal of the Air & Waste Management Association, 52(9), 1096–1101. https://doi.org/10.1080/10473289.2002.10470836

    Article  CAS  Google Scholar 

  • Nascimento, L. F., Pereira, L. A., Braga, A. L., Módolo, M. C., & Carvalho, J. A., Jr. (2006). Effects of air pollution on children’s health in a city in Southeastern Brazil. Revista de Saúde Pública, 40(1), 77–82. https://doi.org/10.1590/S0034-89102006000100013

    Article  Google Scholar 

  • Online document Lima, M.M.C. (2006). Estimativa de concentração de material particulado em suspensão na atmosfera por meio da modelagem de redes neurais artificiais. Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Retrieved June 9, 2023, from http://hdl.handle.net/1843/ENGD-6XXNAQ

  • Online document World Health Organization. (‎2016)‎. Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organization. Retrieved June 11, 2023, from https://apps.who.int/iris/handle/10665/250141

  • Online document Climate-Data. Climate: Guaíba. Retrieved June 6, 2023, from https://pt.climate-data.org/america-do-sul/brasil/rio-grande-do-sul/guaiba-43822/.

  • Online document World Health Organization. (‎2021)‎. WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. Retrieved June 12, 2023, from https://apps.who.int/iris/handle/10665/345329

  • Online document Instituto Brasileiro de Geografia e Estatística – IBGE (2022): Cidade de Guaíba – Panorama (Censos de 2010 e 2021). Retrieved June 7, 2023, from https://cidades.ibge.gov.br/brasil/rs/guaiba/panorama

  • Oliveira, G.G., Pedrollo, O.C., Castro, N.M.R. (2015). O Desempenho das Redes Neurais Artificiais (RNAs) para Simulação Hidrológica Mensal. Revista Brasileira de Recursos Hídricos, 19 (2), 251–265. https://doi.org/10.21168/rbrh.v19n2.p251-265

  • Pun, V. C., Tian, L., Yu, I. T. S., Kioumourtzoglou, M.-A., & Qiu, H. (2015). Differential Distributed Lag Patterns of Source-Specific Particulate Matter on Respiratory Emergency Hospitalizations. Environmental Science & Technology, 49(6), 3830–3838. https://doi.org/10.1021/es505030u

    Article  CAS  Google Scholar 

  • Rice, M. B., Ljungman, P. L., Wilker, E. H., Gold, D. R., Schwartz, J. D., Koutrakis, P., Washko, G. R., O’Connor, G. T., & Mittleman, M. A. (2013). Short-term exposure to air pollution and lung function in the framingham heart study. American Journal of Respiratory and Critical Care Medicine, 188(11), 1351–13571. https://doi.org/10.1164/rccm.201308-1414oc

    Article  CAS  Google Scholar 

  • Rocha, C., Lima, J., Mendonça, K., Marques, E., Zanella, M., Ribeiro, J., Bertoncini, B., Castelo Branco, V., & Cavalcante, R. (2020). Health impact assessment of air pollution in the metropolitan region of Fortaleza, Ceará Brazil. Atmospheric Environment, 241, 117751. https://doi.org/10.1016/j.atmosenv.2020.117751

    Article  CAS  Google Scholar 

  • Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536. https://doi.org/10.1038/323533a0

    Article  Google Scholar 

  • Salma, I., Balásházy, I., Winkler Heil, R., Hofmann, W., & Záray, G. (2002). Effect of particle mass size distribution on the deposition of aerosols in the human respiratory system. Journal of Aerosol Science, 33, 119–132. https://doi.org/10.1016/S0021-8502(01)00154-9

    Article  CAS  Google Scholar 

  • Schneider, I., Teixeira, E. C., Agudelo-Castañeda, D., Silva, G., Balzaretti, N., Braga, M., & Oliveira, L. (2016). FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Science of the Total Environment, 541, 1151–1160. https://doi.org/10.1016/j.scitotenv.2015.09.142

    Article  CAS  Google Scholar 

  • Shi, J. P., Evans, D. E., Khan, A., & Harrison, R. M. (2001). Sources and concentration of nanoparticles (<10nm diameter) in the urban atmosphere. Atmospheric Environment, 35(7), 1193–1202. https://doi.org/10.1016/s1352-2310(00)00418-0

    Article  CAS  Google Scholar 

  • Shibuya, R. Y. M. (2022). Previsão de MP10 através de redes neurais: Estudos de caso no Estado de São Paulo. Universidade Federal de São Carlos - UFSCAR.

    Google Scholar 

  • Siwek, K., & Osowski, S. (2012). Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors. Engineering Applications of Artificial Intelligence, 25, 1246–1258. https://doi.org/10.1016/j.engappai.2011.10.013

    Article  Google Scholar 

  • Teixeira, E. C., Agudelo-Castañeda, D. M., Fachel, J. M. G., Leal, K. A., Garcia, K. O., & Wiegand, F. (2012). Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil. Atmospheric Research, 118, 390–403. https://doi.org/10.1016/j.atmosres.2012.07.004

    Article  CAS  Google Scholar 

  • Ventura, L. M. B., Pinto, F. O., Soares, L. M., Luna, A. S., & Gioda, A. (2019). Forecast of daily PM2.5 concentrations applying artificial neural networks and Holt-Winters models. Air Quality, Atmosphere & Health, 12, 317–325. https://doi.org/10.1007/s11869-018-00660-x

    Article  CAS  Google Scholar 

  • Voukantsis, D., Karatzas, K., Kukkonen, J., Räsänen, T., Karppinen, A., & Kolehmainen, M. (2011). Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Science of the Total Environment, 409, 1266–1276. https://doi.org/10.1016/j.scitotenv.2010.12.039

    Article  CAS  Google Scholar 

  • Widrow, B., Hoff, M. E. A., & Circuits, S. (1960). IRE WESCON Convention Record (pp. 96–104). IRE Part.

    Google Scholar 

  • Yin, W., Fan, Z., Tangdamrongsub, N., Hu, L., & Zhang, M. (2021). Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE – A case study over the state of Victoria Australia. Journal of Hydrology, 602, 126735. https://doi.org/10.1016/j.jhydrol.2021.126735

    Article  Google Scholar 

  • Yusof, K.M.K.K., Azid, A., Sani, M.S.A., Samsudin, M.S., Amin, S.N.S.M., Rani, N.L.A., Jamalani, M.A. (2019). The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models over particulate matter (PM10) variability during haze and non-haze episodes: A decade case study. Malaysian Journal of Fundamental and Applied Sciences, 15 (2), 164–172. https://doi.org/10.11113/mjfas.v15n2.1004.

  • Zhao, H., Che, H., Zhang, X., Ma, Y., Wang, Y., Wang, H., & Wang, Y. (2013). Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmospheric Pollution Research, 4(4), 427–434. https://doi.org/10.5094/apr.2013.049

    Article  Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study and approved the final manuscript.

Bianca Dutra de Lima – Conceptualization, data collection, data curation, modeling and original draft.

Rita de Cássia Marques Alves – Supervision, data curation, review.

Guilherme Garcia de Oliveira – Data curation, modeling, review.

Bruna Lüdtke Paim – Data curation, review.

Corresponding author

Correspondence to Bianca Dutra de Lima.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, B.D., de Cássia Marques Alves, R., de Oliveira, G.G. et al. The performance of artificial neural networks for modeling daily concentrations of particulate matter from meteorological data. Environ Monit Assess 195, 1305 (2023). https://doi.org/10.1007/s10661-023-11911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11911-5

Keywords

Navigation