Skip to main content
Log in

Non-native and native tree species plantations and seasonality could have substantial impacts on the diversity of indigenous soil fauna in a semi-arid forest ecosystem

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The temporal and spatial dynamics of soil fauna in many terrestrial ecosystems are still not fully understood, while soil fauna is one of the most critical characteristics in assessing soil quality. Therefore, the effects of native [Quercus brantii (QP) and Amygdalus scoparia (AMP)] and non-native [Cupressus arizonica (CUP) and Pinus eldarica (PIN)] plantations and natural trees [Quercus brantii coppice trees (QNC), standard (QNS), and Amygdalus scoparia (AMN)] on diversity and abundance of macro- and mesofauna were done in the semi-arid forest of Zagros, Iran. Samples were collected beneath the canopy of woody species and the outer edge of the canopy in spring and summer seasons. For this purpose, soil samples [(7 samples per woody species + control) × 2 seasons × 3 replicates] were taken from 0 to 20 cm depths. Each soil sample was a mix of three soil cores. For the macrofauna, 15 species belonging to four families (in spring) and 17 species in nine families (in summer) were collected and identified. For the soil mesofauna, 14 species belonging to 14 families (in spring) and 13 species in 13 different families (in summer) were identified, respectively. The fauna diversity indices under the canopy of studied species were higher in summer season than in spring. The result showed that the macrofauna diversity was affected by tree species, while mesofauna was affected by seasonal changes. Macrofauna biodiversity was higher under the canopy of PIN and CUP than other trees. Principle component analysis showed that the diversity of the macrofauna was higher under the canopy of PIN and CUP, and influenced by soil characteristic properties, soil properties did not influence them. Yet the diversity of the mesofauna was affected by soil characteristics and was higher in areas with higher organic carbon, nitrogen, substrate-induced respiration, basal respiration, microbial carbon biomass, and alkaline phosphatase. In addition, mesofauna biodiversity had a significant positive correlation with the soil quality index (SQI). SQI was higher under the canopy of natural stands, especially the QNS. Conservation of native species (QNS, QNC, and AMN) and plantation with native deciduous species (QP and AMP) seem to moderate environmental conditions and increase soil macro- and mesofauna diversity and SQI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on demand.

References

  • Almeida, H. C., Almeida, D., Alves, M. V., Schneider, J., Mafra, A. L., & Bertol, I. (2007). Propriedades químicas e fauna do solo influenciadas pela calagem em sistema semeadura direta. Ciência Rural, 37, 1462–1465. https://doi.org/10.1590/S0103-84782007000500040

    Article  CAS  Google Scholar 

  • Anderson, J. P. E. (1982). Soil respiration. AL Page et al.(ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Soil respiration. pp 831–871.

  • Baretta, D., Santos, J. C. P., Segat, J. C., Geremia, E. V., Oliveira Filho, L. C. L., & Alves, M. V. (2011). Fauna edáfica e qualidade do solo. Tópicos em Ciência do Solo, 7, 92–141.

    Google Scholar 

  • Barrios, E. (2007). Soil biota, ecosystem services and land productivity. Ecological Economics, 64(2), 269–285. https://doi.org/10.1016/j.ecolecon.2007.03.004

    Article  Google Scholar 

  • Bazgir, M., & Mirab-Balou, M. (2018). The effect of different land uses on soil micro-arthropods and soil properties (case study: Cheharmaleh and Tolomeh Region, Ilam Province). Iranian Journal of Soil and Water Research, 50(1), 99–109.

    Google Scholar 

  • Bhagawati, S., Bhattacharyya, B., Medhi, B. K., Bhattacharjee, S., & Mishra, H. (2021). Diversity of soil dwelling collembola in a forest, vegetable and tea ecosystems of Assam, India. Sustainability, 13(22), 12628. https://doi.org/10.3390/su132212628

    Article  CAS  Google Scholar 

  • Bitzer, R. J., Rice, M. E., Pilcher, C. D., Pilcher, C. L., & Lam, W. K. F. (2005). Biodiversity and community structure of epedaphic and euedaphic springtails (Collembola) in transgenic rootworm Bt corn. Environmental Entomology, 34(5), 1346–1376. https://doi.org/10.1093/ee/34.5.1346

    Article  Google Scholar 

  • Blake, G. R., & Hartge, K. H. (1986). Bulk density. Methods of soil analysis: Part 1. Physical and mineralogical methods, 5, 363–375.

    Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x

    Article  Google Scholar 

  • Braschler, B., & Baur, B. (2003). Effects of experimental small-scale grassland fragmentation on spatial distribution, density, and persistence of ant nests. Ecological Entomology, 28(6), 651–658. https://doi.org/10.1111/j.1365-2311.2003.00549.x

    Article  Google Scholar 

  • Bremner, J. M. (1996). Nitrogen-total. Methods of soil analysis: Part 3 Chemical methods, 5, 3 Chapter 37, 1085-1121. https://doi.org/10.2136/sssabookser5.3.c37

  • Brévault, T., Bikay, S., Maldes, J. M., & Naudin, K. (2007). Impact of a no-till with mulch soil management strategy on soil macrofauna communities in a cotton cropping system. Soil and Tillage Research, 97(2), 140–149. https://doi.org/10.1016/j.still.2007.09.006

    Article  Google Scholar 

  • Çakır, M., Akburak, S., Makineci, E., & Bolat, F. (2023). Recovery of soil biological quality (QBS-ar) and soil microarthropod abundance following a prescribed fire in the Quercus frainetto forest. Applied Soil Ecology, 184, 104768. https://doi.org/10.1016/j.apsoil.2022.104768

    Article  Google Scholar 

  • Cardoso, E. J. B. N., Vasconcellos, R. L. F., Bini, D., Miyauchi, M. Y. H., Santos, C. A. D., Alves, P. R. L., Paula, A. M. D., Nakatani, A. S., Pereira, J. D. M., & Nogueira, M. A. (2013). Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola, 70(4), 274–289. https://doi.org/10.1590/S0103-90162013000400009

    Article  Google Scholar 

  • Cunha Neto, F. V. D., Correia, M. E. F., Pereira, G. H. A., Pereira, M. G., & Leles, P. S. D. S. (2012). Soil fauna as an indicator of soil quality in forest stands, pasture and secondary forest. Soil Processes and Properties. Revista Brasileira de Ciência do Solo, 36(5), 1407–1417. https://doi.org/10.1590/S0100-06832012000500004

    Article  Google Scholar 

  • De Aquino, A. M., da Silva, R. F., Mercante, F. M., Correia, M. E. F., de Fátima Guimarães, M., & Lavelle, P. (2008). Invertebrate soil macrofauna under different ground cover plants in the no-till system in the Cerrado. European Journal of Soil Biology, 44(2), 191–197. https://doi.org/10.1016/j.ejsobi.2007.05.001

    Article  Google Scholar 

  • Dhyani, A., Jain, R., & Pandey, A. (2019). Contribution of root-associated microbial communities on soil quality of oak and pine forests in the Himalayan ecosystem. Tropical Ecology, 60(2), 271–280. https://doi.org/10.1007/s42965-019-00031-2

    Article  CAS  Google Scholar 

  • Dias, P. F., Souto, S. M., Correia, M. E. F., de Menezes, R. K., & Franco, A. A. (2007). Efeito de leguminosas arbóreas sobre a macrofauna do solo em pastagem de Brachiaria brizantha cv. Marandu. Pesquisa Agropecuária Tropical, 37(1), 38–44.

    Google Scholar 

  • dos Santos, L. A. O., Naranjo-Guevara, N., & Fernandes, O. A. (2017). Diversity and abundance of edaphic arthropods associated with conventional and organic sugarcane crops in Brazil. Florida Entomologist, 100(1), 134–144. https://doi.org/10.1653/024.100.0119

    Article  Google Scholar 

  • Elek, Z., Magura, T., & Tóthmérész, T. (2001). Impacts of non-native Norway spruce plantation on abundance and species richness of ground beetles (Coleoptera: Carabidae). Web Ecology, 2(1), 32–37. https://doi.org/10.5194/we-2-32-2001

    Article  Google Scholar 

  • Elmquist, D. C., Kahl, K. B., Johnson-Maynard, J. L., & Eigenbrode, S. D. (2023). Linking agricultural diversification practices, soil arthropod communities and soil health. Journal of Applied Ecology, 1-12. https://doi.org/10.1111/1365-2664.14453

  • Famiglietti, J. S., Rudnicki, J. W., & Rodell, M. (1998). Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of hydrology, 210(1-4), 259–281. https://doi.org/10.1016/S0022-1694(98)00187-5

    Article  Google Scholar 

  • Farská, J., Prejzková, K., & Rusek, J. (2014). Management intensity affects traits of soil microarthropod community in montane spruce forest. Applied Soil Ecology, 75, 71–79. https://doi.org/10.1016/j.apsoil.2013.11.003

    Article  Google Scholar 

  • Ferris, H., Venette, R. C., & Scow, K. M. (2004). Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralization function. Applied Soil Ecology, 25(1), 19–35. https://doi.org/10.1016/j.apsoil.2003.07.001

    Article  Google Scholar 

  • Frouz, J., Elhottová, D., Kuráž, V., & Šourková, M. (2006). Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: Results of a field microcosm experiment. Applied Soil Ecology, 33(3), 308–320. https://doi.org/10.1016/j.apsoil.2005.11.001

    Article  Google Scholar 

  • Gibb, T. J., & Oseto, C. Y. (2005). Arthropod collection and identification: Laboratory and field techniques. Academic Press.

    Google Scholar 

  • Gillison, A. N., Jones, D. T., Susilo, F. X., & Bignell, D. E. (2003). Vegetation indicates diversity of soil macroinvertebrates: A case study with termites along a land-use intensification gradient in lowland Sumatra. Organisms Diversity & Evolution, 3(2), 111–126. https://doi.org/10.1078/1439-6092-00072

    Article  Google Scholar 

  • Gillot, C. (2005). Entomology (3rd ed., p. 831). Springer, University of Saskatchewan.

    Book  Google Scholar 

  • Gkisakis, V. D., Kollaros, D., Bàrberi, P., Livieratos, I. C., & Kabourakis, E. M. (2015). Soil arthropod diversity in organic, integrated, and conventional olive orchards and different agroecological zones in Crete, Greece. Agroecology and Sustainable Food Systems, 39(3), 276–294. https://doi.org/10.1080/21683565.2014.967440

    Article  Google Scholar 

  • Glime, J. M. (2013). Adaptive strategies: life cycles. Bryophyte ecology, 1 Physiological ecology: adaptive strategies:s 1-17.

  • Groner, E., & Ayal, Y. (2003). The interaction between bird predation and plant cover in determining habitat occupancy of darkling beetles. Oikos, 93(1), 22–31. https://doi.org/10.1034/j.1600-0706.2001.930102.x

    Article  Google Scholar 

  • Harborne, J. B. (1997). Role of phenolic secondary metabolites in plants and their degradation in nature. Driven by nature: plant litter quality and decomposition (pp. 67–74). CAB International: London

  • Heděnec, P., Zheng, H., Siqueira, D. P., Peng, Y., SchmidtI, K., Frøslev, T. G., Kjøller, R., Li, H., Frouz, J., & Vesterdal, L. (2023). Litter chemistry of common European tree species drives the feeding preference and consumption rate of soil invertebrates, and shapes the diversity and structure of gut and faecal microbiomes. Soil Biology and Biochemistry., 177, 108918. https://doi.org/10.1016/j.soilbio.2022.108918

    Article  CAS  Google Scholar 

  • Heydari, M., Cheraghi, J., Omidipour, R., Mirab-balou, M., & Pothier, D. (2021a). Beta diversity of plant community and soil mesofauna along an elevational gradient in a mountainous semi-arid oak forest. Community Ecology, 165–176. https://doi.org/10.1007/s42974-021-00046-7

  • Heydari, M., Eslaminejad, P., Valizadeh Kakhki, F., Mirab-Balou, M., Omidipour, R., Prévosto, B., Kooch, Y., & Lucas-Borja, M. E. (2020). Soil quality and mesofauna diversity relationship are modulated by woody species and seasonality in semi-arid oak forest. Forest Ecology and Management, 473, 118332. https://doi.org/10.1016/j.foreco.2020.118332

    Article  Google Scholar 

  • Heydari, M., Eslaminejad, P., Valizadeh Kakhki, F., Mirab-balou, M., Omidipour, R., Zema, D. A., Ma, C., & Lucas-Borja, M. E. (2021b). Spatio-temporal heterogeneity differently drives the diversity of various trophic guilds of mesofauna in semi-arid oak forests. Trees, 35(1), 171–187. https://doi.org/10.1007/s00468-020-02025-3

    Article  Google Scholar 

  • Heydari, M., Poorbabaei, H., Bazgir, M., Salehi, A., & Eshaghirad, J. (2014). Earthworms as indicators for different forest management types and human disturbance in Ilam oak forest, Iran. Folia Forestalia Polonica. Series A. Forestry, 56(3), 121–134. https://doi.org/10.2478/ffp-2014-0013

    Article  Google Scholar 

  • Heydari, M., Poorbabaei, H., Rostami, T., Begim Faghir, M., Salehi, A., & Ostad Hashmei, R. (2013). Plant species in Oak (Quercus brantii Lindl.) understory and their relationship with physical and chemical properties of soil in different altitude classes in the Arghvan valley protected area, Iran. Caspian. Journal of Environmental Sciences, 11(1), 97–110.

    Google Scholar 

  • Heydari, M., Prévosto, B., Naji, H. R., Mehrabi, A. A., & Pothier, D. (2017). Influence of soil properties and burial depth on Persian oak (Quercus brantii Lindl.) establishment in different microhabitats resulting from traditional forest practices. European Journal of Forest Research, 136, 287–305. https://doi.org/10.1007/s10342-017-1029-4

    Article  Google Scholar 

  • Huhta, V., Persson, T., & Setälä, H. (1998). Functional implications of soil fauna diversity in boreal forests. Applied Soil Ecology, 10(3), 277–288. https://doi.org/10.1016/S0929-1393(98)00126-7

    Article  Google Scholar 

  • Jafarian, N., Mirzaei, J., Omidipour, R., & Kooch, Y. (2023). Effects of micro-climatic conditions on soil properties along a climate gradient in oak forests, west of Iran: Emphasizing phosphatase and urease enzyme activity. Catena, 224, 106960.

    Article  CAS  Google Scholar 

  • Joern, A., & Laws, A. N. (2013). Ecological mechanisms underlying arthropod species diversity in grasslands. Annual review of entomology, 58(1), 19–36. https://doi.org/10.1146/annurev-ento-120811-153540

    Article  CAS  Google Scholar 

  • Kalra, Y. P., & Maynard, D. G. (1991). Methods manual for forest soil and plant analysis. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, AB. Information Report NOR-X-319E.116P.

  • Karamian, M., Mirzaei, J., Heydari, M., Kooch, Y., & Labelle, E. R. (2023). Seasonal effects of native and non-native woody species on soil chemical and biological properties in semi-arid forests, western Iran. Journal of Soil Science and Plant Nutrition, 1-17. https://doi.org/10.1007/s42729-023-01365-6

  • Kooch, Y., & Noghre, N. (2020). The effect of shrubland and grassland vegetation types on soil fauna and flora activities in a mountainous semi-arid landscape of Iran. Science of the Total Environment, 703, 135497. https://doi.org/10.1016/j.scitotenv.2019.135497

    Article  CAS  Google Scholar 

  • Kurniawan, I. D., Kinasih, I., Akbar, R. T. M., Chaidir, L., Iqbal, S., Pamungkas, B., & Imanudin, Z. (2023). Arthropod community structure indicating soil quality recovery in the organic agroecosystem of Mount Ciremai National Park’s Buffer Zone. Caraka Tani: Journal of Sustainable Agriculture, 38(2), 229–243. https://doi.org/10.20961/carakatani.v38i2.69384

    Article  Google Scholar 

  • Langraf, V., Petrovičová, K., Schlarmannová, J., & Chovancová, Z. (2022). Changes in the community structure of epigeic arthropods in the conditions of ecological farming of pea (Pisum sativum L.). Chilean Journal of Agricultural Research, 82(4), 527–536. https://doi.org/10.4067/S0718-58392022000400527

    Article  Google Scholar 

  • Leone, D., Mirabile, M., Altieri, G. M., Zimone, A., Torrisi, B., Tarasco, E., & Clausi, M. (2023). Assessment of soil quality in wetlands in Eastern Sicily. Ecological Indicators, 153, 110428. https://doi.org/10.1016/j.ecolind.2023.110428

    Article  Google Scholar 

  • Li, F. R., Liu, J. L., Liu, C. A., Liu, Q. J., & Niu, R. X. (2013). Shrubs and species identity effects on the distribution and diversity of ground-dwelling arthropods in a Gobi desert. Journal of Insect Conservation, 17(2), 319–331. https://doi.org/10.1007/s10841-012-9512-1

    Article  Google Scholar 

  • Litavský, J., Majzlan, O., Stašiov, S., Svitok, M., & Fedor, P. (2021). The associations between ground beetle (Coleoptera: Carabidae) communities and environmental condition in floodplain forests in the Pannonian Basin. EJE, 118(1), 14–23. https://doi.org/10.14411/eje.2021.002

    Article  Google Scholar 

  • Liu, J. L., Li, F. R., Liu, C. A., & Liu, Q. J. (2012). Influences of shrub vegetation on distribution and diversity of a ground beetle community in a Gobi desert ecosystem. Biodiversity and Conservation, 21(10), 2601–2619. https://doi.org/10.1007/s10531-012-0320-4

    Article  Google Scholar 

  • Magura, T., Tóthmérész, B., & Elek, Z. (2003). Diversity and composition of carabids during a forestry cycle. Biodiversity & Conservation, 12(1), 73–85. https://doi.org/10.1023/A:1021289509500

    Article  Google Scholar 

  • Maharning, A. R., Mills, A. A., & Adl, S. M. (2009). Soil community changes during secondary succession to naturalized grasslands. Applied Soil Ecology, 41(2), 137–147. https://doi.org/10.1016/j.apsoil.2008.11.003

    Article  Google Scholar 

  • Matei, G. M., Matei, S., & Mocanu, V. (2020). Assessing the role of soil microbial communities of natural forest ecosystem. The EuroBiotech Journal, 4(1), 01–07. https://doi.org/10.2478/ebtj-2020-0001

    Article  Google Scholar 

  • Mehrafrooz Mayvan, M., & Shayanmehr, M. (2016). Investigation of False Scorpions (Chelicerata: Psuodoscorpions) and Isopods (Crustacea: Isopoda) fauna and their population dynamics in a forest soil Hyrcanian. Journal of Animal Environment, 8(1), 75–84 https://dorl.net/dor/20.1001.1.27171388.1395.8.1.10.9

    Google Scholar 

  • Menta, C., & Remelli, S. (2020). Soil health and arthropods: From complex system to worthwhile investigation. Insects, 11(1), 54. https://doi.org/10.3390/insects11010054

    Article  Google Scholar 

  • Mirab-Balou, M., & Chen, X. X. (2010). A new method for preparing and mounting thrips for microscopic examination. Journal of Environmental Entomology, 32(1), 115–121. https://doi.org/10.3969/j.issn.1674-0858.2010.01.018

    Article  Google Scholar 

  • Mirab-balou, M., & Mahmoudi, M. (2018). Investigation of frequency and biodiversity of soil Macrofauna under two different plant coverages (case study: Choqasabz Forest park, Ilam province). Journal of Soil Biology, 6(2), 57–67. https://doi.org/10.22092/sbj.2018.110555.101

    Article  Google Scholar 

  • Mirab-balou, M., Tang, P., & Chen, X. X. (2011). The grass-living genus Aptinothrips Haliday, 1836 (Thysanoptera: thripidae) from China. Far Eastern Entomologist, 232, 1–10.

    Google Scholar 

  • Mirzaei, J. (2016). Impacts of two spatially and temporally isolated anthropogenic fire eventson soils of oak-dominated Zagros forests of Iran. Turkish Journal of Agriculture and Forestry, 40(1), 109–119. https://doi.org/10.3906/tar-1406-61

    Article  CAS  Google Scholar 

  • Mueller, K. E., Eisenhauer, N., Reich, P. B., Hobbie, S. E., Chadwick, O. A., Chorover, J., Dobies, T., Hale, C. M., Jagodziński, A. M., Kałucka, I., Kasprowicz, M., Kieliszewska-Rokicka, B., Modrzyński, J., Rożen, A., Skorupski, M., Sobczyk, L., Stasińska, M., Trocha, L. K., Weiner, J., et al. (2016). Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. Soil Biology and Biochemistry, 92, 184–198. https://doi.org/10.1016/j.soilbio.2015.10.010

    Article  CAS  Google Scholar 

  • Nachtergale, L., Ghekiere, K., De Schrijver, A., Muys, B., Luyssaert, S., & Lust, N. (2002). Earthworm biomass and species diversity in windthrow sites of a temperate lowland forest. Pedobiologia, 46(5), 440–451. https://doi.org/10.1078/0031-4056-00151

    Article  Google Scholar 

  • Nielsen, U. N., Ayres, E., Wall, D. H., & Bardgett, R. D. (2011). Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science, 62, 105–116. https://doi.org/10.1111/j.1365-2389.2010.01314.x

    Article  CAS  Google Scholar 

  • Nyamadzawo, G., Nyamangara, J., Nyamugafata, P., & Muzulu, A. (2009). Soil microbial biomass and mineralization of aggregate protected carbon in fallow-maize systems under conventional and no-tillage in Central Zimbabwe. Soil and Tillage Research, 102(1), 151–157. https://doi.org/10.1016/j.still.2008.08.007

    Article  Google Scholar 

  • Peck, S. B., & Jacquemart, J. (2012). CDF Checklist of Galapagos Springtails.

    Google Scholar 

  • Peng, Y., Holmstrup, M., Schmidt, I. K., De Schrijver, A., Schelfhout, S., Heděnec, P., Zheng, H., Bachega, L. R., Yue, K., & Vesterdal, L. (2022). Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma, 407, 115570. https://doi.org/10.1016/j.geoderma.2021.115570

    Article  CAS  Google Scholar 

  • Pourreza, M., Hosseini, S. M., Safari Senjani, A. A., Matinizadeh, M., & Dick, W. (2014). Effect of fire severity on soil macrofauna in Manna oak coppice forests. Iranian Journal of Forest and Poplar Research, 21(4), 729–741. https://doi.org/10.22092/IJFPR.2014.5146

    Article  Google Scholar 

  • Prather, R. M., Castillioni, K., Welti, E. A. R., Kaspari, M., & Souza, L. (2020). Abiotic factors and plant biomass, not plant diversity, strongly shape grassland arthropods under drought conditions. Ecology, 101(6), e03033. https://doi.org/10.1002/ecy.3033

    Article  Google Scholar 

  • Pressler, Y., Moore, J. C., & Cotrufo, M. F. (2019). Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos, 128(3), 309–327. https://doi.org/10.1111/oik.05738

    Article  Google Scholar 

  • Ramroodi, S., Joharchi, O., & Hajizadeh, J. (2014). A new species of Laelaspis Berlese (Acari: Laelapidae) from Iran and a key to Iranian species. Acarologia, 54(2), 177–182. https://doi.org/10.1051/acarologia/20142125ff.ffhal-01565269

    Article  Google Scholar 

  • Reddy, B. T., & Giraddi, R. S. (2019). Diversity studies on insect communities in organic, conservation and conventional farming systems under rain-fed conditions. Journal of Entomology and Zoology Studies, 7(3), 883–886 https://www.entomoljournal.com/archives/2019/vol7issue3/PartO/7-3-164-138.pdf

    Google Scholar 

  • Rillig, M. C., Lehmann, A., Lehmann, J., Camenzind, T., & Rauh, C. (2018). Soil biodiversity effects from field to fork. Trends in Plant Science, 23(1), 17–24. https://doi.org/10.1016/j.tplants.2017.10.003

    Article  CAS  Google Scholar 

  • Rostami, N., Heydari, M., Uddin, S. M., Esteban Lucas-Borja, M., & Zema, D. A. (2022). Hydrological response of burned soils in croplands, and pine and oak forests in Zagros forest ecosystem (western Iran) under rainfall simulations at micro-plot scale. Forests, 13(2), 246.

    Article  Google Scholar 

  • Santamaria-Ulecia, J. M., Moraza-Zorrilla, M. L., Elustondo, D., Baquero-Martin, E., Jordana, R., Lasheras, E., & Ariño-Plana, A. H. (2012). Diversity of Acari and Collembola along a pollution gradient in soils of a pre-Pyrenean forest ecosystem. Environmental Engineering and Management Journal, 11(6), 1159–1169 https://hdl.handle.net/10171/27602

    Article  Google Scholar 

  • Saul-Tcherkas, V., Unc, A., & Steinberger, Y. (2013). Soil microbial diversity in the vicinity of desert shrubs. Microbial Ecology, 65(3), 689–699. https://doi.org/10.1007/s00248-012-0141-8

    Article  Google Scholar 

  • Schelfhout, S., Mertens, J., Verheyen, K., Vesterdal, L., Baeten, L., Muys, B., & De Schrijver, A. (2017). Tree species identity shapes earthworm communities. Forests, 8(3), 85. https://doi.org/10.3390/f8030085

    Article  Google Scholar 

  • Scherber, C., Eisenhauer, N., Weisser, W. W., Schmid, B., Voigt, W., Fischer, M., Schulze, E. D., Roscher, C., Weigelt, A., Allan, E., & Tscharntke, T. (2010). Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468(7323), 553–556. https://doi.org/10.1038/nature09492

    Article  CAS  Google Scholar 

  • Schuldt, A., Fahrenholz, N., Brauns, M., Migge-Kleian, S., Platner, C., & Schaefer, M. (2008). Communities of ground-living spiders in deciduous forests: Does tree species diversity matter? Biodiversity and Conservation, 17(5), 1267–1284. https://doi.org/10.1007/s10531-008-9330-7

    Article  Google Scholar 

  • Shrewsbury, P. M., & Raupp, M. J. (2006). Do top-down or bottom-up forces determine Stephanitis pyrioides abundance in urban landscapes? Ecological Applications, 16(1), 262–272. https://doi.org/10.1890/04-1347

    Article  Google Scholar 

  • Sileshi, G., & Mafongoya, P. L. (2006). Long-term effects of improved legume fallows on soil invertebrate macrofauna and maize yield in eastern Zambia. Agriculture, Ecosystems & Environment, 115(1-4), 69–78. https://doi.org/10.1016/j.agee.2005.12.010

    Article  Google Scholar 

  • Silva, C. F., Pereira, M. G., Correia, M. E. F., & da Silva, E. M. R. (2009). Edaphic fauna in areas of traditional agriculture around the Serra do Mar state park in Ubatuba, SP. Embrapa Agrobiology, 107–115.

  • Suhardjono, Y. R., Deharveng, L., & Bedos, A. (2012). Collembola (ekor pegas): Biologi, klasifikasi, ekologi. PT Vega Briantama Vandanesia.

    Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301–307. https://doi.org/10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  • Taghipour, K., Heydari, M., Kooch, Y., Fathizad, H., Heung, B., & Taghizadeh-Mehrjardi, R. (2022). Assessing changes in soil quality between protected and degraded forests using digital soil mapping for semi-arid oak forests, Iran. Catena, 213, 106204. https://doi.org/10.1016/j.catena.2022.106204

    Article  Google Scholar 

  • Tajik, S., Ayoubi, S., Khajehali, J., & Shataee, S. (2019). Effects of tree species composition on soil properties and invertebrates in a deciduous forest. Arabian Journal of Geosciences, 12, 1–11. https://doi.org/10.1007/s12517-019-4532-8

    Article  CAS  Google Scholar 

  • Triplehorn, C. A., & Johnson, N. F. (2005). Borror and DeLong’s introduction to the study of insects (7th ed.).

    Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703–707. https://doi.org/10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Vincent, Q., Auclerc, A., Beguiristain, T., & Leyval, C. (2018). Assessment of derelict soil quality: Abiotic, biotic and functional approaches. Science of the Total Environment, 613-614, 990–1002. https://doi.org/10.1016/j.scitotenv.2017.09.118

    Article  CAS  Google Scholar 

  • Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5266–5270. https://doi.org/10.1073/pnas.1320054111

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    Article  CAS  Google Scholar 

  • Wang, M., Fu, S., Xu, H., Wang, M., & Shi, L. (2018). Ecological functions of millipedes in the terrestrial ecosystem. Biodiversity Science, 26(10), 1051–1059. https://doi.org/10.17520/biods.2018086

    Article  Google Scholar 

  • Wang, X., Li, Y., Gong, X., Niu, Y., Chen, Y., Shi, X., & Li, W. (2019). Storage, pattern and driving factors of soil organic carbon in an ecologically fragile zone of northern China. Geoderma, 343, 155–165. https://doi.org/10.1016/j.geoderma.2019.02.030

    Article  CAS  Google Scholar 

  • Wichaikam, N., Anusontpornperm, S., Sakchoowong, W., & Amornsak, W. (2010). Seasonal and habitat-specific differences in soil insect abundance from organic crops and natural forest at the Ang Khang Royal Agricultural Station, Chiang Mai, Thailand. Thai Journal of Agricultural Science, 43(4), 231–237. https://doi.org/10.1007/s11284-004-0013-x

    Article  Google Scholar 

  • Wu, P., & Wang, C. (2019). Differences in spatiotemporal dynamics between soil macrofauna and mesofauna communities in forest ecosystems: the significance for soil fauna diversity monitoring. Geoderma, 337, 266–272. https://doi.org/10.1016/j.geoderma.2018.09.031

    Article  Google Scholar 

  • Yahyapour, E., Vafaei-Shoushtari, R., Shayanmehr, M., & Arbea, J. (2018). A survey on Entomobryomorpha (Collembola) fauna in northern forests of Iran. Journal of Insect Biodiversity and Systematics, 4(4), 307–316 https://www.biotaxa.org/jibs/article/view/7415

    Article  Google Scholar 

  • Yang, J., Wei, H., Zhang, J., Shi, Z., Li, H., Ye, Y., & Abdo, A. I. (2022). Land use and soil type exert strongly interactive impacts on the pH buffering capacity of acidic soils in South China. Sustainability, 14(19), 12891. https://doi.org/10.3390/su141912891

    Article  CAS  Google Scholar 

  • Young, A. R., Miller, J. E., Villella, J., Carey, G., & Miller, W. R. (2018). Epiphyte type and sampling height impact mesofauna communities in Douglas-fir trees. PeerJ, 6, e5699.

    Article  Google Scholar 

  • Zagatto, M. R. G., Zanão, L. A., Pereira, A. P. D. A., Estrada-Bonilla, G., & Cardoso, E. J. B. N. (2019). Soil mesofauna in consolidated land use systems: How management affects soil and litter invertebrates. Scientia Agricola, 76, 165–171. https://doi.org/10.1590/1678-992X-2017-0139

    Article  CAS  Google Scholar 

  • Zhang, X. J., Gou, Y. B., & Yang, C. L. (2008). Soil animal community diversity in the hilly areas around East Dongting Lake. Journal of Hunan Institute of Science and Technology (Natural Sciences), 21, 73–77.

    Google Scholar 

  • Zhou, Y., Liu, C., Ai, N., Tuo, X., Zhang, Z., Gao, R., Qin, J., & Yuan, C. (2022). Characteristics of soil macrofauna and its coupling relationship with environmental factors in the loess area of Northern Shaanxi. Sustainability, 14(5), 2484. https://doi.org/10.3390/su14052484

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Ilam University, Iran.

Author information

Authors and Affiliations

Authors

Contributions

J. M., M. H., and Y. K. planned the work and did analysis and manuscript preparation. M. M. identified the soil fauna, M. K. conducted field work and soil analysis, and N. P. wrote and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Javad Mirzaei.

Ethics declarations

Consent to participate

All authors consent to participate in this article.

Consent for publication

All authors consent to publish the article in this journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key messages

The diversity of meso-macrofauna under trees species was higher in summer than in spring. The diversity of the macrofauna was more affected by tree species, while mesofauna was affected by seasonal changes. The diversity of the mesofauna was affected by soil organic carbon, nitrogen, SIR, BR, MBC, alkaline phosphatase, and soil quality index.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karamian, M., Mirzaei, J., Heydari, M. et al. Non-native and native tree species plantations and seasonality could have substantial impacts on the diversity of indigenous soil fauna in a semi-arid forest ecosystem. Environ Monit Assess 195, 1268 (2023). https://doi.org/10.1007/s10661-023-11873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11873-8

Keywords

Navigation