Skip to main content
Log in

Nickel hydroxide nanoflower–based dispersive solid-phase extraction of copper from water matrix

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this work, a dispersive solid-phase extraction method based on Ni(OH)2 nanoflowers (Ni(OH)2-NFs-DSPE) was developed to separate and preconcentrate copper ions from tap water samples for determination by flame atomic absorption spectrometry (FAAS). Ni(OH)2-NFs was synthesized using a homogeneous precipitation technique and used as sorbent for copper preconcentration. X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy were used to characterize the synthesized sorbent. All experimental variables were carefully optimized to achieve a high enhancement factor of 107.5-folds with respect to the detection sensitivity of the conventional FAAS. The proposed method’s analytical parameters including LOD, LOQ, and linear range were determined as 1.33 μg/L, 4.42 μg/L, and 3.0–40 μg/L, respectively. To assess the applicability and reliability of the developed method, optimal conditions were applied to tap water samples and satisfactory percent recoveries (94–103%) were obtained for the samples spiked at 20 and 30 μg/L. This validated the accuracy and feasibility of the developed method to real samples. The developed method can be described as a simple, efficient, and rapid analytical approach for the accurate determination of trace copper ions in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

References

  • Anekthirakun, P., & Imyim, A. (2019). Separation of silver ions and silver nanoparticles by silica based-solid phase extraction prior to ICP-OES determination. Microchemical Journal, 145, 470–475. https://doi.org/10.1016/j.microc.2018.11.008

    Article  CAS  Google Scholar 

  • Asfaram, A., Dil, E. A., Arabkhani, P., Sadeghfar, F., & Ghaedi, M. (2020). Magnetic Cu: CuO-GO nanocomposite for efficient dispersive micro-solid phase extraction of polycyclic aromatic hydrocarbons from vegetable, fruit, and environmental water samples by liquid chromatographic determination. Talanta, 218, 121131.

    Article  CAS  Google Scholar 

  • Augusto, F., Hantao, L. W., Mogollón, N. G. S., & Braga, S. C. G. N. (2013). New materials and trends in sorbents for solid-phase extraction. TrAC Trends in Analytical Chemistry, 43, 14–23. https://doi.org/10.1016/j.trac.2012.08.012

    Article  CAS  Google Scholar 

  • Azizi, M., Seidi, S., & Rouhollahi, A. (2018). A novel N, N′-bis(acetylacetone)ethylenediimine functionalized silica-core shell magnetic nanosorbent for manetic dispersive solid phase extraction of copper in cereal and water samples. Food Chemistry, 249, 30–37. https://doi.org/10.1016/j.foodchem.2017.12.085

    Article  CAS  Google Scholar 

  • Azzouz, A., Kailasa, S. K., Lee, S. S., Rascón, A. J., Ballesteros, E., Zhang, M., & Kim, K. -H. (2018). Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC Trends in Analytical Chemistry, 108, 347–369. https://doi.org/10.1016/j.trac.2018.08.009

    Article  CAS  Google Scholar 

  • Bakhshizadeh Aghdam, M., Farajzadeh, M. A., & Afshar Mogaddam, M. R. (2022). Facile preparation of carbonized cellulose nanoparticles and their application for the dispersive solid phase extraction prior to dispersive liquid–liquid microextraction of pesticide residues from vegetable and fruit juices. Journal of Food Composition and Analysis, 110, 104527. https://doi.org/10.1016/j.jfca.2022.104527

    Article  CAS  Google Scholar 

  • Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J. F., & Margaritis, I. (2016). Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology, 35, 107–115. https://doi.org/10.1016/j.jtemb.2016.02.006

    Article  CAS  Google Scholar 

  • Budipramana, Y., Ersam, T., & Kurniawan, F. (2014). Synthesis nickel hydroxide by electrolysis at high voltage. ARPN Journal of Engineering and Applied Science, 9, 2074–2077.

    Google Scholar 

  • Buszewski, B., & Szultka, M. (2012). Past, present, and future of solid phase extraction: A review. Critical Reviews in Analytical Chemistry, 42, 198–213.

    Article  CAS  Google Scholar 

  • Cheng, Z., Xu, J., Zhong, H., Li, D., Zhu, P., & Yang, Y. (2010). A facile and novel synthetic route to Ni(OH)2 nanoflowers. Superlattices and Microstructures, 48, 154–161. https://doi.org/10.1016/j.spmi.2010.05.013

    Article  CAS  Google Scholar 

  • Chisvert, A., Cárdenas, S., & Lucena, R. (2019). Dispersive micro-solid phase extraction. TrAC Trends in Analytical Chemistry, 112, 226–233. https://doi.org/10.1016/j.trac.2018.12.005

    Article  CAS  Google Scholar 

  • Duran, C., Gundogdu, A., Bulut, V. N., Soylak, M., Elci, L., Sentürk, H. B., & Tüfekci, M. (2007). Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS). Journal of Hazardous Materials, 146, 347–355. https://doi.org/10.1016/j.jhazmat.2006.12.029

    Article  CAS  Google Scholar 

  • Ensafi, A. A., & Shiraz, A. Z. (2008). On-line separation and preconcentration of lead (II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry. Journal of Hazardous Materials, 150, 554–559.

    Article  CAS  Google Scholar 

  • Jiang, C. Y., Sun, X. W., Lo, G. Q., Kwong, D. L., & Wang, J. X. (2007). Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Applied Physics Letters, 90, 263501.

    Article  Google Scholar 

  • Kalal, H., Panahi, H. A., Framarzi, N., Moniri, E., Naeemy, A., Hoveidi, H., & Abhari, A. (2011). New chelating resin for preconcentration and determination of molybdenum by inductive couple plasma atomic emission spectroscopy. International Journal of Environmental Science and Technology, 8, 501–512.

    Article  CAS  Google Scholar 

  • Khairnar, N. A., & Gite, V. V. (2020). Selective solid-phase extraction of trace copper ions in an aqueous solution using ion-imprinted polymer. Materials Today: Proceedings, 29, 807–814. https://doi.org/10.1016/j.matpr.2020.04.755

    Article  CAS  Google Scholar 

  • Khan, W. A., Arain, M. B., & Soylak, M. (2020). Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food and Chemical Toxicology, 145, 111704. https://doi.org/10.1016/j.fct.2020.111704

    Article  CAS  Google Scholar 

  • Kharisov, B. I. (2008). A review for synthesis of nanoflowers. Recent Patents on Nanotechnology, 2, 190–200.

    Article  CAS  Google Scholar 

  • Kobylinska, N., Kostenko, L., Khainakov, S., & Garcia-Granda, S. (2020). Advanced core-shell EDTA-functionalized magnetite nanoparticles for rapid and efficient magnetic solid phase extraction of heavy metals from water samples prior to the multi-element determination by ICP-OES. Microchimica Acta, 187, 289. https://doi.org/10.1007/s00604-020-04231-9

    Article  CAS  Google Scholar 

  • Köseoğlu, K., Ulusoy, H. İ, Yilmaz, E., & Soylak, M. (2020). Simple and sensitive determination of vitamin A and E in the milk and egg yolk samples by using dispersive solid phase extraction with newly synthesized polymeric material. Journal of Food Composition and Analysis. https://doi.org/10.1016/j.jfca.2020.103482

    Article  Google Scholar 

  • Lemos, V. A., Teixeira, L. S. G., Bezerra, M. D. A., Costa, A. C. S., Castro, J. T., Cardoso, L. A. M., de Jesus, D. S., Santos, E. S., Baliza, P. X., & Santos, L. N. (2008). New materials for solid-phase extraction of trace elements. Applied Spectroscopy Reviews, 43, 303–334.

    Article  CAS  Google Scholar 

  • Li, B., Ai, M., & Xu, Z. (2010). Mesoporous β-Ni (OH) 2: Synthesis and enhanced electrochemical performance. Chemical Communications, 46, 6267–6269.

    Article  CAS  Google Scholar 

  • Limchoowong, N., Sricharoen, P., Areerob, Y., Nuengmatcha, P., Sripakdee, T., Techawongstien, S., & Chanthai, S. (2017). Preconcentration and trace determination of copper (II) in Thai food recipes using Fe3O4@ Chi–GQDs nanocomposites as a new magnetic adsorbent. Food Chemistry, 230, 388–397.

    Article  CAS  Google Scholar 

  • Liu, H., Han, Z., Wang, Q., Wang, X., Wu, D., & Wang, X. (2021). Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response. Applied Surface Science, 562, 150211. https://doi.org/10.1016/j.apsusc.2021.150211

    Article  CAS  Google Scholar 

  • Liu, Y., Chen, M., & Yongmei, H. (2013). Study on the adsorption of Cu(II) by EDTA functionalized Fe3O4 magnetic nano-particles. Chemical Engineering Journal, 218, 46–54. https://doi.org/10.1016/j.cej.2012.12.027

    Article  CAS  Google Scholar 

  • Liu, Y., Ji, X., & He, Z. (2019). Organic–inorganic nanoflowers: From design strategy to biomedical applications. Nanoscale, 11, 17179–17194. https://doi.org/10.1039/C9NR05446D

    Article  CAS  Google Scholar 

  • Lui, G., Liao, J. -Y., Duan, A., Zhang, Z., Fowler, M., & Yu, A. (2013). Graphene-wrapped hierarchical TiO 2 nanoflower composites with enhanced photocatalytic performance. Journal of Materials Chemistry A, 1, 12255–12262.

    Article  CAS  Google Scholar 

  • Ma, W., Wang, L., Xue, J., & Cui, H. (2016). A bottom-up strategy for exfoliation-free synthesis of soluble α-Ni (OH) 2 monolayer nanosheets on a large scale. RSC Advances, 6, 85367–85373.

    Article  CAS  Google Scholar 

  • Nabavi, S. N., Sajjadi, S. M., & Lotfi, Z. (2020). Novel magnetic nanoparticles as adsorbent in ultrasound-assisted micro-solid-phase extraction for rapid pre-concentration of some trace heavy metal ions in environmental water samples: Desirability function. Chemical Papers, 74, 1143–1159. https://doi.org/10.1007/s11696-019-00954-z

    Article  CAS  Google Scholar 

  • Ozdemir, S., Turkan, Z., Kilinc, E., Bayat, R., Soylak, M., & Sen, F. (2022). Preconcentrations of Cu (II) and Mn (II) by magnetic solid-phase extraction on Bacillus cereus loaded γ-Fe2O3 nanomaterials. Environmental Research, 209, 112766. https://doi.org/10.1016/j.envres.2022.112766

    Article  CAS  Google Scholar 

  • Ozkantar, N., Yilmaz, E., Soylak, M., & Tuzen, M. (2020). Pyrocatechol violet impregnated magnetic graphene oxide for magnetic solid phase microextraction of copper in water, black tea and diet supplements. Food Chemistry, 321, 126737. https://doi.org/10.1016/j.foodchem.2020.126737

    Article  CAS  Google Scholar 

  • Rajabi, M., Rahimi, M., Hemmati, M., & Najafi, F. (2018). Chemically functionalized silica nanoparticles-based solid-phase extraction for effective pre-concentration of highly toxic metal ions from food and water samples. Applied Organometallic Chemistry, 32, e4012. https://doi.org/10.1002/aoc.4012

    Article  CAS  Google Scholar 

  • Ramos, L. (2012). Critical overview of selected contemporary sample preparation techniques. Journal of Chromatography A, 1221, 84–98. https://doi.org/10.1016/j.chroma.2011.11.011

    Article  CAS  Google Scholar 

  • Salehi, N., Moghimi, A., & Shahbazi, H. (2021). Magnetic nanobiosorbent (MG-Chi/Fe3O4) for dispersive solid-phase extraction of Cu (II), Pb (II), and Cd (II) followed by flame atomic absorption spectrometry determination. IET Nanobiotechnology, 15, 575.

    Article  Google Scholar 

  • Saydan Kanberoglu, G., Yilmaz, E., & Soylak, M. (2020). Fabrication and characterization of SiO2@Fe3O4@nanodiamonds for vortex-assisted magnetic solid-phase extraction of lead in cigarette samples prior to FAAS detection. Journal of the Iranian Chemical Society, 17, 1627–1634. https://doi.org/10.1007/s13738-020-01882-6

    Article  CAS  Google Scholar 

  • Shende, P., Kasture, P., & Gaud, R. S. (2018). Nanoflowers: The future trend of nanotechnology for multi-applications. Artificial Cells, Nanomedicine, and Biotechnology, 46, 413–422.

    Article  CAS  Google Scholar 

  • Socas-Rodríguez, B., Herrera-Herrera, A. V., Asensio-Ramos, M., & Hernández-Borges, J. (2015). Dispersive solid-phase extraction. Analytical Separation Science. https://doi.org/10.1002/9783527678129.assep056

    Article  Google Scholar 

  • Soylak, M., & Koksal, M. (2019). Deep eutectic solvent microextraction of lead(II), cobalt(II), nickel(II) and manganese(II) ions for the separation and preconcentration in some oil samples from Turkey prior to their microsampling flame atomic absorption spectrometric determination. Microchemical Journal, 147, 832–837. https://doi.org/10.1016/j.microc.2019.04.006

    Article  CAS  Google Scholar 

  • Soylak, M., & Tuzen, M. (2008). Coprecipitation of gold(III), palladium(II) and lead(II) for their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials, 152, 656–661. https://doi.org/10.1016/j.jhazmat.2007.07.027

    Article  CAS  Google Scholar 

  • Tang, S., Zhang, H., & Lee, H. K. (2016). Advances in sample extraction. Analytical Chemistry, 88, 228–249.

    Article  CAS  Google Scholar 

  • Ulusoy, H. İ, Yılmaz, E., & Soylak, M. (2019). Magnetic solid phase extraction of trace paracetamol and caffeine in synthetic urine and wastewater samples by a using core shell hybrid material consisting of graphene oxide/multiwalled carbon nanotube/Fe3O4/SiO2. Microchemical Journal, 145, 843–851. https://doi.org/10.1016/j.microc.2018.11.056

    Article  CAS  Google Scholar 

  • Wan Ibrahim, W. A., Abd Ali, L. I., Sulaiman, A., Sanagi, M. M., & Aboul-Enein, H. Y. (2014). Application of solid-phase extraction for trace elements in environmental and biological samples: A review. Critical Reviews in Analytical Chemistry, 44, 233–254.

    Article  CAS  Google Scholar 

  • Wang, L., Liu, Z., Han, J., Li, R., & Huang, M. (2019). Stepwise synthesis of Au@ CdS-CdS nanoflowers and their enhanced photocatalytic properties. Nanoscale Research Letters, 14, 1–9.

    Google Scholar 

  • Wang, R., Jayakumar, A., Xu, C., & Lee, J. -M. (2016). Ni (OH) 2 nanoflowers/graphene hydrogels: A new assembly for supercapacitors. ACS Sustainable Chemistry & Engineering, 4, 3736–3742.

    Article  CAS  Google Scholar 

  • Wang, Y., Gao, S., Zang, X., Li, J., & Ma, J. (2012). Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples. Analytica Chimica Acta, 716, 112–118. https://doi.org/10.1016/j.aca.2011.12.007

    Article  CAS  Google Scholar 

  • Yang, G., Fen, W., Lei, C., Xiao, W., & Sun, H. (2009). Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent. Journal of Hazardous Materials, 162, 44–49.

    Article  CAS  Google Scholar 

  • Yavuz, E., Tokalıoğlu, Ş, & Patat, Ş. (2018). Core–shell Fe3O4 polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples. Food Chemistry, 263, 232–239. https://doi.org/10.1016/j.foodchem.2018.04.134

    Article  CAS  Google Scholar 

  • Yi, X., Liu, C., Liu, X., Wang, P., Zhou, Z., & Liu, D. (2019). Magnetic partially carbonized cellulose nanocrystal-based magnetic solid phase extraction for the analysis of triazine and triazole pesticides in water. Microchimica Acta, 186, 1–8.

    Article  CAS  Google Scholar 

  • Zhang, S., Niu, H., Hu, Z., Cai, Y., & Shi, Y. (2010). Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Journal of Chromatography A, 1217, 4757–4764.

    Article  CAS  Google Scholar 

  • Zhao, G., Zhang, H., Fan, Q., Ren, X., Li, J., Chen, Y., & Wang, X. (2010). Sorption of copper(II) onto super-adsorbent of bentonite–polyacrylamide composites. Journal of Hazardous Materials, 173, 661–668. https://doi.org/10.1016/j.jhazmat.2009.08.135

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank Yıldız Technical University Scientific Research Projects Coordination Unit (Project Number: FBA-2021–4725) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Meltem Şaylan: conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing—original draft; Rabia Demirel: data curation, formal analysis, investigation, methodology, validation, writing—original draft; Merve Fırat Ayyıldız: conceptualization, methodology, validation; Dotse Selali Chormey: conceptualization, methodology, validation; Gülten ÇETİN: conceptualization, methodology, data curation, validation; Sezgin Bakırdere: conceptualization, data curation, funding acquisition, investigation, methodology, project administration, supervision, validation, visualization, writing—review and editing.

Corresponding authors

Correspondence to Gülten Çetin or Sezgin Bakırdere.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şaylan, M., Demirel, R., Ayyıldız, M.F. et al. Nickel hydroxide nanoflower–based dispersive solid-phase extraction of copper from water matrix. Environ Monit Assess 195, 133 (2023). https://doi.org/10.1007/s10661-022-10653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10653-0

Keywords

Navigation