Skip to main content

Advertisement

Log in

Soil aggregation and associated organic matter under management systems in sandy-textured soils, subtropical region of Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Increasing the diversity of plant species in agricultural production areas favors the maintenance or improvement of soil quality, particularly for soils with a sandy texture. This beneficial effect is related to the formation of aggregates of different origins. This study aimed to (i) verify whether soil use and management affect the proportion of biogenic (Bio) and physicogenic (Phy) aggregates and (ii) verify whether biogenic aggregation is more likely to lead to soil improvement than physicogenic aggregation. Three management systems were evaluated (permanent pasture, PP; no-tillage system, NT; and no-tillage + Brachiaria system, NT + B) as well as a reference area (Atlantic Forest biome vegetation, NF). According to their origin or formation pathway, the aggregates were separated, identified, and classified as Bio (formed by biological processes) and Phy (resulting from chemical and physical actions). The differentiation between Bio and Phy aggregates was performed based on the visualization of morphological features, such as shape, size, presence of roots, porosity, and subunit arrangements, and junctions. Only the PP area was able to promote greater aggregate formation of biological origin, with greater amounts of Bio aggregates. The highest total organic carbon (TOC) contents and the least negative δ13C values were also quantified in the aggregates of the PP area. The NT + B system provided an increase in the TOC content of its aggregates in comparison with aggregates in the NT and NF areas. Among the formation pathways, the Bio aggregates had the highest TOC and soil organic matter fractions contents and the most negative δ13C values. Perennial forage grasses vegetation was more important than the plant species diversity in favoring Bio aggregate formation. The beneficial effect of Brachiaria can be observed when incorporated as part of intercropping with corn in grain production systems. The biogenic aggregates favored the concentration of more labile soil organic matter fractions. The results of this study can provide important theoretical information for future studies focused on the combination of different plant species in agricultural food production areas on sandy-textured soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Assunção, S. A., Pereira, M. G., Rosset, J. S., Berbara, R. L. L., & García, A. C. (2019). Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Science of the Total Environment, 658, 901–911. https://doi.org/10.1016/j.scitotenv.2018.12.271

    Article  CAS  Google Scholar 

  • Batista, I., Correia, M. E. F., Pereira, M. G., Bieluczyk, W., Schiavo, J. A., & Mello, N. A. (2013). Caracterização dos agregados em solos sob cultivo no cerrado, MS. Semina, 33, 1–10. https://doi.org/10.5433/1679-0359.2013v34n4p1535

    Article  Google Scholar 

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124, 3–22. https://doi.org/10.1016/j.geoderma.2004.03.00

    Article  CAS  Google Scholar 

  • Brussaard, L., Pulleman, M. M., Ouédraogo, É., Mando, A., & Six, J. (2007). Soil fauna and soil function in the fabric of the food web. Pedobiologia, 50(6), 447–462. https://doi.org/10.1016/j.pedobi.2006.10.007

    Article  Google Scholar 

  • Bullock, P., Federoff, N., Jongerius, A., Stoops, G., & Tursina, T. (1985). Handbook for soil thin section description (p. 152). Waine Research Publications.

    Google Scholar 

  • Cambardella, C. A., & Elliott, E. T. (1993). Methods for physical separation and characterization of soil organic matter fractions. Geoderma, 56, 449–457. https://doi.org/10.1016/0016-7061(93)90126-6

    Article  Google Scholar 

  • Ceccon, G., Borghi, E., & Crusciol, C. A. C. (2013). Modalidades e métodos implantação do consórcio milhobraquiária. In G. Ceccon (Ed.) Consórcio Milho-Braquiária (Embrapa) (pp. 27–46). https://ainfo.cnptia.embrapa.br/digital/bitstream/item/106254/1/LV-CONSORCIOMB.pdf

  • Cheng, M., Xiang, Y., Xue, Z., An, S., & Darboux, F. (2015). Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China. Catena, 124, 77–84. https://doi.org/10.1016/j.catena.2014.09.006

    Article  CAS  Google Scholar 

  • Conceição, P. C., Boeni, M., Dieckow, J., Bayer, C., & Mielniczuk, J. (2008). Fracionamento densimétrico com politungstato de sódio no estudo da proteção física da matéria orgânica em solos. Revista Brasileira De Ciência Do Solo, 32(2), 541–549. https://doi.org/10.1590/s0100-06832008000200009

    Article  Google Scholar 

  • Donagemma, G. K., Freitas, P. L., Balieiro, F. C., Fontana, A., Spera, S. T., Lumbreras, J. F., Viana, J. H. M., Araújo Filho, J. C., Santos, F. C., Albuquerque, M. R., Macedo, M. C. M., Teixeira, P. C., Amaral, A. J., Bortolon, E., & Bortolon, L. (2016). Caracterização, potencial agrícola e perspectivas de manejo de solos leves no Brasil. Pesquisa Agropecuária Brasileira, 51, 1003–1020. https://doi.org/10.1590/S0100-204X2016000900001

    Article  Google Scholar 

  • Faure, G. D., & Mensing, T. M. (2005). Isotopes: Principles and Applications (3rd ed.). John Wiley & Sons.

    Google Scholar 

  • Ferreira, C. R., Silva Neto, E. C., Pereira, M. G., Guedes, J. N., Rosset, J. S., & Anjos, L. H. C. (2020). Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil & Tillage Research, 198, 104533. https://doi.org/10.1016/j.still.2019.104533

    Article  Google Scholar 

  • Fontana, A., Freitas, P. L., Donagemma, K., & Salton, J. C. (2020). Solos arenosos: A nova fronteira agrícola brasileira. A Granja, 853, 80–81.

    Google Scholar 

  • Geraei, D. S., Hojati, S., Landi, A., & Cano, A. F. (2016). Total and labile forms of soil organic carbon as affected by land use change in southwestern Iran. Geoderma, 7, 29–37. https://doi.org/10.1016/j.geodrs.2016.01.001

    Article  Google Scholar 

  • Hartemink, A. E., & Huting, J. (2007). Sandy soils in Southern and Eastern Africa: Extent, properties and management. In: Proceedings of the International Conference on the Management of Tropical Sandy Soils, November 2005. FAO Regional Office for Asia and the Pacific, Bangkok, Khon Kaen, Thailand, pp. 54–59.

  • IUSS Working Group WRB. (2015). World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Res Rep No 106 FAO Rome, 203 pp.

  • Lal, R., Follet, R. F., & Kimble, J. M. (2003). Achieving soil carbon sequestration in the United States. A challenge to policy makers. Soil Science, 168, 827–845. https://doi.org/10.1097/01.ss.0000106407.84926.6b

    Article  CAS  Google Scholar 

  • Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2019). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology. https://doi.org/10.1111/gcb.14859

    Article  Google Scholar 

  • Lavelle, P., Rodríguez, N., Arguello, O., Bernal, J., Botero, C., Chaparro, P., Gomez, Y., Gutierrez, A., Hurtado, M. D., Loaiza, S., Pullido, S. X., Rodriguez, E., Sanabria, C., Velasquez, E., & Fonte, S. J. (2014). Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture, Ecosystems & Environment, 185, 106–117. https://doi.org/10.1016/j.agee.2013.12.020

    Article  Google Scholar 

  • Lavelle, P., Spain, A., Fonte, S., Bedano, J. C., Blanchart, E., Galindo, V., Grimaldi, M., Jimenez, J. J., Velasquez, E., & Zangerlé, A. (2020). Soil aggregation, ecosystem engineers and the C cycle. Acta Oecologica, 105, 103561. https://doi.org/10.1016/j.actao.2020.103561

    Article  Google Scholar 

  • Loss, A., Lourenzi, C. R., Dos Santos, E., Mergen, C. A., Benedet, L., Pereira, M. G., Piccolo, M. C., Brunetto, G., Lovato, P. E., & Comin, J. J. (2017). Carbon, nitrogen and natural abundance of 13C and 15N in biogenic and physicogenic aggregates in a soil with 10 years of pig manure application. Soil & Tillage Research, 166, 52–58. https://doi.org/10.1016/j.still.2016.10.007

    Article  Google Scholar 

  • Loss, A., Pereira, M. G., Costa, E. L., & Beutler, S. J. (2014). Soil fertility, physical and chemical organic matter fractions, natural 13C and 15N abundance in biogenic and physicogenic aggregates in areas under different land use systems. Soil Research, 52, 685–697. https://doi.org/10.1071/SR14045

    Article  CAS  Google Scholar 

  • Machado, P. L. O. A. (2002). Fracionamento físico do solo por densidade e granulometria para a quantificação de compartimentos da matéria orgânica do solo: Um procedimento para a estimativa pormenorizada do seqüestro de carbono pelo solo. Embrapa Solos.

    Google Scholar 

  • Martins, L. F. B. N., Troian, D., Rosset, J. S., Souza, C. B. S., Farias, P. G. S., Ozorio, J. M. B., Marra, L. M., & Castilho, S. C. P. (2020). Soil carbon stock in different uses in the southern cone of Mato Grosso do Sul. Revista de Agricultura Neotropical, 7, 86–94. https://doi.org/10.32404/rean.v7i4.5351

  • Melo, T. R., Pereira, M. G., Barbosa, G. M. C., Silva Neto, E. C., Andrello, A. C., & Filho, J. T. (2019). Biogenic aggregation intensifies soil improvement caused by manunes. Soil & Tillage Research, 190, 186–193. https://doi.org/10.1016/j.still.2018.12.017

    Article  Google Scholar 

  • Mergen Junior, C. A., Loss, A., Santos Junior, E., Ferreira, G. W., Comin, J. J., Lovato, P. E., & Brunetto, G. (2019). Atributos químicos em agregados biogênicos e fisiogênicos de solo submetido à aplicação com dejetos suínos. Revista Brasileira De Ciências Agrárias, 14(1), 1–8. https://doi.org/10.5039/agraria.v14i1a5620

    Article  Google Scholar 

  • Moncada, P. M., Helwig Penning, L., Timm, L. C., Gabriels, D., & Cornelis, W. M. (2014). Visual examinations and soil physical and hydraulic properties for assessing soil structural quality of soils with contrasting textures and land uses. Soil & Tillage Research, 140, 20–28. https://doi.org/10.1016/j.still.2014.02.009

    Article  Google Scholar 

  • Paul, S., Veldkamp, E., & Flessa, H. (2008). Soil organic carbon in density fractions of tropical soil under forest–pasture–secondary forest land use changes. European Journal of Soil Science, 59, 359–371. https://doi.org/10.1111/j.1365-2389.2007.01010.x

    Article  Google Scholar 

  • Pereira, M. G., Loss, A., Batista, I., Melo, T. R., Silva Neto, E. C., & Pinto, L. A. S. R. (2021). Biogenic and physicogenic aggregates: Formation pathways, assessment techniques, and influence on soil properties. Revista Brasileira de Ciência do Solo, 45, e0210108. https://doi.org/10.36783/18069657rbcs20210108

  • Pinto, L. A. S. R., Torres, J. L. R., Morais, I. S., Ferreira, R., Silva Júnior, W. F., Lima, S. S., & Beutler, S. J., & Pereira, M. G. (2021a). Aggregates physicogenic and biogenic under different management systems in the Cerrado region, Brazil. Revista Brasileira de Ciência do Solo, 45, 0200114. https://doi.org/10.36783/18069657rbcs20200114

  • Pinto, L. A. S. R., Ziviani, M. Z., Morais, I. S., Ferreira, R., Silva Junior, W. F., Lima, S. S., Silva, C. F., Torres, J. L. R., & Pereira, M. G. (2021b). Soil organic matter of aggregates physicogenic and biogenic in areas under no-tillage system in the Cerrado, Brazil. Research, Society and Development, 10(5), e39910515012. https://doi.org/10.33448/rsd-v10i5.15012

  • Pulleman, M. M., & Marinissen, J. C. Y. (2004). Physical protection of mineralizable C in aggregates from long-term pasture and arable soil. Geoderma, 120, 273–282. https://doi.org/10.1016/j.geoderma.2003.09.00

    Article  CAS  Google Scholar 

  • Pulleman, M. M., Six, J., Marinissen, J. C. Y., & Jongmans, A. G. (2005). Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Applied Soil Ecology Amsterdam, 29(1), 1–15. https://doi.org/10.1016/j.apsoil.2004.10.003

    Article  Google Scholar 

  • Qiao, Y., Miao, S., Li, N., Xu, Y., Han, X., & Zhang, B. (2015). Crop species affect soil organic carbon turnover in soil profile and among aggregate sizes in a Mollisol as estimated from natural 13C abundance. Plant and Soil, 392(1–2), 163–174. https://doi.org/10.1007/s11104-015-2414-8

    Article  CAS  Google Scholar 

  • R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Reichert, J. M., Amado, T. J. C., Reinert, D. J., Rodrigues, M. F., & Suzuki, L. E. A. S. (2016). Land use effects on subtropical, sandy soil under sandyzation/desertification processes. Agriculture, Ecosystems & Environment, 233, 370–380. https://doi.org/10.1016/j.agee.2016.09.039

    Article  Google Scholar 

  • Rosset, J. S., Lana, M. C., Pereira, M. G., Schiavo, J. A., Rampim, L., & Sarto, M. V. M. (2019). Organic matter and soil aggregation in agricultural systems with different adoption times. Semina, 40(6), 3443–3460. https://doi.org/10.5433/1679-0359.2019v40n6Supl3p3443

    Article  CAS  Google Scholar 

  • Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araújo Filho, J. C., Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos. 5 ed., rev. e ampl. Brasília, DF: Embrapa, 356 p.

  • Santos, R. D., Lemos, R. C., Santos, H. G., Ker, J. C., Anjos, L. H. C., & Shimizu, S. H. (2015). Manual de descrição e coleta de solo no campo. 7ª ed. revisada e ampliada, Viçosa. SBCS. 101p.

  • Silva Neto, L. F., Silva, I. F., Inda, A. V., Nascimento, P. C., & Bortolo, L. (2010). Atributos físicos e químicos de agregados pedogênicos e de coprólitos de minhocas em diferentes classes de solos da Paraíba. Ciência & Agrotecnolog, 34, 1365–1371. https://doi.org/10.1590/S1413-70542010000600002

    Article  Google Scholar 

  • Silva, P. C. G., Tiritan, C. S., Echer, F. R., Santos Cordeiro, C. F., Rebonatti, M. D., & Santos, C. H. (2020). No-tillage and crop rotation increase crop yields and nitrogen stocks in sandy soils under agroclimatic risk. Field Crops Research, 258, 107947. https://doi.org/10.1016/j.fcr.2020.107947

    Article  Google Scholar 

  • Šimanský, V., Juriga, M., Jonczak, J., Uzarowicz, Ł, & Stępień, W. (2019). How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma, 342, 75–84. https://doi.org/10.1016/j.geoderma.2019.02.0

    Article  Google Scholar 

  • Six, J., Bossuyt, H., Degryze, S., & Denef, K. A. (2004). History of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research, 79, 7–31. https://doi.org/10.1016/j.still.2004.03.008

    Article  Google Scholar 

  • Six, J., Feller, C., Denef, K., Ogle, S. M., Morales Sa, J. C., & Albrecht, A. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils: effects of no-tillage. Agronomie, 22, 755–775. https://doi.org/10.1051/agro:2002043

    Article  Google Scholar 

  • Smith, B. N., & Epstein, S. (1971). Two categories of 13C/12C ratios of higher. Plant Physiology, 47, 380–384. https://doi.org/10.1104/pp.47.3.380

    Article  CAS  Google Scholar 

  • Sohi, S. P., Mahieu, N., Arah, J. R. M., Powlson, D. S., Madari, B., & Gaunt, J. L. (2001). A procedure for isolating soil organic matter fractions suitable for modeling. Soil Science Society of American Journal, 65(1), 1121–1128. https://doi.org/10.2136/sssaj2001.6541121x

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (2014). Keys to soil taxonomy 12th ed. US Department of Agriculture, Natural Resources Conservation Service, US Government Printing Office, Washington DC, 360 pp.

  • Suárez, L. R., Audor, L. C. U., & Salazar, J. C. S. (2019). Formation of macroaggregates and organic carbon in cocoa agroforestry systems. Floresta & Ambiente, 26(3), e20180312. https://doi.org/10.1590/2179-8087.031218

    Article  Google Scholar 

  • Teixeira, P. C., Donagema, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solos. 3.ed. Brasília: Embrapa, 573p.

  • Velasquez, E., & Lavelle, P. (2019). Soil macrofauna as an indicator for evaluating soil-based ecosystem services in agricultural landscapes. Acta Oecologica, 100, 103446. https://doi.org/10.1016/j.actao.2019.103446

    Article  Google Scholar 

  • Velasquez, E., Fonte, S. J., Barot, S., Grimaldi, M., Desjardins, T., & Lavelle, P. (2012). Soil macrofauna-mediated impacts of plant species composition on soil functioning in Amazonian pastures. Applied Soil Ecology, 56, 43–50. https://doi.org/10.1016/j.apsoil.2012.01.008

    Article  Google Scholar 

  • Velasquez, E., Pelosi, C., Brunet, D., Grimald, M., Martins, M., Rendeiro, A. C., Barrios, E., & Lavelle, P. (2007). This ped is my ped: Visual separation and near infrared spectra allow determination of the origins of soil macroaggregates. Pedobiologia, 51, 75–87. https://doi.org/10.1016/j.pedobi.2007.01.002

    Article  Google Scholar 

  • Vilela, L., Martha Junior, G. B., Macedo, M. C. M., Marchão, R. L., Guimarães Júnior, R., Pulrolnik, K., & Maciel, G. A. (2011). Sistemas de integração lavoura-pecuária na região do Cerrado. Pesquisa Agropecuária Brasileira, 46, 1127–1138. https://doi.org/10.1590/S0100-204X2011001000003

    Article  Google Scholar 

  • Webster, E., Gaudin, A., Pulleman, M., Siles, P., & Fonte, S. J. (2019). Improved pastures support early indicators of soil restoration in low-input agroecosystems of Nicaragua. Environmental Management, 64(2), 201–212. https://doi.org/10.1007/s00267-019-01181-8

    Article  Google Scholar 

  • Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications Soil Science and Plant Analysis, 19, 1467–1476. https://doi.org/10.1080/00103628809368027

    Article  CAS  Google Scholar 

  • Zangerlé, A., Pando, A., & Lavelle, P. (2011). Do earthworms and roots cooperate to build soil macroaggregates? A microcosm experiment. Geoderma, 167, 303–309. https://doi.org/10.1016/j.geoderma.2011.09.00

    Article  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)–Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Foundation AGRISUS (Agronomic Research Project No. 2990/20).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—Marcos Gervasio Pereira (equal), Jean Sérgio Rosset (equal), Thadeu Rodrigues de Melo (equal), and Luiz Alberto da Silva Rodrigues Pinto (supporting). Methodology—Marcos Gervasio Pereira (equal), Jean Sérgio Rosset (equal), Thadeu Rodrigues de Melo (equal), and Luiz Alberto da Silva Rodrigues Pinto (supporting). Formal analysis—Luiz Alberto da Silva Rodrigues Pinto (lead), Jefferson Matheus Barros Ozório (supporting), Igor de Sousa Morais (supporting), and Thadeu Rodrigues de Melo (supporting). Investigation—Marcos Gervasio Pereira (equal), Jean Sérgio Rosset (equal), Thadeu Rodrigues de Melo (equal), and Luiz Alberto da Silva Rodrigues Pinto (supporting). Resources—Marcos Gervasio Pereira (equal) and Jean Sérgio Rosset (equal). Writing-original draft—Luiz Alberto da Silva Rodrigues Pinto (equal), Marcos Gervasio Pereira (equal), Thadeu Rodrigues de Melo (supporting), and Jefferson Matheus Barros Ozório (supporting). Writing—review and editing—Luiz Alberto da Silva Rodrigues Pinto (equal), Marcos Gervasio Pereira (equal), and Thadeu Rodrigues de Melo (supporting). Visualization—Luiz Alberto da Silva Rodrigues Pinto (lead) and Marcos Gervasio Pereira (supporting). Supervision—Marcos Gervasio Pereira (lead). Project administration—Marcos Gervasio Pereira (lead) and Luiz Alberto da Silva Rodrigues Pinto (supporting). Funding acquisition—Marcos Gervasio Pereira (equal) and Jean Sérgio Rosset (equal).

Corresponding author

Correspondence to Marcos Gervasio Pereira.

Ethics declarations

Ethics approval

All authors have read, understood, and complied with all requirements regarding the ethical responsibility of the journal and are aware that, with minor exceptions, no changes may be made in authorship after submission of the article.

Consent for publication

The authors consent to the case manuscript being submitted to, and published in the journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1941 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Rodrigues Pinto, L.A., de Sousa Morais, I., Ozório, J.M.B. et al. Soil aggregation and associated organic matter under management systems in sandy-textured soils, subtropical region of Brazil. Environ Monit Assess 195, 253 (2023). https://doi.org/10.1007/s10661-022-10892-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10892-1

Keywords

Navigation