Skip to main content

Advertisement

Log in

Abundance and variation of gaseous NH3 in relation with inorganic fertilizers and soil moisture during Kharif and Rabi season

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In an agricultural country like India, inorganic fertilizers are the major contributors of atmospheric NH3 in rural areas affecting soil, vegetation and water bodies. In this study, day-night and seasonal variation of ammonia emissions were measured from July 2017 to June 2018 during Kharif and Rabi crop seasons at a rural agricultural site in Jhajjar district of Haryana. Also, NH3 emission inventory is prepared for the amount of fertilizers applied during its basal and top dressing. NH3 concentrations were noticed significantly lower after basal dressing of DAP fertilizers as compared to the concentrations after top dressing of urea. NH3 concentration in air increased with decrease in water saturation of the soil. NH3 emission was recorded as 1.4 to 45.2, 63.1 to 190.9, and 98.9 to 187.5 μg m−3 during sowing, fertilizer addition, and grain filling stages, respectively, in Kharif season. Apart from these crop stages, NH3 was measured as 56.8 to 249.5 μg m−3 during crop residue burning period. On the other hand, NH3 emissions ranged from 22.9 to 68.4, 59.4 to 104.71, 26.3 to 56.0, 48.2 to 147.2, and 21.5 to 80.4 μg m−3 during sowing, crown root initiation (CRI), panicle initiation, grain filling, and maturity crop, respectively, in Rabi season. The average NH3 concentrations during Kharif season (125.3 μg m−3) were significantly greater than the concentrations during Rabi season (51.8 μg m−3). However, a reduction in the NH3 values was observed in the period between Kharif and Rabi seasons, which could be attributed to the wet deposition during monsoon and gas to particle conversion due to less temperature conditions during the periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data will be available on a reasonable request to corresponding authors.

References

  • Anderson, N., Strader, R., & Davidson, C. (2003). Airborne reduced nitrogen: Ammonia emissions from agriculture and other sources. Environment International, 29(2–3), 277–286.

    Article  CAS  Google Scholar 

  • Aneja, V. P., Roelle, P. A., Murray, G. C., Southerland, J., Erisman, J. W., Fowler, D., & Patni, N. (2001). Atmospheric nitrogen compounds II: Emissions, transport, transformation, deposition and assessment. Atmospheric Environment, 35(11), 1903–1911.

  • Aneja, V. P., Schlesinger, W. H., Nyogi, D., Jennings, G., Gilliam, W., Knighton, R. E., Duke, C.S., Blunden, J & Krishnan, S. (2006). Emerging national research needs for agricultural air quality. Eos, Transactions American Geophysical Union, 87(3), 25–29.

  • Aneja, V. P., Schlesinger, W. H., Erisman, J. W., Behera, S. N., Sharma, M., & Battye, W. (2012). Reactive nitrogen emissions from crop and livestock farming in India. Atmospheric Environment, 47, 92–103.

    Article  CAS  Google Scholar 

  • Aneja, V. P., Blunden, J., Roelle, P. A., Schlesinger, W. H., Knighton, R., Niyogi, D., & Duke, C. S. (2008). Workshop on agricultural air quality: State of the science. Atmospheric Environment, 42(14), 3195–3208.

    Article  CAS  Google Scholar 

  • Asman, W. A., & van Jaarsveld, H. A. (1992). A variable-resolution transport model applied for NHχ in Europe. Atmospheric Environment. Part a. General Topics, 26(3), 445–464.

    Article  Google Scholar 

  • Aulakh, M. S. (1996). Nitrogen losses and fertilizer N use efficiency in irrigated porous soils. Nutrient Cycling in Agroecosystems, 47(3), 197–212.

    Article  Google Scholar 

  • Bari, A., Ferraro, V., Wilson, L. R., Luttinger, D., & Husain, L. (2003). Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Environment, 37(20), 2825–2835.

  • Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek, K. W., & Olivier, J. G. J. (1997). A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles,11(4), 561–587.

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464–465.

    Article  Google Scholar 

  • Burkhardt, J., Sutton, M. A., Milford, C., Storeton-West, R. L., & Fowler, D. (1998). Ammonia concentrations at a site in southern Scotland from 2 yr of continuous measurements. Atmospheric Environment, 32(3), 325–331.

    Article  CAS  Google Scholar 

  • Datta, A., Sharma, S. K., Harit, R. C., Kumar, V., Mandal, T. K., & Pathak, H. (2012). Ammonia emission from subtropical crop land area in India. Asia-Pacific Journal of Atmospheric Sciences, 48(3), 275–281.

    Article  Google Scholar 

  • Ernst, J. W., & Massey, H. F. (1960). The effects of several factors on volatilization of ammonia formed from urea in the soil. Soil Science Society of America Journal, 24(2), 87–90.

    Article  CAS  Google Scholar 

  • Ferm, M. (1998). Atmospheric ammonia and ammonium transport in Europe and critical loads: A review. Nutrient Cycling in Agroecosystems, 51(1), 5–17.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J., & Pitts, J. N., Jr. (1999). Chemistry of the upper and lower atmosphere: Theory, experiments, and applications. Elsevier.

  • Fowler, D., Pyle, J. A., Raven, J. A., & Sutton, M. A. (2013). The global nitrogen cycle in the twenty-first century: introduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 368 (1621), 20130165.

  • Franzluebbers, A. J. (1999). Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Applied Soil Ecology, 11(1), 91–101.

    Article  Google Scholar 

  • Freney, J. R., Simpson, J. R., & Denmead, O. T. (1981). Ammonia volatilization. Ecological Bulletins, 291–302.

  • Gupta, A., Kumar, R., Kumari, K. M., & Srivastava, S. S. (2003). Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur. India. Atmospheric Environment, 37(34), 4837–4846.

    Article  CAS  Google Scholar 

  • Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., & Zhang, F. S. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences, 106(9), 3041–3046.

    Article  CAS  Google Scholar 

  • Katoch, A., & Kulshrestha, U. C. (2021). Gaseous and particulate reactive nitrogen species in the indoor air of selected households in New Delhi. Environmental Monitoring and Assessment, 193(4), 1–19.

    Article  Google Scholar 

  • Kumar, S., & Garkoti, S. C. (2022). Rhizosphere influence on soil microbial biomass and enzyme activity in banj oak, chir pine and banj oak regeneration forests in the central Himalaya. Geoderma, 409, 115626.

    Article  CAS  Google Scholar 

  • Krupa, S. V. (2003). Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environmental Pollution, 124(2), 179–221.

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Granat, L., Engardt, M., & Rodhe, H. (2005). Review of precipitation monitoring studies in India—A search for regional patterns. Atmospheric Environment, 39(38), 7403–7419.

    Article  CAS  Google Scholar 

  • Kuttippurath, J., Singh, A., Dash, S. P., Mallick, N., Clerbaux, C., Van Damme, M., & Varikoden, H. (2020). Record high levels of atmospheric ammonia over India: Spatial and temporal analyses. Science of the Total Environment, 740, 139986.

    Article  CAS  Google Scholar 

  • Lee, S., Baumann, K., Schauer, J. J., Sheesley, R. J., Naeher, L. P., Meinardi, S., & Clements, M. (2005). Gaseous and particulate emissions from prescribed burning in Georgia. Environmental Science & Technology, 39(23), 9049–9056.

    Article  CAS  Google Scholar 

  • Linquist, B. A., Hill, J. E., Mutters, R. G., Greer, C. A., Hartley, C., Ruark, M. D., & Van Kessel, C. (2009). Assessing the necessity of surface-applied preplant nitrogen fertilizer in rice systems. Agronomy Journal, 101(4), 906–915.

    Article  CAS  Google Scholar 

  • Liu, L., Zhang, X., Xu, W., Liu, X., Li, Y., Lu, X., & Zhang, W. (2017). Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980. Atmospheric Chemistry and Physics, 17(15), 9365–9378.

    Article  CAS  Google Scholar 

  • Meng, Z., Xu, X., Lin, W., Ge, B., Xie, Y., Song, B., & Zhao, H. (2018). Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain. Atmospheric Chemistry and Physics, 18(1), 167–184.

    Article  CAS  Google Scholar 

  • Mikkelsen, R. (2009). Ammonia emissions from agricultural operations: Fertilizer. Better Crops, 93(4), 9–11.

    Google Scholar 

  • Mishra, M., & Kulshrestha, U. C. (2020). Extreme air pollution events spiking ionic levels at urban and rural sites of Indo-Gangetic plain. Aerosol and Air Quality Research, 20(6), 1266–1281.

    Article  CAS  Google Scholar 

  • Parashar, D. C., Kulshrestha, U. C., & Sharma, C. (1998). Anthropogenic emissions of NOx, NH3 and N2O in India. Nutrient Cycling in Agroecosystems, 52(2), 255–259.

    Article  CAS  Google Scholar 

  • Pathak, H., & Bhatia, A. (2017). Reactive nitrogen and its impacts on climate change: An Indian synthesis. In The Indian Nitrogen Assessment (pp. 383–401). Elsevier.

  • Pathak, H., Li, C., Wassmann, R., & Ladha, J. K. (2006). Simulation of nitrogen balance in rice–wheat systems of the Indo-Gangetic Plains. Soil Science Society of America Journal, 70(5), 1612–1622.

    Article  CAS  Google Scholar 

  • Pathak, H., Mohanty, S., Jain, N., & Bhatia, A. (2010). Nitrogen, phosphorus, and potassium budgets in Indian agriculture. Nutrient Cycling in Agroecosystems, 86(3), 287–299.

    Article  CAS  Google Scholar 

  • Patra, A. K., Burford, J. R., & Rego, T. J. (1996). Volatilization losses of surface-applied urea nitrogen from Vertisols in the Indian semi-arid tropics. Biology and Fertility of Soils, 22(4), 345–349.

    Article  CAS  Google Scholar 

  • Patton, C. J., & Crouch, S. R. (1977). Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Analytical Chemistry, 49(3), 464–469.

    Article  CAS  Google Scholar 

  • Pelster, D. E., Chantigny, M. H., Angers, D. A., Bertrand, N., MacDonald, J. D., & Rochette, P. (2018). Can soil clay content predict ammonia volatilization losses from subsurface-banded urea in eastern Canadian soils? Canadian Journal of Soil Science, 98(3), 556–565.

    Article  CAS  Google Scholar 

  • Rajesh,. (2018). Land Use Land Cover mapping using Remote Sensing & GIS Techniques: a case study of Jhajjar district, Haryana. International Journal of Applied Research, 4(7), 11–16.

  • Raynaud, X., Lata, J. C., & Leadley, P. W. (2006). Soil microbial loop and nutrient uptake by plants: A test using a coupled C: N model of plant–microbial interactions. Plant and Soil, 287(1), 95–116.

    Article  CAS  Google Scholar 

  • Rochette, P., Angers, D. A., Chantigny, M. H., Gasser, M. O., MacDonald, J. D., Pelster, D. E., & Bertrand, N. (2013). Ammonia volatilization and nitrogen retention: How deep to incorporate urea? Journal of Environmental Quality, 42(6), 1635–1642.

    Article  CAS  Google Scholar 

  • Sakurai, T., Fujita, S. I., Hayami, H., & Furuhashi, N. (2003). A case study of high ammonia concentration in the nighttime by means of modeling analysis in the Kanto region of Japan. Atmospheric Environment, 37(31), 4461–4465.

    Article  CAS  Google Scholar 

  • Siman, F. C., Andrade, F. V., & Passos, R. R. (2020). Nitrogen fertilizers and NH3 volatilization: Effect of temperature and soil moisture. Communications in Soil Science and Plant Analysis, 51(10), 1283–1292.

    Article  CAS  Google Scholar 

  • Singh, S., & Kulshrestha, U. C. (2012). Abundance and distribution of gaseous ammonia and particulate ammonium at Delhi. India. Biogeosciences, 9(12), 5023–5029.

    Article  CAS  Google Scholar 

  • Singh, S., & Kulshrestha, U. C. (2014). Rural versus urban gaseous inorganic reactive nitrogen in the Indo-Gangetic plains (IGP) of India. Environmental Research Letters, 9(12), 125004.

    Article  Google Scholar 

  • Sudesh., Kulshrestha. U. C. (2021). Diurnal variation of ambient NH3 in relation with agricultural activities and meteorological factors at a rural site in North India. Current World Environment, 16, 1–15.

    Google Scholar 

  • Tang, Y. S., Braban, C. F., Dragosits, U., Dore, A. J., Simmons, I., van Dijk, N., & Sutton, M. A. (2018). Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK. Atmospheric Chemistry and Physics, 18(2), 705–733.

    Article  CAS  Google Scholar 

  • Tasca, F. A., Ernani, P. R., Rogeri, D. A., Gatiboni, L. C., & Cassol, P. C. (2011). Volatilização de amônia do solo após a aplicação de ureia convencional ou com inibidor de urease. Revista Brasileira De Ciência Do Solo, 35, 493–502.

    Article  CAS  Google Scholar 

  • Tewatia, R. K., & Chanda, T. K. (2017). Trends in fertilizer nitrogen production and consumption in India. In The Indian nitrogen assessment (pp. 45–56). Elsevier.

  • Tomar, D., Bhat, A., & Grewal, K. S. (2017). Characterization and classification of soils on different geomorphic units of north-eastern Haryana. India. Agropedology, 27(02), 103–116.

    Google Scholar 

  • Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C., & Coheur, P. F. (2018). Industrial and agricultural ammonia point sources exposed. Nature, 564(7734), 99–103.

    Article  Google Scholar 

  • Wahl, M., Kirsch, R., Bröckel, U., Trapp, S., & Bottlinger, M. (2006). Caking of urea prills. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 29(6), 674–678.

    Article  CAS  Google Scholar 

  • Walker, J. T., Whitall, D. R., Robarge, W., & Paerl, H. W. (2004). Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmospheric Environment, 38(9), 1235–1246.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    Article  CAS  Google Scholar 

  • Warner, J. X., Wei, Z., Strow, L. L., Dickerson, R. R., & Nowak, J. B. (2016). The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record. Atmospheric Chemistry and Physics, 16(8), 5467–5479.

    Article  CAS  Google Scholar 

  • Whitehead, J. D., Longley, I. D., & Gallagher, M. W. (2007). Seasonal and diurnal variation in atmospheric ammonia in an urban environment measured using a quantum cascade laser absorption spectrometer. Water, Air, and Soil Pollution, 183(1), 317–329.

    Article  CAS  Google Scholar 

  • Wilson, S. M., & Serre, M. L. (2007). Use of passive samplers to measure atmospheric ammonia levels in a high-density industrial hog farm area of eastern North Carolina. Atmospheric Environment, 41(28), 6074–6086.

    Article  CAS  Google Scholar 

  • Xu, R. T., Pan, S. F., Chen, J., Chen, G. S., Yang, J., Dangal, S. R. S., & Tian, H. Q. (2018). Half-century ammonia emissions from agricultural systems in Southern Asia: Magnitude, spatiotemporal patterns, and implications for human health. GeoHealth, 2(1), 40–53.

    Article  CAS  Google Scholar 

  • Zhenghu, D., & Honglang, X. (2000). Effects of soil properties on ammonia volatilization. Soil Science and Plant Nutrition, 46(4), 845–852.

  • Zhou, C., Zhou, H., Holsen, T. M., Hopke, P. K., Edgerton, E. S., & Schwab, J. J. (2019). Ambient ammonia concentrations across New York state. Journal of Geophysical Research: Atmospheres, 124(14), 8287–8302.

    Article  CAS  Google Scholar 

  • Zhu, L., Henze, D., Bash, J., Jeong, G. R., Cady-Pereira, K., Shephard, M., & Capps, S. (2015). Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes. Atmospheric Chemistry and Physics, 15(22), 12823–12843.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of Science and Technology (DST), University Grant Commission (UGC), and Jawaharlal Nehru University (JNU) for providing the infrastructure. This work has been a part of UKRI GCRF South Asian Nitrogen Hub Project and DRS Net-India.

Funding

The University Grant Commission-Junior Research Fellowship (UGC-JRF), Jawaharlal Nehru University (JNU), UKRI GCRF SANH Project provided funding during this research work.

Author information

Authors and Affiliations

Authors

Contributions

Sudesh Yadav: sampling, analysis, and results. Ankita Katoch: introduction and figures. Yogender Singh: tables. U.C.Kulshrestha: conceptualization and guidance.

Corresponding author

Correspondence to Umesh Chandra Kulshrestha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Katoch, A., Singh, Y. et al. Abundance and variation of gaseous NH3 in relation with inorganic fertilizers and soil moisture during Kharif and Rabi season. Environ Monit Assess 195, 234 (2023). https://doi.org/10.1007/s10661-022-10777-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10777-3

Keywords

Navigation