Skip to main content
Log in

Spatio-temporal modeling of rangeland degradation in response to changing environment in the Upper Ewaso Ngiro River Basin, Kenya

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rangelands primarily provide forage for grazing and browsing animals, yet their ecosystems are degraded due to natural causes and anthropogenic activities such as pastoralism, tourism, and ranching. Increased rangeland detrimental effects led the present research to model the severity of rangeland degradation in the Upper Ewaso Ngiro River Basin (UENRB) in Kenya between 1986 and 2021 and predict the future scenario for 2031. The severity of rangeland degradation was analysed using the multi-criteria analytic hierarchical process and principal component analysis, while the cellular automata Markov chain-analysis model was used for prediction. The models utilized datasets including land-use land cover, surface albedo, bareness index, vegetation health index, soil moisture index, topographic wetness index, reconnaissance drought index, k-factor, slope, and population density. The findings indicated that rangeland degradation varied sporadically, with the reconnaissance drought index being the significant influencing parameter, contributing to about 19.2% of the total degradation. In average, between the years under study, non-rangeland zones covered 10.4%, while low, moderate, high, and very high degradability severity covered 15.3%, 49.1%, 25.2%, and 0%, respectively. Prediction results for the year 2031 revealed that non-rangeland zones will cover 5.3%, whereas low, moderate, high and very high will cover 18.1%, 39.2%, 37.4%, and 0%, respectively. The hybrid model proved to be effective in modeling rangeland degradation. The study recommends the county and national governments to propose and adopt by-laws on legislation to regulate the exploitation of natural resources in the study area in order to restore the rangelands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CA:

Cellular automata

USGS:

United States Geological Surveys

References

  • Abate, T., & Angassa, A. (2016). Conversion of savanna rangelands to bush dominated landscape in Borana. Southern Ethiopia. Ecological Processes, 5(1), 6. https://doi.org/10.1186/s13717-016-0049-1

    Article  Google Scholar 

  • Aburas, M., Ho, Y., Ramli, M., & Ashaari, Z. (2016). The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. International Journal of Applied Earth Observation and Geoinformation, 52, 380–389. https://doi.org/10.1016/j.jag.2016.07.007

    Article  Google Scholar 

  • Alam, N., Saha, S., Gupta, S., & Chakraborty, S. (2021). Prediction modelling of riverine landscape dynamics in the context of sustainable management of floodplain: A geospatial approach. Annals of GIS, 27(3), 299–314. https://doi.org/10.1080/19475683.2020.1870558

    Article  Google Scholar 

  • Al-bukhari, A., Hallett, S., & Brewer, T. (2018). A review of potential methods for monitoring rangeland degradation in Libya. Pastoralism, 8(1), 13. https://doi.org/10.1186/s13570-018-0118-4

    Article  Google Scholar 

  • Balk, D. L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I., & Nelson, A. (2006). Determining global population distribution: Methods, applications and data. In Advances in parasitology (Vol. 62, pp. 119–156). Elsevier. https://doi.org/10.1016/S0065-308X(05)62004-0

  • Behmanesh, B., Barani, H., & Sarvestani, A. A. (2016). Rangeland degradation assessment: A new strategy based on the ecological knowledge of indigenous pastoralists. https://doi.org/10.5194/se-7-611-2016

  • Boakye, E., Anyemedu, F., Quaye-Ballard, J., & Donkor, E. (2019). Spatio-temporal analysis of land use/cover changes in the Pra River Basin, Ghana. Applied geomatics, 12. https://doi.org/10.1007/s12518-019-00278-3

  • Bogoliubova, A. (2014). Accuracy assessment of automatic image processing for land cover classification of st. Petersburg protected area.

  • Bolo, P. O., Sommer, R., Kihara, J., & Kinyua, M. (2019). Rangeland degradation: Causes, consequences, monitoring techniques and remedies.

  • Boone, R. (2011). Development and use of a beta global rangeland model. Natural resource ecology laboratory.

  • Boone, R. B., Conant, R. T., Sircely, J., Thornton, P. K., & Herrero, M. (2018). Climate change impacts on selected global rangeland ecosystem services. Global Change Biology, 24(3), 1382–1393. https://doi.org/10.1111/gcb.13995

    Article  Google Scholar 

  • Buttafuoco, G., Caloiero, T., Guagliardi, I., & Ricca, N. (2016). Drought assessment using the reconnaissance drought index (RDI) in a southern Italy region.

  • Çamdevýren, H., Demýr, N., Kanik, A., & Keskýn, S. (2005). Use of principal component scores in multiple linear regression models for prediction of chlorophyll-a in reservoirs. Ecological Modelling, 181(4), 581–589. https://doi.org/10.1016/j.ecolmodel.2004.06.043

    Article  CAS  Google Scholar 

  • Chadaeva, V., & Pshegusov, R. (2022). Identification of degradation factors in mountain semiarid rangelands using spatial distribution modelling and ecological niche theory. Geocarto International, 37(27), 15235–15251. https://doi.org/10.1080/10106049.2022.2096701

    Article  Google Scholar 

  • Chen, W., Liu, L., Zhang, C., Wang, J., Wang, J., & Pan, Y. (2004). Monitoring the seasonal bare soil areas in Beijing using multitemporal TM images. IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 5, 3379–3382. https://doi.org/10.1109/IGARSS.2004.1370429

  • Dika, G., Tolossa, D., & Eyana, S. M. (2022). Rangeland degradation and its impacts post-1992: Constructing the perceptions of Boorana pastoralist, Southern Ethiopia. International Journal of Ecology, 2022, 1–14. https://doi.org/10.1155/2022/7978744

    Article  Google Scholar 

  • Faria, T. D. O., Rodrigues, T. R., Curado, L. F. A., Gaio, D. C., & Nogueira, J. D. S. (2018). Surface albedo in different land-use and cover types in Amazon forest region. Ambiente e Agua - an Interdisciplinary Journal of Applied Science, 13(2), 1. https://doi.org/10.4136/ambi-agua.2120

    Article  Google Scholar 

  • Fenetahun, Y., Xu, X., & Wang, Y. (2018). Assessment of range land degradation, major causes, impacts, and alternative rehabilitation techniques in Yabello rangelands Southern Ethiopia [Preprint]. BIOLOGY. https://doi.org/10.20944/preprints201807.0198.v1

  • Gaiser, T., Perkons, U., Küpper, P. M., Kautz, T., Uteau-Puschmann, D., Ewert, F., Enders, A., & Krauss, G. (2013). Modeling biopore effects on root growth and biomass production on soils with pronounced sub-soil clay accumulation. Ecological Modelling, 256, 6–15. https://doi.org/10.1016/j.ecolmodel.2013.02.016

    Article  Google Scholar 

  • Gharizadeh, R., Alizadeh, R., Shafiei Kaleibari, S., Cavallaro, F., Zolfani, S., Bausys, R., & Mardani, A. (2020). An integrated multi-criteria decision making model for sustainability performance assessment for insurance companies. Sustainability, 12(3), 789. https://doi.org/10.3390/su12030789

    Article  Google Scholar 

  • Gichuki, F. N. (2002). Water scarcity and conflicts: A case study of the Upper Ewaso Ng’iro North Basin. 22.

  • Godde, C. M. (2020). Global rangeland production systems and livelihoods at threat under climate change and variability.

  • Hyandye, C., & Martz, L. W. (2017). A Markovian and cellular automata land-use change predictive model of the Usangu catchment. International Journal of Remote Sensing, 38(1), 64–81. https://doi.org/10.1080/01431161.2016.1259675

    Article  Google Scholar 

  • Jafari, S., & Zaredar, N. (2010). Land suitability analysis using multi attribute decision making approach. International Journal of Environmental Science and Development, 441–445. https://doi.org/10.7763/IJESD.2010.V1.85

  • Keesstra, S., Mol, G., De Leeuw, J., Okx, J., Molenaar, C., De Cleen, M., & Visser, S. (2018). Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration Work. Land, 7(4), Article 4. https://doi.org/10.3390/land7040133

  • Kimwatu, D. M., Mundia, C. N., & Makokha, G. O. (2021). Monitoring environmental water stress in the Upper Ewaso Ngiro River Basin. Kenya. Journal of Arid Environments, 191, 104533. https://doi.org/10.1016/j.jaridenv.2021.104533

    Article  Google Scholar 

  • Kogo, B. K., Kumar, L., & Koech, R. (2020). Impact of land use/cover changes on soil erosion in Western Kenya. Sustainability, 12(22), 9740. https://doi.org/10.3390/su12229740

    Article  CAS  Google Scholar 

  • Kowal, V., Ahlborn, J., Jamsranjav, C., Avirmed, O., & Chaplin-Kramer, R. (2021). Modeling integrated impacts of climate change and grazing on Mongolia’s rangelands. Land, 10(4), 397. https://doi.org/10.3390/land10040397

    Article  Google Scholar 

  • Kulimushi, L. C., Bashagaluke, J. B., Choudhari, P., Masroor, M., & Sajjad, H. (2021). Novel combination of analytical hierarchy process and weighted sum analysis for watersheds prioritization. A study of Ulindi catchment, Congo River Basin. Geocarto International, 1–39. https://doi.org/10.1080/10106049.2021.2002426

  • Kundu, A., Dwivedi, S., & Dutta, D. (2016). Monitoring the vegetation health over India during contrasting monsoon years using satellite remote sensing indices. Arabian Journal of Geosciences, 9(2), 144. https://doi.org/10.1007/s12517-015-2185-9

    Article  Google Scholar 

  • Laan, M. van der., M., Eckert, S., Da Silva, M., & Annandale, J. (2021). A water footprint approach to guide water resource management in data-scarce regions: A case study for the Upper Ewaso Ng’iro Basin, Mount Kenya. Water SA, 47(3). https://doi.org/10.17159/wsa/2021.v47.i3.11864

  • Li, X., Wang, H., Zhou, S., Sun, B., & Gao, Z. (2016). Did ecological engineering projects have a significant effect on large-scale vegetation restoration in Beijing-Tianjin sand source region, China? A remote sensing approach. Chinese geographical science, 26. https://doi.org/10.1007/s11769-016-0801-6

  • Liang, S.-J., Fang, H., & Chen, M. Z. (2001). Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods. Geoscience and Remote Sensing, IEEE Transactions On, 39, 2490–2498. https://doi.org/10.1109/36.964986

  • Louise, G., Malcolm, H., & Patrick, O. (2010). Evaluating the effectiveness of community-based conservation in northern Kenya: A report to the nature conservancy.

  • Mas, J., Kolb, M., Paegelow, M., Camacho Olmedo, M. T., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94–111. https://doi.org/10.1016/j.envsoft.2013.09.010

    Article  Google Scholar 

  • Masitoh, F., & Rusydi, A. N. (2019). Vegetation health index (VHI) analysis during drought season in Brantas Watershed. IOP Conference Series: Earth and Environmental Science, 389, 012033. https://doi.org/10.1088/1755-1315/389/1/012033

    Article  Google Scholar 

  • Matthias, B., & , Mark, S. S. (2003). A plant functional approach to the prediction of changes in Australian rangeland vegetation under grazing and fire.

  • Mattivi, P., Franci, F., Lambertini, A., & Bitelli, G. (2019). TWI computation: A comparison of different open source GISs. Open Geospatial Data, Software and Standards, 4(1), 6. https://doi.org/10.1186/s40965-019-0066-y

  • Mirzabaev, A., Ahmed, M., Werner, J., Pender, J., & Louhaichi, M. (2016). Rangelands of Central Asia: Challenges and opportunities. Journal of Arid Land, 8(1), 93–108. https://doi.org/10.1007/s40333-015-0057-5

    Article  Google Scholar 

  • Mishra, V., & Rai, P. (2016). A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar).

    Book  Google Scholar 

  • Mokarram, M., & Pham, T. M. (2022). CA-Markov model application to predict crop yield using remote sensing indices. Ecological Indicators, 139, 108952. https://doi.org/10.1016/j.ecolind.2022.108952

    Article  Google Scholar 

  • Moses, A. N. (2018). Using GIS techniques to model RUSLE’s ‘K’ factor for River Nzoia Basin in Kenya. Engineering Technology Open Access Journal, 2(1). https://doi.org/10.19080/ETOAJ.2018.02.555578

  • Mulinge, W., Murithi, F., Gicheru, P., & Kihiu, E. (2015). Economics of land degradation and improvement in Kenya. In “Economics of land degradation and improvement – A global assessment for sustainable development”.

  • Mungai, D. N., Ong, C. K., Kiteme, B., Elkaduwa, W., & Sakthivadivel, R. (2004). Lessons from two long-term hydrological studies in Kenya and Sri Lanka. Agriculture, Ecosystems & Environment, 104(1), 135–143. https://doi.org/10.1016/j.agee.2004.01.011

    Article  Google Scholar 

  • Mussa, M., Hashim, H., & Teha, M. (2016). Rangeland degradation: Extent, impacts, and alternative restorationtechniques in the rangelands of Ethiopia. 15.

  • Mutiga, J. K., Mavengano, S. T., Zhongbo, S., Woldai, T., & Becht, R. (2010). Water allocation as a planning tool to minimise water use conflicts in the Upper Ewaso Ng’iro North Basin. Kenya. Water Resources Management, 24(14), 3939–3959. https://doi.org/10.1007/s11269-010-9641-9

    Article  Google Scholar 

  • Mzuri, R. T., Mustafa, Y. T., & Omar, A. A. (2021). Land degradation assessment using AHP and GIS-based modelling in Duhok District, Kurdistan Region, Iraq. Geocarto International, 1–19. https://doi.org/10.1080/10106049.2021.1987534

  • Ngigi, S. N., Savenije, H. H. G., & Gichuki, F. N. (2007). Land use changes and hydrological impacts related to up-scaling of rainwater harvesting and management in upper Ewaso Ng’iro river basin. Kenya. Land Use Policy, 24(1), 129–140. https://doi.org/10.1016/j.landusepol.2005.10.002

    Article  Google Scholar 

  • Oomen, R. J., Ewert, F., & Snyman, H. A. (2016). Modelling rangeland productivity in response to degradation in a semi-arid climate. Ecological Modelling, 322, 54–70. https://doi.org/10.1016/j.ecolmodel.2015.11.001

    Article  Google Scholar 

  • Parida, B. R., Collado, W. B., Borah, R., Hazarika, M. K., & Samarakoon, L. (2008). Detecting drought-prone areas of rice agriculture using a modis-derived soil moisture index. Giscience & Remote Sensing, 45(1), 109–129. https://doi.org/10.2747/1548-1603.45.1.109

    Article  Google Scholar 

  • Saaty, T.L. (1980). The analytic hierarchy process. McGraw-Hill, New York. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1943982

  • Selemani, I. (2014). Communal rangelands management and challenges underpinning pastoral mobility in Tanzania: A review. http://www.lrrd.org/lrrd26/5/sele26078.html

  • Tadese, S., Soromessa, T., & Bekele, T. (2021). Analysis of the current and future prediction of land use/land cover change using remote sensing and the CA-Markov model in Majang Forest biosphere reserves of Gambella, Southwestern Ethiopia. The Scientific World Journal, 2021, 1–18. https://doi.org/10.1155/2021/6685045

    Article  Google Scholar 

  • Tong, X., Wang, K.-L., Yue, Y., Brandt, M., Liu, B., Zhang, C., Liao, C., & Fensholt, R. (2017). Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. International Journal of Applied Earth Observation and Geoinformation, 54. https://doi.org/10.1016/j.jag.2016.09.013

  • Wang, H., Qin, F., Xu, C., Li, B., Guo, L., & Wang, Z. (2021). Evaluating the suitability of urban development land with a geodetector. Ecological Indicators, 123, 107339. https://doi.org/10.1016/j.ecolind.2021.107339

    Article  Google Scholar 

  • Wang, Y., Wang, Z., Li, R., Meng, X., Ju, X., Zhao, Y., & Sha, Z. (2018). Comparison of modeling grassland degradation with and without considering localized spatial associations in vegetation changing patterns. Sustainability, 10(2), 316. https://doi.org/10.3390/su10020316

    Article  Google Scholar 

  • Wanjala, J. A., Sichangi, A. W., Mundia, C. N., & Makokha, G. O. (2020). Modelling the dry season inundation pattern of Yala Swamp in Kenya. Modeling Earth Systems and Environment, 6(4), 2091–2101. https://doi.org/10.1007/s40808-020-00816-8

    Article  Google Scholar 

  • Wiethase, J., Critchlow, R., Foley, C., Foley, L., Kinsey, E., Bergman, B., Osujaki, B., Mbwambo, Z., Kirway, P., Redeker, K., Hartley, S., & Beale, C. (2023). Pathways of degradation in rangelands in Northern Tanzania show their loss of resistance, but potential for recovery. Scientific reports, 13. https://doi.org/10.1038/s41598-023-29358-6

  • Williams, J. R. (1990). The Erosion-Productivity Impact Calculator (EPIC) Model: A Case History on JSTOR. https://www.jstor.org/stable/76847

  • Zerga, B. (2015). Rangeland degradation and restoration.

  • Zhao, H., & Chen, X. (2005). Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05., 3, 1666–1668. https://doi.org/10.1109/IGARSS.2005.1526319

Download references

Acknowledgements

I wish to thank the data providers USGS Earth Explorer, Alaska Satellite Facility, FAO Digital Soil Map of the World (DSMW), Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Moderate Resolution Imaging Spectroradiometer (MODIS), the Kenya National Bureau of Statistics, and the Kenya National Research Fund through the collaboration between Kenya Forestry Research Institute (KeFRI) and Dedan Kimathi University of Technology (DeKUT) for their support during the field work.

Author information

Authors and Affiliations

Authors

Contributions

Obed Mogare Kiana: conceptualization, methodology, writing of the original draft, and submission of the research article for publication. Charles Ndegwa Mundia: conceptualization, methodology, writing of the original draft, supervision, and reviewing and editing. Moses Karoki Gachari: conceptualization, methodology, writing of the original draft, supervision, and reviewing and editing. Duncan Maina Kimwatu: methodology, writing of the original draft and reviewing and editing.

Corresponding author

Correspondence to Obed Mogare Kiana.

Ethics declarations

Ethics approval and consent to participate

All authors have read, understood, and complied as applicable with the statement on the “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiana, O.M., Mundia, C.N., Gachari, M.K. et al. Spatio-temporal modeling of rangeland degradation in response to changing environment in the Upper Ewaso Ngiro River Basin, Kenya. Environ Monit Assess 195, 1311 (2023). https://doi.org/10.1007/s10661-023-11898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11898-z

Keywords

Navigation