Skip to main content

Advertisement

Log in

Assessment and validation of groundwater vulnerability to nitrate and TDS using based on a modified DRASTIC model: a case study in the Erbil Central Sub-Basin, Iraq

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In recent years, groundwater vulnerability assessment has become a crucial step in effectively protecting groundwater resources against increasing groundwater pollution in recent years. Sustainable effectual management of groundwater sources in terms of quality has become a critical factor in the development of unplanned urbanization areas, especially in regions with intensive agricultural and industrial activities in the land use/land cover (LULC) models. In this study, the GIS-based DRASTIC model was used by modified to estimate the groundwater vulnerability of porous aquifers to nitrate and total dissolved solids (TDS). The DRASTIC and the modified DRASTIC models generate four different groundwater vulnerability zones: high (33.6, 37.8%), moderate (45.9, 42.3%), low (18.7, 18.3%), and very low (1.8,1.6%). DRASTIC_LULC index map provides four different vulnerability zones: low, moderate, high, and very high, covering 0.1%, 7.6%, 83.6%, and 8.7% of the Erbil Central Sub-Basin, respectively. The most important hydrogeological factors determining the DRASTIC vulnerability obtained from sensitivity analyses are depth to the water table and impact of vadose zone parameters with average effective weight values of 23.7% and 22.6%. For validating the DRASTIC_LULC model, the water quality parameters, nitrate and TDS, have been used with an accuracy of 68% and 79%, which indicates that the validation accuracy for this model is quite high. Maps obtained as a result of this study can be used to create a baseline map for the sustainable management of groundwater quality in vulnerable areas of the Erbil Central Sub-Basin and its planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15

Similar content being viewed by others

Availability of data and materials

The data used in this research are available by the corresponding author upon reasonable request.

References

  • Abdullah, T. Q., Ali, S. S., & Al-Ansari, N. A. (2016). Groundwater assessment of Halabja Saidsadiq Basin, Kurdistan region, NE of Iraq using vulnerability mapping. Arabian Journal of Geosciences, 9, 223. https://doi.org/10.1007/s12517-015-2264-y

    Article  Google Scholar 

  • Abdullah, T., Salahalddin, A., & Al-Ansari, N. (2015). Effect of agricultural activities on groundwater vulnerability: Case study of Halabja Saidsadiq Basin, Iraq. Journal of Environmental Hydrology, 1(23), 1–20.

    Google Scholar 

  • Ahada, C. P. S., & Suthar, S. (2018). A GIS based DRASTIC model for assessing aquifer vulnerability in Southern Punjab, India. Modeling Earth Systems and Environment, 4, 635–645. https://doi.org/10.1007/s40808-018-0449-6

    Article  Google Scholar 

  • Ahmad, W., Iqbal, J., Nasir, M. J., Ahmad, B., Khan, M. T., Khan, S. N., & Adnan, S. (2021). Impact of land use/land cover changes on water quality and human health in district Peshawar Pakistan. Scientific Reports, 11(1), 16526. https://doi.org/10.1038/s41598-021-96075-3

    Article  CAS  Google Scholar 

  • Al-Abadi, A. M., & Al-Shamma’a, A.M., & Aljabbari, M.H. (2017). A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Missan governorate, southern Iraq. Applied Water SciEnce, 7, 89–101. https://doi.org/10.1007/s13201-014-0221-7

    Article  Google Scholar 

  • Al-Aboodi, A. H., & Hashim, Z. N. (2019). Assessment of groundwater vulnerability using Lulc map and DRASTIC technique in Bahr AL-Najaf Area, Middle of Iraq. Tikrit Journal of Engineering Sciences, 26(3), 1–9.

    Article  Google Scholar 

  • Aller, L., Bennett, T., Lehr, J., Petty, R. J., & Hackett, G. (1987). DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. US Environmental Protection Agency.

    Google Scholar 

  • Anderson, J. R., Hardy E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. Geological Survey Professional Paper. No. 964. Washington, DC: US Government Printing Office.

  • Arora, B., Dwivedi, D., Faybishenko, B., Jana, R. B., & Wainwright, H. M. (2019). Understanding and predicting vadose zone processes. Reviews in Mineralogy & Geochemistry, 85, 303–328.

    Article  CAS  Google Scholar 

  • Arya S., Subramani, T., Vennila, G., & Roy, P. D. (2020). Groundwater vulnerability to pollution in the semi-arid Vattamalaikarai River Basin of south India thorough DRASTIC index evaluation. Geochemistry, 80, 125635. https://doi.org/10.1016/j.chemer.2020.125635

  • Babiker, I. S., Mohamed, M. A., Hiyama, T., & Kato, K. (2005). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Science of the Total Environment, 345(1–3), 127–140. https://doi.org/10.1016/j.scitotenv.2004.11.005

    Article  CAS  Google Scholar 

  • Barbulescu, A. (2020). Assessing groundwater vulnerability: DRASTIC and DRASTIC-like methods: a review. Water, 12(5), 1356. https://doi.org/10.3390/w12051356

    Article  Google Scholar 

  • Bera, A., Mukhopadhyay, B. P., Chowdhury, P., Ghosh, A., & Biswas, S. (2021). Groundwater vulnerability assessment using GIS-based DRASTIC model in Nangasai River Basin, India with special emphasis on agricultural contamination. Ecotoxicology and Environmental Safety, 214, 112085.

    Article  CAS  Google Scholar 

  • Berhe Zenebe, G., Hussien, A., Girmay, A., & Hailu, G. (2020). Spatial analysis of groundwater vulnerability to contamination and human activity impact using a modified DRASTIC model in Elalla-Aynalem Catchment. Northern Ethiopia. Sustainable Water Resources Management, 6, 51.

    Article  Google Scholar 

  • Dausse, A., Leonardi, V., & Jourde, H. (2019). Hydraulic characterization and identification of flow-bearing structures based on multi-scale investigations applied to the Lez karst aquifer. Journal of Hydrology: Regional Studies, 26, 100627. https://doi.org/10.1016/j.ejrh.2019.100627

  • Denny, S. C., Allen, D. M., & Journeay, J. M. (2007). DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia. Canada. Hydrogeology Journal, 15, 483–493. https://doi.org/10.1007/s10040-006-0102-8

    Article  Google Scholar 

  • Dişli, E. (2010). Batch and column experiments to support heavy metals (Cu, Zn, and Mn) transport modeling in alluvial sediments between the Mogan Lake and the Eymir Lake, Gölbaşı, Ankara. Groundwater Monitoring and Remediation, 30(3), 125–129. https://doi.org/10.1111/j.1745-6592.2010.01302.x

    Article  CAS  Google Scholar 

  • Dişli, E. (2017). Hydrochemical characteristics of surface and groundwater and suitability for drinking and agricultural use in the Upper Tigris River Basin Diyarbakır-BatmanTurkey. Environmental Earth Science, 76, 500. https://doi.org/10.1007/s12665-017-6820-5

    Article  CAS  Google Scholar 

  • Dişli, E. (2018a). The hydrogeological properties of groundwater and surface water in the damar tailings dam-Murgul copper mine site (Artvin, NE Turkey) and dye experiment. Cukurova University Journal of the Faculty of Engineering, 33, 163–178. https://doi.org/10.21605/cukurovaummfd.420703

    Article  Google Scholar 

  • Dişli, E. (2018b). Evaluation of hydrogeochemical processes for waters’chemical composition and stable isotope investigation of groundwater/surface water in Karst-dominated terrain the Upper Tigris River Basin Turkey. Aquatic Geochemistry, 24, 363–396. https://doi.org/10.1007/s10498-019-09349-8

    Article  CAS  Google Scholar 

  • Dişli, E., & Gülyüz, N. (2020). Hydrogeochemical investigation of an epithermal mineralization bearing basin using multivariate statistical techniques and isotopic evidence of groundwater: Kestanelik Sub-Basin, Lapseki, Turkey. Geochemistry, 80(4), 125661. https://doi.org/10.1016/j.chemer.2020.125661

    Article  CAS  Google Scholar 

  • Edet, A. (2014). An aquifer vulnerability assessment of the Benin Formation aquifer, Calabar, southeastern Nigeria, using DRASTIC and GIS approach. Environmental Earth Sciences, 71, 1747–1765.

    Article  Google Scholar 

  • Engineering, S. E. T. E. C. (2012). Kurdistan region infrastructure water sector master plan. Kurdistan Regional, Iraq: Ministry of Municipalities and Tourism (unpublished master plan).

    Google Scholar 

  • FAO Representation in Iraq. (2001). Reconnaissance soil map of the three northern. Governorates, Iraq. Map Scale =1:1000,000. Erbil Sub-Office.

  • Ghazavi, R., & Ebrahimi, Z. (2015). Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. International Journal of Environmental Science and Technology, 12, 2909–2918. https://doi.org/10.1007/s13762-015-0813-2

    Article  CAS  Google Scholar 

  • Gogu, R. C., & Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39, 549–558. https://doi.org/10.1007/s002540050466

    Article  CAS  Google Scholar 

  • Gonçalves, V., Albuquerque, A., Almeida, P. G., & Cavaleiro, V. (2022). DRASTIC index GIS-based vulnerability map for the Entre-os-Rios thermal aquifer. Water, 14, 2448. https://doi.org/10.3390/w14162448

    Article  CAS  Google Scholar 

  • Hasan, M., Islam, Md. A., Hasan, M. A, Alam, Md. J., & Peas, M. H. (2019). Groundwater vulnerability assessment in Savar upazila of Dhaka district, Bangladesh - A GIS-based DRASTIC modeling. Groundwater for Sustainable Development, 9, 100220. https://doi.org/10.1016/j.gsd.2019.100220

  • Hassan, I. O. (1998). Urban hydrology of Erbil city region. The University of Baghdad, College of Science. Baghdad, Iraq (Unpublished Ph.D thesis).

  • Jawad, S. B., & Hussien, K. A. (1988). Groundwater monitoring network rationalization using statistical analyses of piezometric fluctuation. Hydrological Sciences Journal, 33(2), 181–191.

    Article  CAS  Google Scholar 

  • Kazakis, N., & Voudouris, K. S. (2015). Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. Journal of Hydrology, 525, 13–25. https://doi.org/10.1016/j.jhydrol.2015.03.035

    Article  CAS  Google Scholar 

  • Kennedy, R. E., Townsend, P., Gross, J. E., Cohen, W. B., Bolstad, P., Wang, Y. Q., & Adams, P. (2009). Remote sensing change detection tools for natural resource managers: understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sensing of Environment, 113(7), 1382–1396.

    Article  Google Scholar 

  • Khomri, Z.-e, Chabaca, M. N., Boudibi, S., & Latif, S. D. (2022). Assessment of groundwater vulnerability using remote sensing, susceptibility index, and WetSpass model in an arid region (Biskra, SE Algeria). Environmental Monitoring and Assessment, 194, 505. https://doi.org/10.1007/s10661-022-10189-3

    Article  Google Scholar 

  • Khosravi, K., Sartaj, M., Tsai, F. T. C., Singh, V. P., Kazakis, N., Melesse, A. M., Prakash, I., Bui, D. T., & Pham, B. T. (2018). A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Science of the Total Environment, 642, 1032–1049.

    Article  CAS  Google Scholar 

  • Kumar, A., & Krishna, A. P. (2020). Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto International, 35(11), 1149–1178. https://doi.org/10.1080/10106049.2018.1557259

    Article  Google Scholar 

  • Laar, C., Akiti, T. T., Brimah, A. K., Fianko, J. R., Osae, S., & Osei, J. (2011). Hydrochemistry and isotopic composition of the SakumoRamsar site. Research Journal of Environmental and Earth Science, 3(2), 146–152.

    Google Scholar 

  • Le Garzic, E., Vergés, J., Sapin, F., Saura, E., Merese, F., & Ringenbach, J. C. (2019). Evolution of the NW Zagros fold-and-thrust belt in Kurdistan region of Iraq. Journal of Structural Geology, 124, 51–69.

    Article  Google Scholar 

  • Lerner, D.N., Issar, A.S., & Simmers, I. (1990). Groundwater recharge: a guide to understanding and estimating natural recharge. IAH International Contributions to Hydrogeology, 8, Verlag Heinz Heise: Hannover, Germany.

  • Mallik, S., Bhowmik, T., Mishra, U., & Paul, N. (2021). Local scale groundwater vulnerability assessment with an improved DRASTIC model. Natural Resources Research, 30, 2145–2160. https://doi.org/10.1007/s11053-021-09839-z

    Article  Google Scholar 

  • Margat, J. (1968). Vulnerabilité des Nappes D’eau Souterraine a la Pollution (Groundwater vulnerability to contamination). Bases Cartogr. (Doc.); BRGM: Orléans, France. Retrieved January 9, 2022, from https://www.scienceopen.com/document?vid=8fdbeb52-17e3-4966-83f8-6241f355f65f

  • Meng, L., Zhang, Q., Liu, P., He, H., & Xu, W. (2020). Influence of agricultural irrigation activity on the potential risk of groundwater pollution: A study with drastic method in a semi-arid agricultural region of China. Sustainability, 12(5), 1954. https://doi.org/10.3390/su12051954

    Article  CAS  Google Scholar 

  • Meyer, W. B., & Turner, B. L., II. (1992). Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 23(1), 39–61. https://doi.org/10.1146/annurev.es.23.110192.000351

    Article  Google Scholar 

  • Mkumbo, N. J., Mussa, K. R., Mariki, E. E., & Mjemah, I. C. (2022). The use of the DRASTIC-LU/LC model for assessing groundwater vulnerability to nitrate contamination in Morogoro Municipality, Tanzania. Earth, 3, 1161–1184. https://doi.org/10.3390/earth3040067

    Article  Google Scholar 

  • Murhy, B. L., & Morrison, R. D. (2015). Introduction to environmental forensics (3rd Edition). Academic Press. https://doi.org/10.1016/C2012-0-01202-1

  • Nahin, K. T. K., Basak, R., & Alam, R. (2020). Groundwater vulnerability assessment with DRASTIC Index method in the salinity-affected southwest coastal region of Bangladesh: A case study in Bagerhat Sadar, Fakirhat and Rampal. Earth Systems and Environment, 3, 183–195. https://doi.org/10.1007/s41748-019-00144-7

    Article  Google Scholar 

  • Napolitano, P., & Fabbri, A. G. (1996). Single parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Proceedings of the 2nd HydroGIS conference, IAHS publication: application of geographic information systems in hydrology and water resources management, Proceedings of the Vienna conference. IAHS Publ. No. 235, pp. 559–566.

  • Omotola, O. O., Oladapo, M. I., & Akintorinwa, O. J. (2020). Modeling assessment of groundwater vulnerability to contamination risk in a typical basement terrain case of vulnerability techniques application comparison study. Modeling Earth Systems and Environment, 6, 1253–1280. https://doi.org/10.1007/s40808-020-00720-1

    Article  Google Scholar 

  • Ouedraogo, I., Defourny, P., & Vanclooster, M. (2016). Mapping the groundwater vulnerability for pollution at the pan African scale. Science of the Total Environment, 544, 939–953.

    Article  CAS  Google Scholar 

  • Öztürk, M., & Dişli, E. (2022). Hydrochemical and environmental isotopes characteristic of groundwater and controlling factors for waters’ chemical composition in the Iron-Copper mine area (Elazığ, SE Turkey). Environmental Chemistry, 19(6), 350–374. https://doi.org/10.1071/EN22070

    Article  CAS  Google Scholar 

  • Paul. S., & Das, C. S. (2021). An investigation of groundwater vulnerability in the North 24 Parganas district using DRASTIC and hybrid-DRASTIC models: a case study. Environmental Advances, 5, 100093. https://doi.org/10.1016/j.envadv.2021.100093

  • Polemio, M., Casarano, D., & Limoni, P. P. (2009). Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy). Natural Hazards and Earth System Sciences, 9(4), 1461–1470.

    Article  Google Scholar 

  • Rahman, A. (2008). A GIS-based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied Geography, 28, 32–53. https://doi.org/10.1016/j.apgeog.2007.07.008

    Article  Google Scholar 

  • Rajasulochana, P., & Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water-A comprehensive review. Resource-Efficient Technologies, 2, 175–184.

    Article  Google Scholar 

  • Rajput, H., Goyal, R., & Brighu, U. (2020). Modification and optimization of DRASTIC model for groundwater vulnerability and contamination risk assessment for Bhiwadi region of Rajasthan, India. Environmental Earth Science, 79, 136. https://doi.org/10.1007/s12665-020-8874-z

    Article  CAS  Google Scholar 

  • Rodney, C. S. (2006). Groundwater vulnerability to agrochemicals: A GIS-based DRASTIC model analysis of Caroll, Chariton, and Saline counties. The University of Missouri.

    Google Scholar 

  • Saha, D., & Alam, F. (2014). Groundwater vulnerability assessment using DRASTIC and pesticide DRASTIC models in intense agriculture area of the Gangetic plains, India. Environmental Monitoring and Assessment, 186, 8741–8763. https://doi.org/10.1007/s10661-014-4041-x

    Article  CAS  Google Scholar 

  • Saida, S., Tarik, H., Abdellah, A., Farid, H., & Hakim, B. (2017). Assessment of groundwater vulnerability to nitrate based on the optimised DRASTIC models in the GIS environment (case of Sidi Rached Basin, Algeria). Geosciences, 7(2), 20. https://doi.org/10.3390/geosciences7020020

    Article  CAS  Google Scholar 

  • Samadi, J. (2022). Modelling hydrogeological parameters to assess groundwater pollution and vulnerability in Kashan aquifer: Novel calibration-validation of multivariate statistical methods and human health risk considerations. Environmental Research, 211, 113028 . https://doi.org/10.1016/j.envres.2022.113028

  • Saranya, T., & Saravanan, S. (2022). A comparative analysis on groundwater vulnerability models-fuzzy DRASTIC and fuzzy DRASTIC-L. Environmental Science and Pollution Research, 57, 86005–86019. https://doi.org/10.1007/s11356-021-16195-1

    Article  CAS  Google Scholar 

  • Sarkar, M., & Pal, S. C. (2021). Application of DRASTIC and modified DRASTIC models for modeling groundwater vulnerability of Malda District in West Bengal. Journal of the Indian Society of Remote Sensing, 49(5), 1201–1219.

    Article  Google Scholar 

  • Secunda, S., Collin, M. L., & Melloul, A. J. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. Journal of Environmental Management, 54(1), 39–57. https://doi.org/10.1006/jema.1998.0221

    Article  Google Scholar 

  • Şener, F., & Davraz, A. (2013). Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Eğirdir Lake Basin (Isparta, Turkey). Hydrogeology Journal, 21, 701–714. https://doi.org/10.1007/s10040-012-0947-y

    Article  Google Scholar 

  • Shamsuddin, A. S., Ismail, S. N. S., Abidin, E. Z., Bin, H. Y., Juahir, H., Mohd, W. Z., & Bakar, A. (2021). Application of GIS-based DRASTIC model approaches in assessing groundwater vulnerability for shallow alluvial aquifer deposited. Arabian Journal Geoscience, 14, 2693. https://doi.org/10.1007/s12517-021-08865-8

    Article  Google Scholar 

  • Sidibe, A. M., & Xueyu, L. (2018). Heavy metals and nitrate to validate groundwater sensibility assessment based on DRASTIC models and GIS: Case of the upper Niger and the Bani basin in Mali. Journal of African Earth Science, 147, 199–210. https://doi.org/10.1016/j.jafrearsci.2018.06.019

    Article  CAS  Google Scholar 

  • Singh, A., Srivastav, S. K., Kumar, S., & Chakrapani, G. J. (2015). A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environmental Earth Science, 74, 5475–5490. https://doi.org/10.1007/s12665-015-4558-5

    Article  CAS  Google Scholar 

  • Singha, S. S., Pasupuleti, S., Singha, S., Singha, R., & Venkatesh, A. S. (2019). A GIS-based modified DRASTIC approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Korba district. Central India. Environmental Earth Sciences, 78, 628. https://doi.org/10.1007/s12665-019-8640-2

    Article  CAS  Google Scholar 

  • Smail, R. Q. S. (2022). Evaluation of groundwater vulnerability of Erbil Central Sub-Basin by drastic method (Iraq). Yüzüncü Yıl University, Van, Turkey (Unpublished MSc. thesis).

  • Smail Gardi, S. Q. (2018). Environmental Impact Assessment of Erbil Dumpsite area - West of Erbil City-Iraqi Kurdistan Region. Journal of Tethys, 5(3), 194–217.

    Google Scholar 

  • Soil Conservation Service (SCS). (1972). National engineering handbook, section 4: Hydrology. Washington DC: Department of Agriculture, p. 762.

  • Stevanovic, Z. & Markovic, M. (2004). Hydrogeology of Northern Iraq: Climate, hydrology, geomorphology and geology (Vol. 1, 2nd ed.). Rome: FAO.

  • Stigter, T. Y., Riberio, L., & Dill, A. M. M. C. (2006). Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeology Journal, 14(1), 79–99.

    Article  CAS  Google Scholar 

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu. India. Environmental Geology, 47(8), 1099–1110. https://doi.org/10.1007/s00254-005-1243-0

    Article  CAS  Google Scholar 

  • Tawfeeq, J. M. S. (2021). Investigation of groundwater wells pollution due to waste water in the Erbil Central Sub-Basin (Erbil, Iraq). Yüzüncü Yıl University, Van, Turkey (Unpublished MSc. thesis).

  • Thirumalaivasan, D., Karmegam, K., & Venugopal, K. (2003). AHP-DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environmental Modelling & Software, 18(7), 645–656. https://doi.org/10.1016/S1364-8152(03)00051-3

    Article  Google Scholar 

  • Tiwari, A. K., Singh, P. K., & De Maio, M. (2016). Evaluation of aquifer vulnerability in a coal mining of India by using GIS-based DRASTIC model. Arabian Journal of Geosciences, 9(6), 438.

    Article  Google Scholar 

  • Umar, R., Ahmed, I., & Alam, F. (2009). Mapping groundwater vulnerable zones using modified DRASTIC approach of an alluvial aquifer in parts of Central Ganga Plain Western Uttar Pradesh. Journal of the Geological Society of India, 73, 193–201. https://doi.org/10.1007/s12594-009-0075-z

    Article  CAS  Google Scholar 

  • WHO (World Health Organisation). (2011). Guidelines for drinking-water quality (4th ed.). Geneva: Library Cataloguing in Publication Data World Health Organization.

    Google Scholar 

  • Wu, X., Li, B., & Ma, C. (2018). Assessment of groundwater vulnerability by applying the modified DRASTIC model in Beihai City, China. Environmental Science and Pollution Research, 25, 12713–12727. https://doi.org/10.1007/s11356-018-1449-9

    Article  CAS  Google Scholar 

  • Yang, J., & Tang., Z., Jiao, T., & Muhammed, A.M. (2017). Combining AHP and genetic algorithms approaches to modify DRASTIC model to assess groundwater vulnerability: a case study from Jianghan Plain, China. Environmental Earth Science, 76, 426. https://doi.org/10.1007/s12665-017-6759-6

    Article  Google Scholar 

  • Yankey, R. K., Anornu, G. K., Osae, S. K., & Ganyaglo, S. Y. (2021). Drastic model application to groundwater vulnerability elucidation for decision making: The case of southwestern coastal basin, Ghana. Modeling Earth Systems and Environment, 7, 2197–2213. https://doi.org/10.1007/s40808-020-01031-1

    Article  Google Scholar 

  • Yongkai, A. N., & Wenxi, L. (2018). Assessment of groundwater quality and groundwater vulnerability in the northern Ordos Cretaceous Basin, China. Arabian Journal of Geosciences, 11, 118.

    Article  Google Scholar 

  • Zghibi, A., Merzougui, A., Chenini, I., Ergaieg, K., Zouhri, L., & Tarhouni, J. (2016). Groundwater vulnerability analysis of Tunisian coastal aquifer: An application of DRASTIC index method in GIS environment. Groundwater for Sustainable Development, 2, 169–181. https://doi.org/10.1016/j.gsd.2016.10.001

    Article  Google Scholar 

Download references

Acknowledgements

This study is a part of the MSc thesis of Mrs.Razhan Qadir Smail SMAIL.

Author information

Authors and Affiliations

Authors

Contributions

Razhan Qadir Smail Smail: Conceptualization, Data curation, Formal analysis, and investigation, Writing-original draft preparation, Erkan Dişli: Conceptualization, Writing-review and editing, Supervision.

Corresponding author

Correspondence to Erkan Dişli.

Ethics declarations

Ethical approval

The authors confirm that this article is original research and has not been published or presented previously in any journal or conference in any language (in whole or in part). All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the instructions for authors.

Consent to participate

Not applicable.

Consent for publication

Since this study is not attempting to republish or publish any third party or author’s previously published material, this section does not apply.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smail, R.Q.S., Dişli, E. Assessment and validation of groundwater vulnerability to nitrate and TDS using based on a modified DRASTIC model: a case study in the Erbil Central Sub-Basin, Iraq. Environ Monit Assess 195, 567 (2023). https://doi.org/10.1007/s10661-023-11165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11165-1

Keywords

Navigation