Skip to main content
Log in

Morphology and controlling factors of the longitudinal profile of gullies in the Yuanmou dry-hot valley

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The morphology of the gully longitudinal profile (GLP) is an important topographic index of the gully bottom associated with the evolution of the gullies. This index can be used to predict the development trend and evaluate the eroded volumes and soil losses by gullying. To depict the morphology of GLP and understand its controlling factors, the Global Positioning System Real-time Kinematic (GPS RTK) and the total station were used to measure the detail points along the gully bottom of 122 gullies at six sites of the Yuanmou dry-hot Valley. Then, nine parameters including length (Lt), horizontal distance (Dh), height (H), vertical erosional area (A), vertical curvature (Cv), concavity (Ca), average gradient (Ga), gully length-gradient index (GL), normalized gully length-gradient index (Ngl), were calculated and mapped using CASS, Excel and SPSS. The results showed that this study area is dominated by slightly concave and medium gradient GLPs, and the lithology of most gullies is sandstone and siltstone. Although different types of GLPs appear at different sites, all parameters present a positively skewed distribution. There are relatively strong correlations between several parameters: namely Lt and H, Dh and H, Lt and A, Dh and A, H and GL. Most GLPs, except three, have a best fit of exponential functions with quasistraight shapes. Soil properties, vegetation coverage, piping erosion and topography are important factors to affect the GLP morphology. This study provides useful insight into the knowledge of GLP morphology and its influential factors that are of critical importance to prevent and control gully erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbuhl LM, Norton KP, Jansen JD, et al. (2011) Erosion rates and mechanisms of knickzone retreat inferred from Be-10 measured across strong climate gradients on the northern and central Andes Western Escarpment. Earth Surface Processes and Landforms 36 (11): 1464–1473. DOI:10.1002/esp.2164

    Article  Google Scholar 

  • Begin ZB, Meyer DF, Schumm SA (1981) Development of longitudinal profiles of alluvial channels in response to baselevel lowering. Earth Surface Processes and Landforms 6 (1): 49–68. DOI:10.1002/esp.3290060106

    Article  Google Scholar 

  • Brush Jr LM (1961) Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania. Office USGP. pp 145–181.

    Google Scholar 

  • Chen YC, Sung QC, Chen CN, et al. (2006) Variations in tectonic activities of the central and southwestern Foothills, Taiwan, inferred from river hack profiles. Terrestrial Atmospheric and Oceanic Sciences 17 (3): 563–578.

    Google Scholar 

  • Chen YC, Sung QC, Cheng KY (2003) Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology 56(1-2): 109–137. DOI: 10.1016/s0169-555x(03)00059-x

    Article  Google Scholar 

  • Conway SJ, Balme MR, Kreslavsky MA, et al. (2015) The comparison of topographic long profiles of gullies on Earth to gullies on Mars: A signal of water on Mars. Icarus 253: 189–204. DOI:10.1016/j.icarus.2015.03.009

    Article  Google Scholar 

  • Davis WM (1899) The geographical cycle. The Geographical Journal 14 (5): 481–504. DOI: 10.2307/1774538

    Article  Google Scholar 

  • Demoulin A (1998) Testing the tectonic significance of some parameters of longitudinal river profiles: the case of the Ardenne (Belgium, NW Europe). Geomorphology 24 (2): 189–208. DOI: 10.1016/S0169-555X(98)00016-6

    Article  Google Scholar 

  • Deng QC, Miao F, Zhang B, et al. (2015a) Planar morphology and controlling factors of the gullies in the Yuanmou dry-hot valley based on field investigation. Journal of Arid Land 7 (6): 778–793. DOI: 10.1007/s40333-015-0135-8

    Article  Google Scholar 

  • Deng QC, Qin FC, Zhang B, et al. (2015b) Characterizing the morphology of gully cross-sections based on PCA: a case of Yuanmou dry-hot valley. Geomorphology 228: 703–13. DOI: 10.1016/j.geomorph.2014.10.032

    Article  Google Scholar 

  • Deng QC, Zhang B, Luo J, et al. (2014) Types and controlling factors of piping landform in Yuanmou dry-hot valley. Arid Land Resources and Environment 28: 138–144. DOI: 10.13448/j.cnki.jalre.2014.08.024

    Google Scholar 

  • Fang HD, Wei YL, Liu GC, et al. (2011) Effects of soil nutrients on planted Leucaena leucocephala forest in the dry-hot Jinshajiang River valley. Arid Zone Research 28 (2): 229–234. DOI: 10.13866/j.azr.2011.02.014

    Google Scholar 

  • Frankl A, Poesen J, Deckers J, et al. (2012) Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology 173: 185–195. DOI: 10.1016/j.geomorph.2012. 06.011

    Article  Google Scholar 

  • Goldrick G, Bishop P (1995) Differentiating the roles of lithology and uplift in the steepening of bedrock river long profiles: an example from southeastern Australia. The Journal of Geology 103 (2): 227–231.

    Article  Google Scholar 

  • Goldrick G, Bishop P (2007) Regional analysis of bedrock stream long profiles: evaluation of Hack's SL form, and formulation and assessment of an alternative (the DS form). Earth Surface Processes and Landforms 32 (5): 649–671. DOI: 10.1002/esp.1413

    Article  Google Scholar 

  • Hack JT (1957) Studies of longitudinal stream profiles in Virginia and Maryland. Office USGP. pp 45–97.

    Google Scholar 

  • Hack JT (1973) Stream-profile analysis and stream-gradient index. Journal of Research of the US Geological Survey 1 (4): 421–429.

    Google Scholar 

  • Hanks TC, Webb RH (2006) Effects of tributary debris on the longitudinal profile of the Colorado River in Grand Canyon. Journal of Geophysical Research-Earth Surface 111(F2). DOI: 10.1029/2004jf000257

    Google Scholar 

  • He YR, Hang CM (1995) Soil Taxonomic Classification in Yuanmou Dry and Hot Valley, Yunnan Province. Mountain Research 13: 73–78. DOI: 10.16089/j.cnki.1008-2786.1995.02. 002

    Google Scholar 

  • He YR, Shen N, Wang YQ, et al. (2008) Mechanism of Formation of Soil Crevice and Soil Erosion in Intensivelyeroded Area in Yuanmou Dry and Hot Valley of Jinshajiang River. Journal of Soil and Water Conservation 22: 33–36, 42. DOI:10.13870/j.cnki.stbcxb.2008.01.026

    Google Scholar 

  • Jantzen E, Prange A (1995) Organometallic species of the elements tin, mercury and lead in sediments of the longitudinal profile of the River Elbe. Fresenius' Journal of Analytical Chemistry 353 (1): 28–33. DOI: 10.1007/BF00322886

    Article  Google Scholar 

  • Jiang ZX (1987) Model of Development and Rule of Evolution of The Longitudinal Profiles of The Valley of Three Rivers' in The Northwestern Part of Yunnan Province. Acta Geographica Sinica 42: 16-27+97-98.

  • Jiang ZX (2003) Models of shape and evolution on longitudinal profile of ice-snow melt-water valley. The Chinese Journal of Geological Hazard and Control 14: 22–28. DOI: 10.16031/j.cnki.issn.1003-8035.2003.04.004

    Google Scholar 

  • Kale VS, Sengupta S, Achyuthan H, et al. (2014) Tectonic controls upon Kaveri River drainage, cratonic Peninsular India: Inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records. Geomorphology 227: 153–165. DOI: 10.1016/j.geomorph.2013.07.027

    Article  Google Scholar 

  • Keller EA, Pinter N, Green DJ (1997) Active Tectonics, Earthquakes, Uplift, and Landscape. Environmental and Engineering Geoscience 3 (3): 463-463.

    Google Scholar 

  • Kesseli JE (1941) The Concept of the Graded River. The Journal of Geology 49 (6): 561–588.

    Article  Google Scholar 

  • Kirby E, Whipple K (2001) Quantifying differential rock-uplift rates via stream profile analysis. Geology 29 (5): 415–418. DOI: 10.1130/0091-7613(2001)029<0415:qdrurv>2.0.co;2

    Article  Google Scholar 

  • Kirby E, Whipple KX (2012) Expression of active tectonics in erosional landscapes. Journal of Structural Geology 44: 54–75. DOI: 10.1016/j.jsg.2012.07.009

    Article  Google Scholar 

  • Kober F, Ivy-Ochs S, Schlunegger F, et al. (2007) Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets. Geomorphology 83(1-2):97–120. DOI: 10.1016/j.geomorph.2006.06.029

    Article  Google Scholar 

  • Li K, Li ZY, Chang Q, et al. (1993) Yuanmou County Local Records. Yunnan People's Publishing House. pp 1–436. (In Chinese)

    Google Scholar 

  • Lu ZC, li ZY, Chen H, et al. (2003a) A note on the contributing factors of the concave longitudinal profile of the channel in the lower Yellow River. Journal of Sediment Research 5: 15–20. DOI: 10.16239/j.cnki.0468-155x.2003.05.003

    Google Scholar 

  • Lu ZC, Shu XM, Cao YZ (1986) Longitudinal Profiles of The Streams on The North China Plain. Geographical Research 5: 12–20.

    Google Scholar 

  • Lu ZC, Zhou JX, Chen H (2003b) River bed longitudinal profile morphology of the lower Yellow River and its implication in physiography. Geographical Research 22: 30–38.

    Google Scholar 

  • Matmon A, Bierman PR, Larsen J, et al. (2003) Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee. American Journal of Science 303 (9): 817–855. DOI: 10.2475/ajs.303.9.817

    Article  Google Scholar 

  • Min ST, Wang SJ (2007) Valley Morphological Characteristics, Development Law and Their Cause in the Longitudinal Ranggorge Region. Journal of Mountain Science 25: 524–533. DOI: 10.16089/j.cnki.1008-2786.2007.05.004

    Google Scholar 

  • Morrissy NM (1974) Reversed longitudinal salinity profile of a major river in the south-west of Western Australia. Marine and Freshwater Research 25 (3): 327–335. DOI: 10.1071/MF9740327

    Article  Google Scholar 

  • Ohmori H (1991) Change in The Mathematical Function Type Describing The Longitudinal Profile of a River Through an Evolutionary Process. Journal of Geology 99 (1): 97–110.

    Article  Google Scholar 

  • Olivetti V, Cyr AJ, Molin P, et al. (2012) Uplift history of the Sila Massif, southern Italy, deciphered from cosmogenic 10Be erosion rates and river longitudinal profile analysis. Tectonics 31(3). DOI: 10.1029/2011TC003037

    Google Scholar 

  • Oostwoud Wijdenes DJ, Bryan R (2001) Gully-head erosion processes on a semi-arid valley floor in Kenya: a case study into temporal variation and sediment budgeting. Earth Surface Processes and Landforms 26 (9): 911–933.

    Article  Google Scholar 

  • Owono FM, Ntamak-Nida MJ, Dauteuil O, et al. (2016) Morphology and long-term landscape evolution of the South African plateau in South Namibia. Catena 142: 47–65. DOI: 10.1016/j.catena.2016.02.012

    Article  Google Scholar 

  • Prior DB, Bornhold BD, Johns MW (1984) Depositional characteristics of a submarine debris flow. The Journal of Geology 92: 707–727.

    Article  Google Scholar 

  • Rãdoane M, Rãdoane N, Dumitriu D (2002) Geomorphological evolution of longitudinal river profiles in the Carpathians. Geomorphology 50 (4): 293–306. DOI: 10.1016/S0169-555X (02)00194-0

    Article  Google Scholar 

  • Rice SP, Church M (2001) Longitudinal profiles in simple alluvial systems. Water Resources Research 37 (2): 417–426. DOI: 10.1029/2000wr900266

    Article  Google Scholar 

  • Riebe CS, Kirchner JW, Granger DE, et al. (2000) Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic Al-26 and Be-10 in alluvial sediment. Geology 28 (9): 803–806. DOI: 10.1130/0091-7613(2000)028 〈0803:eeadit〉2.3.co;2

    Article  Google Scholar 

  • Roe GH, Montgomery DR, Hallet B (2002) Effects of orographic precipitation variations on the concavity of steady-state river profiles. Geology 30 (2): 143–146. DOI: 10.1130/0091-7613 (2002)030〈0143:EOOPVO〉2.0.CO;2

    Article  Google Scholar 

  • Royden L, Perron JT (2013) Solutions of the stream power equation and application to the evolution of river longitudinal profiles. Journal of Geophysical Research-Earth Surface 118 (2): 497–518. DOI: 10.1002/jgrf.20031

    Article  Google Scholar 

  • Seeber L, Gornitz V (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics 92 (4): 335–367. DOI: 10.1016/0040-1951(83)90201-9

    Article  Google Scholar 

  • Shepherd RG (1985) Regression-analysis of River Profiles. Journal of Geology 93 (3): 377–384.

    Article  Google Scholar 

  • Shu CQ, Zhang B, Jiang LQ, et al. (2014) Development Characteristics and Evolution Process of the Sink Holes in Yuanmou Dry-hot valley. Tropical Geography 34: 141–147. DOI: 10.13284/j.cnki.rddl.002500

    Google Scholar 

  • Shulits S (1941) Rational equation of river-bed profile. Eos, Transactions American Geophysical Union 22 (3): 622–631.

    Article  Google Scholar 

  • Sinha SK, Parker G (1996) Causes of concavity in longitudinal profiles of rivers. Water Resources Research 32 (5): 1417–1428. DOI: 10.1029/95wr03819

    Article  Google Scholar 

  • Sklar L, Dietrich WE (1998) River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply. In: Tinkler KJ, Wohl E. (eds), Rivers over rock: fluvial processes in bedrock channels. American Geophysical Union Chapter 107. New York, USA. pp 237–260.

    Chapter  Google Scholar 

  • Sklar LS, Dietrich WE (2008a) Implications of the saltationabrasion bedrock incision model for steady-state river longitudinal profile relief and concavity. Earth Surface Processes and Landforms 33 (7): 1129–1151. DOI: 10.1002/esp. 1689

    Article  Google Scholar 

  • Sklar LS, Dietrich WE (2008b) Implications of the saltation–abrasion bedrock incision model for steady-state river longitudinal profile relief and concavity. Earth Surface Processes and Landforms 33 (7): 1129–1151. DOI: 10.1002/esp.1689

    Article  Google Scholar 

  • Snow RS, Slingerland RL (1987) Mathematical-modeling of Graded River Profiles. Journal of Geology 95 (1): 15–33.

    Article  Google Scholar 

  • Snyder NP, Whipple KX, Tucker GE, et al. (2000) Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin 112 (8): 1250–1263. DOI: 10.1130/0016-7606(2000)112〈1250: lrttfd〉2.3.co;2

    Article  Google Scholar 

  • Takahashi T (1980) Debris flow on prismatic open channel. Journal of the Hydraulics Division 106 (3): 381–396.

    Google Scholar 

  • Tebbens LA, Veldkamp A, Van Dijke JJ, et al. (2000) Modeling longitudinal-profile development in response to Late Quaternary tectonics, climate and sea-level changes: the River Meuse. Global and Planetary Change 27(1-4): 165–186. DOI: 10.1016/s0921-8181(01)00065-0

    Article  Google Scholar 

  • Van der Beek P, Bishop P (2003) Cenozoic river profile development in the Upper Lachlan catchment (SE Australia) as a test of quantitative fluvial incision models. Journal of Geophysical Research-Solid Earth 108(B6). DOI: 10.1029/2002JB002125

    Google Scholar 

  • Vanacker V, von Blanckenburg F, Govers G, et al. (2015) Transient river response, captured by channel steepness and its concavity. Geomorphology 228: 234–243. DOI: 10.1016/j.geomorph.2014.09.013

    Article  Google Scholar 

  • Weissel JK, Seidl MA (1998) Inland propagation of erosional escarpments and river profile evolution across the southeast Australian passive continental margin. Geophysical Monograph-American Geophysical Union 107: 189–206. DOI: 10.1029/GM107p0189

    Google Scholar 

  • Wijdenes DJO, Poesen J, Vandekerckhove L, et al. (1999) Gullyhead morphology and implications for gully development on abandoned fields in a semi-arid environment, Sierra de Gata, southeast Spain. Earth Surface Processes and Landforms 24 (7): 585–603.

    Article  Google Scholar 

  • Woodside J, Peterson EW, Dogwiler T (2015) Longitudinal profile and sediment mobility as geomorphic tools to interpret the history of a fluviokarst stream system. International Journal of Speleology 44 (2): 197–206. DOI: 10.5038/1827-806x.44.2.9

    Article  Google Scholar 

  • Wu YQ, Cheng H (2005) Monitoring of gully erosion on the Loess Plateau of China using a global positioning system. Catena 63(2-3): 154–166. DOI: 10.1016/j.catena.2005.06.002

    Article  Google Scholar 

  • Xu JX (1990) A Study of Longitudinal Profile Concavity of Rivers in the North China Plain. Acta Geographica Sinica 45: 331–340.

    Google Scholar 

  • Yatsu E (1955) On the longitudinal profile of the graded river. Eos, Transactions American Geophysical Union 36 (4): 655–663. DOI: 10.1029/TR036i004p00655

    Article  Google Scholar 

  • Ye QC, Yang YF, Li WY (1983) Geomorphology of the Lower Reaches of Weihe River. Science Press. pp 1–230. (In Chinese)

    Google Scholar 

  • Zhao HZ, Li YL, Yang JC, et al. (2009) The Longitudinal Profiles of the Ten Rivers in North Tianhan Mountains and Their Tectonic Significance. Acta Geographica Sinica 64: 563–570.

    Google Scholar 

  • Zhong XH (2000) Degradation of ecosystem and ways of its rehabilitation and reconstruction in dry and hot valley. Resources Environment in the Yangtze Basin 3 (9): 376–383.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the "National Natural Science Foundation of China (Grant No. 41471232)", "the Fundamental Research Funds of China West Normal University" (Grant No. 16A001) and "Ecological Security Key Laboratory of Sichuan Province" (Grant No. ESP201301). The authors are grateful to Prof. Ion Ionita for his helpful suggestion and language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Additional information

http://orcid.org/0000-0002-2463-7343

http://orcid.org/0000-0002-6909-037X

http://www.orcid.org/0000-0002-5785-4694

http://www.orcid.org/0000-0003-1578-594X

http://www.orcid.org/ 0000-0003-1634-4812

http://www.orcid.org/0000-0003-1803-9280

http://www.orcid.org/0000-0003-0133-6692

http://www.orcid.org/0000-0002-9485-9355

http://www.orcid.org/0000-0003-4641-8376

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Qin, Fc., Fang, Hd. et al. Morphology and controlling factors of the longitudinal profile of gullies in the Yuanmou dry-hot valley. J. Mt. Sci. 14, 674–693 (2017). https://doi.org/10.1007/s11629-016-4189-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4189-7

Keywords

Navigation