Skip to main content

Advertisement

Log in

Different GCMs yet similar outcome: predicting the habitat distribution of Shorea robusta C.F. Gaertn. in the Indian Himalayas using CMIP5 and CMIP6 climate models

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate change impact on the habitat distribution of umbrella species presents a critical threat to the entire regional ecosystem. This is further perilous if the species is economically important. Sal (Shorea robusta C.F. Gaertn.), a climax forest forming Central Himalayan tree species, is one of the most valuable timber species and provides several ecological services. Sal forests are under threat due to over-exploitation, habitat destruction, and climate change. Sal’s poor natural regeneration and its unimodal density-diameter distribution in the region illustrate the peril to its habitat. We, modelled the current as well as future distribution of suitable sal habitats under different climate scenarios using 179 sal occurrence points and 8 bioclimatic environmental variables (non-collinear). The CMIP5-based RCP4.5 and CMIP6-based SSP245 climate models under 2041–2060 and 2061–2080 periods were used to predict the impact of climate change on sal’s future potential distribution area. The niche model results predict the mean annual temperature and precipitation seasonality as the most influential sal habitat governing variables in the region. The current high suitability region for sal was 4.36% of the total geographic area, which shows a drastic decline to 1.31% and 0.07% under SSP245 for 2041–60 and 2061–80, respectively. The RCP-based models predicted more severe impact than SSP; however, both RCP and SSP models showed complete loss of high suitability regions and overall shift of species northwards in the Uttarakhand state. We could identify the current and future suitable habitats for conserving sal population through assisted regeneration and management of other regional issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Adhikari, D., Barik, S. K., & Upadhaya, K. (2012). Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering, 40, 37–43. https://doi.org/10.1016/j.ecoleng.2011.12.004

    Article  Google Scholar 

  • Adhikari, D., Tiwary, R., & Barik, S. K. (2015). Modelling hotspots for invasive alien plants in India. PloS ONE, 10(7), e0134665. https://doi.org/10.1371/journal.pone.0134665

  • Adhikari, D., Tiwary, R., Singh, P. P., Upadhaya, K., Singh, B., Haridasan, K. E., Bhatt, B. B., Chettri, A., & Barik, S. K. (2019). Ecological niche modeling as a cumulative environmental impact assessment tool for biodiversity assessment and conservation planning: A case study of critically endangered plant Lagerstroemia minuticarpa in the Indian Eastern Himalaya. Journal of Environmental Management, 243, 299–307. https://doi.org/10.1016/j.jenvman.2019.05.036

    Article  Google Scholar 

  • Allen, M. R., Dube, O. P., Solecki, W. A., Aragón-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M. & Zickfeld, K. (2019). Framing and Context. In: V. Masson-Delmotte, P. Zhai, H. O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Intergovernmental Panel on Climate Change (IPCC), Geneva.

  • Appanah, S., & Turnbull, J. M. (1998). A review of dipterocarps: Taxonomy, ecology, and silviculture. Center for International Forestry Research, Bogor, Indonesia. https://doi.org/10.17528/cifor/000463

  • Araújo, M. B., & Rahbek, C. (2006). How does climate change affect biodiversity? Science, 313(5792), 1396–1397. https://doi.org/10.1126/science.1131758

    Article  Google Scholar 

  • Baral, S., Thapa-Magar, K. B., Karki, G., Devkota, S., & Shrestha, B. B. (2015). Macrofungal diversity in community-managed sal (Shorea robusta) forests in central Nepal. Mycology, 6(3–4), 151–157. https://doi.org/10.1080/21501203.2015.1075232

    Article  Google Scholar 

  • Barik, S. K., & Adhikari, D. (2012). Predicting the geographical distribution of an invasive species (Chromolaena odorata L. (king) andamp; H.E. Robins) in the Indian subcontinent under climate change scenarios. In: J. R. Bhatt, J. S. Singh, R. S. Tripathi, S. P. Singh, & R. K. Kohli (Eds), Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent (pp 325), CAB International.

  • Barik, S. K., Behera, M. D., & Adhikari, D. (2022). Realizing certainty in an uncertain future climate: Modeling suitable areas for conserving wild Citrus species under different change scenarios in India. Environmental Monitoring and Assessment, 194(12), 864. https://doi.org/10.1007/s10661-022-10556-0

    Article  CAS  Google Scholar 

  • Beaumont, L. J., Gallagher, R. V., Thuiller, W., Downey, P. O., Leishman, M. R., & Hughes, L. (2009). Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions, 15(3), 409–420. https://doi.org/10.1111/j.1472-4642.2008.00547.x

    Article  Google Scholar 

  • Bhandari, M. S., Meena, R. K., Shankhwar, R., Shekhar, C., Saxena, J., Kant, R., Pandey, V. V., Barthwal, S., Pandey, S., Chandra, G., & Ginwal, H. S. (2020). Prediction mapping through maxent modeling paves the way for the conservation of Rhododendron arboreum in Uttarakhand Himalayas. Journal of the Indian Society of Remote Sensing, 48(3), 411–422. https://doi.org/10.1007/s12524-019-01089-0

    Article  Google Scholar 

  • Bobrowski, M., Weidinger, J., & Schickhoff, U. (2021). Is new always better? Frontiers in global climate datasets for modeling treeline species in the Himalayas. Atmosphere, 12(5), 543. https://doi.org/10.3390/atmos12050543

    Article  Google Scholar 

  • Butt, N., Seabrook, L., Maron, M., Law, B. S., Dawson, T. P., Syktus, J., & McAlpine, C. A. (2015). Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Global Change Biology, 21(9), 3267–3277. https://doi.org/10.1111/gcb.12869

    Article  Google Scholar 

  • Chaitanya, R., & Meiri, S. (2021). Can’t see the wood for the trees? Canopy physiognomy influences the distribution of peninsular Indian Flying lizards. Journal of Biogeography, 49(1), 1–13. https://doi.org/10.1111/jbi.14298

    Article  Google Scholar 

  • Chakraborty, A., Joshi, P. K., & Sachdeva, K. (2016). Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecological Engineering, 97, 593–609. https://doi.org/10.1016/j.ecoleng.2016.10.006

    Article  Google Scholar 

  • Chandra, N., Singh, G., Lingwal, S., Jalal, J. S., Bisht, M. S., Pal, V., Bisht, M. P. S., Rawat, B., & Tiwari, L. M. (2022). Ecological niche modeling and status of threatened alpine medicinal plant Dactylorhiza hatagirea D. Don in Western Himalaya. Journal of Sustainable Forestry, 41(10), 1029–1045. https://doi.org/10.1080/10549811.2021.1923530

  • Chauhan, S., Ghoshal, S., Kanwal, K. S., Sharma, V., & Ravikanth, G. (2022). Ecological niche modelling for predicting the habitat suitability of endangered tree species Taxus contorta Griff. in Himachal Pradesh (Western Himalayas, India). Tropical Ecology, 63, 1–14. https://doi.org/10.1007/s42965-021-00200-2

    Article  Google Scholar 

  • Chitale, V. S., & Behera, M. D. (2012). Can the distribution of Sal (Shorea robusta Gaertn. f.) shift in the northeastern direction in India due to changing climate?. Current Science, 102(8), 1126–1135.

  • Climate-Data.org (2022). Climate data for cities worldwide. Retrieved 13 November, 2022, from https://en.climate-data.org/asia/india/uttarakhand-763/

  • Corlett, R. T., & Lafrankie, J. V. (1998). Potential impacts of climate change on tropical Asian forests through an influence on phenology. Climate Change, 39(2), 439–453. https://doi.org/10.1023/A:1005328124567

    Article  Google Scholar 

  • Dampage, U., Bandaranayake, L., Wanasinghe, R., Kottahachchi, K., & Jayasanka, B. (2022). Forest fire detection system using wireless sensor networks and machine learning. Scientific Reports, 12(1), 1–11. https://doi.org/10.1038/s41598-021-03882-9

    Article  CAS  Google Scholar 

  • Deb, J. C., Phinn, S., Butt, N., & McAlpine, C. A. (2017). The impact of climate change on the distribution of two threatened dipterocarp trees. Ecology and Evolution, 7(7), 2238–2248. https://doi.org/10.1002/ece3.2846

  • Dey, J., Sakhre, S., Gupta, V., Vijay, R., Pathak, S., Biniwale, R., & Kumar, R. (2018). Geospatial assessment of tourism impact on land environment of Dehradun, Uttarakhand. India. Environmental Monitoring and Assessment, 190, 181. https://doi.org/10.1007/s10661-018-6535-4

    Article  Google Scholar 

  • Dhyani, A., Kadaverugu, R., Nautiyal, B. P., & Nautiyal, M. C. (2021). Predicting the potential distribution of a critically endangered medicinal plant Lilium polyphyllum in Indian Western Himalayan Region. Regional Environmental Change, 21, 1–11. https://doi.org/10.1007/s10113-021-01763-5

    Article  Google Scholar 

  • Dhyani, S., Kadaverugu, R., & Pujari, P. (2020). Predicting impacts of climate variability on Banj oak (Quercus leucotrichophora A. Camus) forests: Understanding future implications for Central Himalayas. Regional Environmental Change, 20(4), 1–13. https://doi.org/10.1007/s10113-020-01696-5

  • Elith, J., & Franklin, J. (2013). Species distribution modeling. In Encyclopedia of Biodiversity: Second Edition (pp. 692–705). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384719-5.00318-X

  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • Fandohan, A. B., Oduor, A. M., Sodé, A. I., Wu, L., Cuni-Sanchez, A., Assédé, E., & Gouwakinnou, G. N. (2015). Modeling vulnerability of protected areas to invasion by Chromolaena odorata under current and future climates. Ecosystem Health and Sustainability, 1(6), 1–12. https://doi.org/10.1890/EHS15-0003.1

    Article  Google Scholar 

  • Ferraz, K. M. P. M. D. B., Ferraz, S. F. D. B., Paula, R. C. D., Beisiegel, B., & Breitenmoser, C. (2012). Species distribution modeling for conservation purposes. Natureza & Conservação, 10(2), 214–220.

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49. https://doi.org/10.1017/S0376892997000088

    Article  Google Scholar 

  • FSI. (2019). India State of Forest Report 2019. Forest Survey of India, Ministry of Environment, Forest and Climate Change. Government of India, Dehradun.

  • FSI. (2021). India State of Forest Report 2021. Forest Survey of India, Ministry of Environment, Forest and Climate Change. Government of India, Dehradun.

  • Gaur, R. D. (1999). Flora of the District Garhwal. North West Himalaya. Transmedia, Srinagar.

  • Gautam, K. H., & Devoe, N. N. (2006). Ecological and anthropogenic niches of sal (Shorea robusta Gaertn. f.) forest and prospects for multiple-product forest management–A review. Forestry, 79(1), 81–101. https://doi.org/10.1093/forestry/cpi063

  • Gautam, M. K., Manhas, R. K., & Tripathi, A. K. (2014). Plant species diversity in unmanaged moist deciduous forest of Northern India. Current Science, 106(2), 277–287.

    Google Scholar 

  • GBIF (2022). Shorea robusta occurrences. Retrieved 2 July, 2022, https://www.gbif.org/occurrence/map?taxon_key=3189684

  • Guerra-Coss, F. A., Badano, E. I., Cedillo-Rodríguez, I. E., Ramírez-Albores, J. E., Flores, J., Barragán-Torres, F., and Flores-Cano, J. A. (2021). Modelling and validation of the spatial distribution of suitable habitats for the recruitment of invasive plants on climate change scenarios: An approach from the regeneration niche. Science of the Total Environment, 777, 146007. https://doi.org/10.1016/j.scitotenv.2021.146007

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Hanewinkel, M., Cullmann, D., Schelhaas, M. J., Nabuurs, G. J., & Zimmermann, N. E. (2012). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3, 203–207. https://doi.org/10.1038/nclimate1687

    Article  Google Scholar 

  • Hausfather, Z. (2018). Explainer: How ‘shared socioeconomic pathways’ explore future climate change. Retrieved 5 July, 2022, from https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change

  • Hausfather, Z. (2019). CMIP6: The next generation of climate models explained. Carbon Brief, December 2. Retrieved December 2, 2022, from https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained

  • IPCC. (2022). Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (Eds.), Cambridge University Press, Cambridge, UK and New York, USA.

  • Joshi, K. C., Roychoudhury, N., Kulkarni, N., & Sambath, S. (2006). Sal heartwood borer in Madhya Pradesh. Indian Forester, 132(7), 799–808.

    Google Scholar 

  • Kaushal, S., & Baishya, R. (2021). Stand structure and species diversity regulate biomass carbon stock under major Central Himalayan forest types of India. Ecological Processes, 10(14), 1–18. https://doi.org/10.1186/s13717-021-00283-8

    Article  Google Scholar 

  • Kaushal, S., Siwach, A., & Baishya, R. (2021). Diversity, regeneration, and anthropogenic disturbance in major Indian Central Himalayan forest types: Implications for conservation. Biodiversity and Conservation, 30, 2451–2480. https://doi.org/10.1007/s10531-021-02203-w

    Article  Google Scholar 

  • Kolanowska, M., Rewicz, A., & Baranow, P. (2020). Ecological niche modeling of the pantropical orchid Polystachya concreta (Orchidaceae) and its response to climate change. Scientific Reports, 10(1), 1–17. https://doi.org/10.1038/s41598-020-71732-1

    Article  CAS  Google Scholar 

  • Kozak, K. H., Graham, C. H., & Wiens, J. J. (2008). Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology and Evolution, 23(3), 141–148. https://doi.org/10.1016/j.tree.2008.02.001

    Article  Google Scholar 

  • Kumar, A., Kumar, A., Adhikari, D., Gudasalamani, R., Saikia, P., & Khan, M. L. (2020). Ecological niche modeling for assessing potential distribution of Pterocarpus marsupium Roxb. in Ranchi, eastern India. Ecological Research, 35(6), 1095–1105. https://doi.org/10.1111/1440-1703.12176

  • Kumar, S., & Chopra, N. (2018). Effect of climate change on sal (Shorea robusta Gaertn. f.) Forest of Kumaun Himalaya. American Journal of Environmental Sciences, 14(4), 185–194. https://doi.org/10.3844/ajessp.2018.185.194

  • Lakra, S. P., Ehrar, O., Prasad, N., & Biswakarma, S. (2022). Assessment of potential distribution of Shorea robusta Gaertn. f. in Dumka district of Jharkhand through ecological niche modelling. International Journal of Current Research, 14(3), 20941–20947. http://dx.doi.org/https://doi.org/10.24941/ijcr.43174.03.2022

  • Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Manish, K., Telwala, Y., Nautiyal, D. C., & Pandit, M. K. (2016). Modelling the impacts of future climate change on plant communities in the Himalaya: A case study from Eastern Himalaya, India. Modeling Earth Systems and Environment, 2(92). https://doi.org/10.1007/s40808-016-0163-1

  • Mishra, S. N., Gupta, H. S., & Kulkarni, N. (2021). Impact of climate change on the distribution of sal species. Ecological Informatics, 61, 101244. https://doi.org/10.1016/j.ecoinf.2021.101244

  • Mukherjee, P. K., Jain, A. K., Singhal, S., Singha, N. B., Singh, S., Kumud, K., Seth, P., & Patel, R. C. (2019). U-Pb zircon ages and Sm-Nd isotopic characteristics of the lesser and great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications. Gondwana Research, 75, 282–297. https://doi.org/10.1016/j.gr.2019.06.001

    Article  CAS  Google Scholar 

  • Nandy, S., Ghosh, S., & Singh, S. (2021). Assessment of sal (Shorea robusta) forest phenology and its response to climatic variables in India. Environmental Monitoring and Assessment, 193(9), 1–14. https://doi.org/10.1007/s10661-021-09356-9

    Article  CAS  Google Scholar 

  • Negi, G. C. S. (2022). Trees, forests and people: The Central Himalayan case of forest ecosystem services. Trees, Forests and People, 8, 100222. https://doi.org/10.1016/j.tfp.2022.100222

  • Negi, G. C. S., Joshi, S., Singh, P., & Joshi, R. (2022). Phenological response patterns of forest communities to annual weather variability at long-term ecological monitoring sites in Western Himalaya. Trees, Forests and People8, 100237. https://doi.org/10.1016/j.tfp.2022.100237

  • O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., & Levy, M. (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004

    Article  Google Scholar 

  • Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. S., & Simons, A. (2009). Agroforestree Database: a tree reference and selection guide version 4.0. Retrieved March 24, 2021, from http://apps.worldagroforestry.org/treedb/AFTPDFS/Shorea_robusta.PDF

  • Osorio-Olvera L., Lira‐Noriega, A., Soberón, J., Townsend Peterson, A., Falconi, M., Contreras‐Díaz, R. G., Martínez‐Meyer, E., Barve, V., & Barve, N. (2020). NTBOX: An R package with graphical user interface for modeling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution, 11(10), 1199–1206. https://doi.org/10.1111/2041-210X.13452

  • Padalia, H., Srivastava, V., & Kushwaha, S. P. S. (2015). How climate change might influence the potential distribution of weed, bushmint (Hyptis suaveolens)? Environmental Monitoring and Assessment, 187(4), 1–14. https://doi.org/10.1007/s10661-015-4415-8

    Article  CAS  Google Scholar 

  • Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008

    Article  Google Scholar 

  • Phillips, S. J. (2017). A brief tutorial on Maxent. Retrieved 26 March 2023 from http://biodiversityinformatics.amnh.org/open_source/maxent/

  • Phillips, S. J., & Dudik, M. (2008). Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049

    Article  Google Scholar 

  • POWO (2023). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved 14 January, 2023, from http://www.plantsoftheworldonline.org/

  • Purohit, S., & Rawat, N. (2022). MaxEnt modeling to predict the current and future distribution of Clerodendrum infortunatum L. under climate change scenarios in Dehradun district, India. Modeling Earth Systems and Environment, 8(2), 2051–2063. https://doi.org/10.1007/s40808-021-01205-5

  • Rao, P. K., Babu, B. V., Reddi, M. S., Devi, K. A., & Krishna, A. R. (2021). Biologically synthesized silver nanoparticles from Shorea robusta L. plant and associated antibacterial property. Materials Today: Proceedings43(2), 1819–1824. https://doi.org/10.1016/j.matpr.2020.10.610

  • Rawat, A. S. (1993). Indian forestry: A perspective. Indus Publishing Company.

    Google Scholar 

  • Rawat, D. S., Chandra. S., & Chaturvedi, P. (2022a). Threatened fora of Uttarakhand: An update. Journal of Threatened Taxa 14(12): 22309–22328. https://doi.org/10.11609/jot.6330.14.12.22309-22328

  • Rawat, N., Purohit, S., Painuly, V., Negi, G. S., & Bisht, M. P. S. (2022b). Habitat distribution modeling of endangered medicinal plant Picrorhiza kurroa (Royle ex Benth) under climate change scenarios in Uttarakhand Himalaya, India. Ecological Informatics, 68, 101550. https://doi.org/10.1016/j.ecoinf.2021.101550

  • Remeš, J., Pulkrab, K., Bílek, L., & Podrázský, V. (2020). Economic and production effect of tree species change as a result of adaptation to climate change. Forests, 11(4), 431. https://doi.org/10.3390/f11040431

    Article  Google Scholar 

  • Schickhoff, U., Bobrowski, M., Böhner, J., Bürzle, B., Chaudhary, R. P., Gerlitz, L., Heyken, J. L., Muller, M., Scholten, T., Schwab, N., & Wedegärtner, R. (2015). Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 6(1), 245–265. https://doi.org/10.5194/esd-6-245-2015

    Article  Google Scholar 

  • Schickhoff, U., Singh, R. B., & Mal, S. (2016). Climate change and dynamics of glaciers and vegetation in the Himalaya: An overview. In R. Singh, U. Schickhoff, S. Mal, (Eds.), Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-319-28977-9_1

  • Shankar, U. (2001). A case of high tree diversity in a sal (Shorea robusta)-dominated lowland forest of Eastern Himalaya: Floristic composition, regeneration and conservation. Current Science, 81(7), 776–786.

    Google Scholar 

  • Sharma, C. M., Baduni, N. P., Gairola, S., Ghildiyal, S. K., & Suyal, S. (2010). Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya. India. Forest Ecology and Management, 260(12), 2170–2179. https://doi.org/10.1016/j.foreco.2010.09.014

    Article  Google Scholar 

  • Sharma, S., Arunachalam, K., Bhavsar, D., & Kala, R. (2018). Modeling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. Journal of Applied Research on Medicinal and Aromatic Plants, 10, 99–105. https://doi.org/10.1016/j.jarmap.2018.02.003

    Article  Google Scholar 

  • Shishir, S., Mollah, T. H., Tsuyuzaki, S., & Wada, N. (2020). Predicting the probable impact of climate change on the distribution of threatened Shorea robusta forest in Purbachal, Bangladesh. Global Ecology and Conservation, 24, e01250. https://doi.org/10.1016/j.gecco.2020.e01250

  • Simberloff, D. (1998). Flagships, umbrellas, and keystones: Is single-species management passé in the landscape era? Biological Conservation, 83(3), 247–257. https://doi.org/10.1016/S0006-3207(97)00081-5

    Article  Google Scholar 

  • Singh, A. P. (2010). Woodpecker (Picidae) diversity in borer-Hoplocerambyx spinicornis infested sal Shorea robusta forests of Dehradun valley, lower western Himalayas. Indian Birds, 6(1), 2–11.

    Google Scholar 

  • Singh, J. S., & Singh, S. P. (1987). Forest vegetation of the Himalaya. The Botanical Review, 53(1), 80–192. https://doi.org/10.1007/BF02858183

    Article  Google Scholar 

  • Singh, L., Kanwar, N., Bhatt, I. D., Nandi, S. K., & Bisht, A. K. (2022). Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios. PLoS ONE, 17(6), e0269673. https://doi.org/10.1371/journal.pone.0269673

  • Singh, R. B., & Mal, S. (2014). Trends and variability of monsoon and other rainfall seasons in Western Himalaya. India. Atmospheric Science Letters, 15(3), 218–226. https://doi.org/10.1002/asl2.494

    Article  Google Scholar 

  • Songer, M., Delion, M., Biggs, A., & Huang, Q. (2012). Modeling impacts of climate change on giant panda habitat. International Journal of Ecology. https://doi.org/10.1155/2012/108752

    Article  Google Scholar 

  • Srivastava, M. (2007). The sacred complex of Munda tribe. The Anthropologist, 9(4), 327–330.

    Article  Google Scholar 

  • Srivastava, V., Griess, V. C., & Padalia, H. (2018). Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecological Modelling, 385, 35–44. https://doi.org/10.1016/j.ecolmodel.2018.07.001

    Article  Google Scholar 

  • Swaminathan, M. S., & Kochhar, S. L. (2019). Major flowering trees of tropical gardens. Cambridge University Press. https://doi.org/10.1017/9781108680646

    Article  Google Scholar 

  • Talbot, G. (2015). Tropical exotic oils: Properties and processing for use in food. In G. Talbot (Ed.), Specialty oils and fats in food and nutrition: Properties, processing and applications (pp. 87–123). Cambridge: Woodhead Publishing Limited. https://doi.org/10.1016/B978-1-78242-376-8.00004-1

  • Taloor, A. K., Kumar, V., Singh, V. K., Singh, A. K., Kale, R. V., Sharma, R., Khajuria, V., Raina, G., Kouser, B., & Chowdhary, N. H. (2020). Land use land cover dynamics using remote sensing and GIS techniques in Western Doon Valley, Uttarakhand, India. In S. Sahdev, R. B. Singh, & M. Kumar, Geoecology of landscape dynamics (Eds.), Springer, Singapore. https://doi.org/10.1007/978-981-15-2097-6_4

  • Thakur, A. K., & Singh, D. (2014). Forest fire risk zonation using geospatial techniques and analytic hierarchy process in Dehradun District, Uttarakhand, India. University Journal of Environmental Research and Technology, 4(2), 82–89.

    Google Scholar 

  • Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., & Edmonds, J. A. (2011). RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Climatic Change109(1), 77–94. https://doi.org/10.1007/s10584-011-0151-4

  • Thuiller, W., Broennimann, O., Hughes, G., Alkemade, J. R. M., Midgley, G. F., & Corsi, F. (2006). Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biology, 12(3), 424–440. https://doi.org/10.1111/j.1365-2486.2006.01115.x

    Article  Google Scholar 

  • Tiwari, A., Shoab, M., & Dixit, A. (2021). GIS-based forest fire susceptibility modeling in Pauri Garhwal, India: A comparative assessment of frequency ratio, analytic hierarchy process and fuzzy modeling techniques. Natural Hazards, 105(2), 1189–1230. https://doi.org/10.1007/s11069-020-04351-8

    Article  Google Scholar 

  • Tripathi, A. K., & Shankar, U. (2014). Patterns of species dominance, diversity and dispersion in ‘Khasi hill sal’ forest ecosystem in northeast India. Forest Ecosystems, 1, 1–20. https://doi.org/10.1186/s40663-014-0023-2

    Article  Google Scholar 

  • van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., & Masui, T. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1), 5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335–342.

    Article  Google Scholar 

  • Warren, D., Glor, R., & Turelli, M. (2010). ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607–611. http://www.jstor.org/stable/20751607

  • Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106(supplement_2), 19729–19736. https://doi.org/10.1073/pnas.0901639106

  • WWF (2021). Timber, pulp, and paper. Retrieved 21 October, 2022, from https://www.wwfindia.org/about_wwf/making_businesses_sustainable/timber_pulp_paper/

Download references

Acknowledgements

The authors acknowledge Ms. Anshu Siwach for her assistance in the literature survey. The authors thank the Principal Chief Conservator of Forests (PCCF) and Chief Wildlife Warden (CWLW), Uttarakhand Forest Department, Uttarakhand, for granting the necessary permissions to carry out the field surveys in the protected regions. We thank the two anonymous reviewers for their in-depth review and critical suggestions which improved the manuscript and its readability substantially.

Funding

The corresponding author acknowledges the major funding from the Science and Engineering Research Board (SERB), project no. EEQ/2016/000164, to carry out this study. Siddhartha Kaushal thanks the University Grants Commission, New Delhi for providing financial assistance through CSIR-UGC senior research fellowship. The financial support received through Faculty Research Programme (FRP) grant, Institution of Eminence (IoE), University of Delhi (IoE/2021/12/FRP) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Ratul Baishya, Sharanjeet Kaur, and Siddhartha Kaushal conceptualized this study and drafted the original manuscript. Sharanjeet Kaur conducted the formal data analyses. Siddhartha Kaushal gathered the field occurrence records, assisted in methodology, and drafted the discussion. Dibyendu Adhikari and Krishna Raj validated the methodology and reviewed the manuscript. K. S. Rao, Rajesh Tandon, Shailendra Goel, and Saroj K. Barik reviewed and edited the manuscript. Ratul Baishya acquired funding, supervised the entire work and reviewed the manuscript.

Corresponding author

Correspondence to Ratul Baishya.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 145 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Kaushal, S., Adhikari, D. et al. Different GCMs yet similar outcome: predicting the habitat distribution of Shorea robusta C.F. Gaertn. in the Indian Himalayas using CMIP5 and CMIP6 climate models. Environ Monit Assess 195, 715 (2023). https://doi.org/10.1007/s10661-023-11317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11317-3

Keywords

Navigation