Skip to main content

Advertisement

Log in

Appraisal of historical trends in maximum and minimum temperature using multiple non-parametric techniques over the agriculture-dominated Narmada Basin, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, the long-term trends in climatological parameters, viz., maximum temperature (TMAX) and minimum temperature (TMIN), are determined over 68 years (i.e., June 1951 to May 2019) using the gridded observation datasets (1° × 1° spatial resolution) of India Meteorological Department over the Narmada river basin, India. Multiple non-parametric techniques, viz., modified Mann-Kendall (MMK), Sen’s slope (SS), and Spearman’s rho (SR) tests, are used to determine monthly, seasonal, and annual trends over individual grids. The trends are also analyzed for the climatic variables spatially averaged over the entire basin to draw general conclusions on historical climate change. The results reveal a significant spatiotemporal variation in trends of TMAX and TMIN over the basin. In general, both the parameters are found to be increasing. Furthermore, the hottest months (April and May) have become hotter, and the coldest month (January) has become colder, implying a higher probability of increasing temperature extremes. Furthermore, the entire duration of 68 years is divided into two epochs of 34 years, i.e., 1951–1984 and 1985–2018, and the trend analysis of TMAX and TMIN is also carried out epoch-wise to better understand/assess the signals of climate change in recent years. In general, a relatively higher warming trend was observed in the latter epoch. As a majority of the basin area is dominated by agricultural lands, the implications of the temperature trends and their impacts on agriculture are succinctly discussed. The information reported in this study will be helpful for proper planning and management of water resources over the basin under the changing climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The gridded temperature data from IMD is freely available all over India.

Code availability

The Python codes are available from the corresponding author upon reasonable request. The Python library ‘IMDLIB’ (https://doi.org/10.5281/zenodo.4405233) can be used to read and download the IMD gridded data. More details on IMDLIB can be found here: https://imdlib.readthedocs.io/en/latest/

References

  • Aadhar, S., & Mishra, V. (2019). A substantial rise in the area and population affected by dryness in South Asia under 1.5 °C, 2.0 °C and 2.5 °C warmer worlds. Environmental Research Letters, 14(11), 114021.

    Article  CAS  Google Scholar 

  • Abdollahbeigi, M. (2020). Non-climatic factors causing climate change. Journal of Chemical Reviews, 2(4), 292–308.

    CAS  Google Scholar 

  • Agrawal, P. K. (2009). Global climate change and Indian agriculture: Case studies from ICAR network project (p. 148). Indian Council of Agricultural Research.

    Google Scholar 

  • Ahmad, I., Tang, D., Wang, T., Wang, M., & Wagan, B. (2015). Precipitation trends over time using Mann-Kendall and Spearman’s rho tests in swat river basin, Pakistan. Advances in Meteorology, 2015, 1–15.

    Article  Google Scholar 

  • Ale, S., Omani, N., Himanshu, S. K., Bordovsky, J. P., Thorp, K. R., & Barnes, E. M. (2020). Determining optimum irrigation termination periods for cotton production in the Texas High Plains. Transactions of the ASABE, 63(1), 105–115.

    Article  Google Scholar 

  • Anoop, S., Ashwathi, C., Baburaj, V. H., & Pillai, R. S. (2021). Hydrogeochemical status and geoelectrical characteristics of the shallow aquifers of Kalanad Basin, Kasaragod, Kerala. India. Applied Water Science, 11(2), 20.

    Article  CAS  Google Scholar 

  • Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41.

    Article  Google Scholar 

  • Ay, M. (2020). Trend and homogeneity analysis in temperature and rainfall series in western Black Sea region, Turkey. Theoretical and Applied Climatology, 139(3), 837–848.

    Article  Google Scholar 

  • Bahita, T. A., Swain, S., Pandey, P., & Pandey, A. (2021). Assessment of heavy metal contamination in livestock drinking water of Upper Ganga Canal (Roorkee City, India). Arabian Journal of Geosciences, 14(24), 2861.

    Article  CAS  Google Scholar 

  • Behera, M. D., Gupta, A. K., Barik, S. K., Das, P., & Panda, R. M. (2018). Use of satellite remote sensing as a monitoring tool for land and water resources development activities in an Indian tropical site. Environmental Monitoring and Assessment, 190(7), 401.

    Article  CAS  Google Scholar 

  • Dong, L. H., Xiong, L. H., Yu, K. X., & Li, S. (2012). Research advances in effects of climate change and human activities on hydrology. Advances in Water Science, 23(2), 278–285.

    Google Scholar 

  • Du, M., Kawashima, S., Yonemura, S., Zhang, X., & Chen, S. (2004). Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global and Planetary Change, 41(3–4), 241–249.

    Article  Google Scholar 

  • Emiru, T., Naqvi, H. R., & Athick, M. A. (2018). Anthropogenic impact on land use land cover: Influence on weather and vegetation in Bambasi Wereda, Ethiopia. Spatial Information Research, 26(4), 427–436.

    Article  Google Scholar 

  • Garrote, L. (2017). Managing water resources to adapt to climate change: Facing uncertainty and scarcity in a changing context. Water Resources Management, 31(10), 2951–2963.

    Article  Google Scholar 

  • George, J., & Athira, P. (2020). Long-term changes in climatic variables over the Bharathapuzha river basin, Kerala, India. Theoretical and Applied Climatology, 142(1), 269–286.

    Article  Google Scholar 

  • Gosain, A. K., Rao, S., & Arora, A. (2011). Climate change impact assessment of water resources of India. Current Science, 101(3), 356–371.

    Google Scholar 

  • Gosain, A. K., Rao, S., & Basuray, D. (2006). Climate change impact assessment on hydrology of Indian river basins. Current Science, 90(3), 346–353.

    Google Scholar 

  • Grimmond, C. S. B., Robeson, S. M., & Schoof, J. T. (2000). Spatial variability of micro-climatic conditions within a mid-latitude deciduous forest. Climate Research, 15(2), 137–149.

    Article  Google Scholar 

  • Gupta, A., Himanshu, S. K., Gupta, S., & Singh, R. (2020). Evaluation of the SWAT model for analysing the water balance components for the upper Sabarmati Basin. Advances in water resources engineering and management (pp. 141–151). Singapore: Springer.

    Chapter  Google Scholar 

  • Gupta, N., Mathew, A., & Khandelwal, S. (2019). Analysis of cooling effect of water bodies on land surface temperature in nearby region: A case study of Ahmedabad and Chandigarh cities in India. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 81–93.

    Article  Google Scholar 

  • Gupta, R. K. (2001). River basin management: A case study of Narmada valley development with special reference to the Sardar Sarovar Project in Gujarat, India. International Journal of Water Resources Development, 17(1), 55–78.

    Article  Google Scholar 

  • Guptha, G. C., Swain, S., Al-Ansari, N., Taloor, A. K., & Dayal, D. (2021). Evaluation of an urban drainage system and its resilience using remote sensing and GIS. Remote Sensing Applications Society and Environment, 23, 100601.

    Article  Google Scholar 

  • Guptha, G. C., Swain, S., Al-Ansari, N., Taloor, A. K., & Dayal, D. (2022). Assessing the role of SuDS in resilience enhancement of urban drainage system: A case study of Gurugram City, India. Urban Climate, 41, 101075.

    Article  Google Scholar 

  • Hadi, S. J., & Tombul, M. (2018). Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorological Applications, 25(3), 445–455.

    Article  Google Scholar 

  • Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196.

    Article  Google Scholar 

  • Helms, T. C., Deckard, E. L., Goos, R. J., & Enz, J. W. (1996). Soil moisture, temperature, and drying influence on soybean emergence. Agronomy Journal, 88(4), 662–667.

    Article  Google Scholar 

  • Himanshu, S. K., Ale, S., Bordovsky, J. P., Kim, J., Samanta, S., Omani, N., & Barnes, E. M. (2021). Assessing the impacts of irrigation termination periods on cotton productivity under strategic deficit irrigation regimes. Scientific Reports, 11, 20102.

    Article  CAS  Google Scholar 

  • Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B., & Diffenbaugh, N. S. (2015). Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522(7557), 465–469.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate Change 2007- The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. US: Cambridge University Press. S. Solomon, M. Manning, M. Marquis, & D. Qin (Eds.).

    Google Scholar 

  • IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. T. F. Stocker, D. Qin, G. -K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.).

    Google Scholar 

  • Jain, S. K., Kumar, V., & Saharia, M. (2013). Analysis of rainfall and temperature trends in northeast India. International Journal of Climatology, 33(4), 968–978.

    Article  Google Scholar 

  • Jamshidi, S., Zand-Parsa, S., Kamgar-Haghighi, A. A., Shahsavar, A. R., & Niyogi, D. (2020). Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions. Agricultural Water Management, 227, 105838.

    Article  Google Scholar 

  • Jamshidi, S., Zand-Parsa, S., & Niyogi, D. (2021). Assessing crop water stress index of citrus using in-situ measurements, Landsat, and Sentinel-2 data. International Journal of Remote Sensing, 42(5), 1893–1916.

    Article  Google Scholar 

  • Jamshidi, S., Zand-parsa, S., Pakparvar, M., & Niyogi, D. (2019). Evaluation of evapotranspiration over a semiarid region using multiresolution data sources. Journal of Hydrometeorology, 20(5), 947–964.

    Article  Google Scholar 

  • Joshi, G. S., & Shah, S. (2022). Trend analysis of hydro-meteorological parameters and influence of anthropogenic activities in lower Narmada river basin, India. Physics and Chemistry of the Earth, Parts a/b/c, 126, 103148.

    Article  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation method (4th ed.). Charles Griffin.

    Google Scholar 

  • Ketema, A., & Siddaramaiah, D. G. (2020). Trend and variability of hydrometeorological variables of Tikur Wuha watershed in Ethiopia. Arabian Journal of Geosciences, 13(3), 142.

    Article  Google Scholar 

  • Khan, N., Shahid, S., & bin Ismail T, Wang XJ,. (2019). Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theoretical and Applied Climatology, 136(3–4), 899–913.

    Article  Google Scholar 

  • Krishnamoorthy, M., Sachdeva, R., & Soni, G. P. (2005). Hydrology and reservoir regulation aspects. Water and Energy International, 62(4), 271–277.

    Google Scholar 

  • Kumar, N., Tischbein, B., & Beg, M. K. (2019). Multiple trend analysis of rainfall and temperature for a monsoon-dominated catchment in India. Meteorology and Atmospheric Physics, 131(4), 1019–1033.

    Article  Google Scholar 

  • Kumar, S., Merwade, V., Kam, J., & Thurner, K. (2009). Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. Journal of Hydrology, 374, 171–183.

    Article  Google Scholar 

  • Loucks, D. P. (2000). Sustainable Water Resources Management. Water International, 25(1), 3–10.

    Article  Google Scholar 

  • Lutz, A. F., ter Maat, H. W., Wijngaard, R. R., Biemans, H., Syed, A., Shrestha, A. B., Wester, P., & Immerzeel, W. W. (2019). South Asian river basins in a 1.5 °C warmer world. Regional Environmental Change, 19(3), 833–847.

    Article  Google Scholar 

  • Maharana, P., Dimri, A. P., & Choudhary, A. (2020). Future changes in Indian summer monsoon characteristics under 1.5 and 2° C specific warming levels. Climate Dynamics, 54(1–2), 507–523.

    Article  Google Scholar 

  • Mann, H. B. (1945). Non-parametric test against trend. Econometrica, 13, 245–259.

    Article  Google Scholar 

  • Meshram, S. G., Kahya, E., Meshram, C., Ghorbani, M. A., Ambade, B., & Mirabbasi, R. (2020). Long-term temperature trend analysis associated with agriculture crops. Theoretical and Applied Climatology, 27, 1–21.

    Google Scholar 

  • Meshram, S. G., Singh, S. K., Meshram, C., Deo, R. C., & Ambade, B. (2018). Statistical evaluation of rainfall time series in concurrence with agriculture and water resources of Ken River basin, Central India (1901–2010). Theoretical and Applied Climatology, 134, 1231–1243.

    Article  Google Scholar 

  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216.

    Article  Google Scholar 

  • Mishra, S., Kumar, A., & Shukla, P. (2021). Estimation of heavy metal contamination in the Hindon River, India: An environmetric approach. Applied Water Science, 11(1), 2.

    Article  CAS  Google Scholar 

  • Mondal, A., Khare, D., Kundu, S., Meena, P. K., Mishra, P. K., & Shukla, R. (2015). Impact of climate change on future soil erosion in different slope, land use, and soil-type conditions in a part of the Narmada river basin, India. Journal of Hydrologic Engineering, 20(6), C5014003.

    Article  Google Scholar 

  • Murumkar, A., Durand, M., Fernández, A., Moritz, M., Mark, B., Phang, S. C., Laborde, S., Scholte, P., Shastry, A., & Hamilton, I. (2020). Trends and spatial patterns of 20th century temperature, rainfall and PET in the semi-arid Logone River basin, Sub-Saharan Africa. Journal of Arid Environments, 178, 104168.

    Article  Google Scholar 

  • Pandey, B. K., & Khare, D. (2018). Identification of trend in long term precipitation and reference evapotranspiration over Narmada river basin (India). Global and Planetary Change, 161, 172–182.

    Article  Google Scholar 

  • Patel, P., Thakur, P. K., Aggarwal, S. P., Garg, V., Dhote, P. R., Nikam, B. R., Swain, S., & Al-Ansari, N. (2022). Revisiting 2013 Uttarakhand flash floods through hydrological evaluation of precipitation data sources and morphometric prioritization. Geomatics, Natural Hazards and Risk, 13(1), 646–666.

    Article  Google Scholar 

  • Prakasam, C., Saravanan, R., Sharma, M. K., & Kanwar, V. S. (2021). Assessment and distribution of water quality of Pandoh river basin (PRB), Himachal Pradesh, North India. Applied Water Science, 11(8), 137.

    Article  CAS  Google Scholar 

  • Ram, A., Tiwari, S. K., Pandey, H. K., Chaurasia, A. K., Singh, S., & Singh, Y. V. (2021). Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science, 11(2), 46.

    Article  CAS  Google Scholar 

  • Rickards, N., Thomas, T., Kaelin, A., Houghton-Carr, H., Jain, S. K., Mishra, P. K., Nema, M. K., Dixon, H., Rahman, M. M., Horan, R., & Jenkins, A. (2020). Understanding future water challenges in a highly regulated Indian river basin–modelling the impact of climate change on the hydrology of the Upper Narmada. Water, 12(6), 1762.

    Article  Google Scholar 

  • Roy, P. S., Behera, M. D., Murthy, M. S. R., Roy, A., Singh, S., Kushwaha, S. P. S., Jha, C. S., Sudhakar, S., Joshi, P. K., Reddy, C. S., et al. (2015a). New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation & Geoinformation, 39, 142–159.

    Article  Google Scholar 

  • Roy, P. S., Ramachandran, R. M., Paul, O., Thakur, P. K., Ravan, S., Behera, M. D., Sarangi, C., & Kanawade, V. P. (2022). Anthropogenic land use and land cover changes–a review on its environmental consequences and climate change. Journal of the Indian Society of Remote Sensing, 50, 1615–1640.

    Article  Google Scholar 

  • Roy, P. S., Roy, A., Joshi, P. K., Kale, M. P., Srivastava, V. K., Srivastava, S. K., Dwevidi, R. S., Joshi, C., Behera, M. D., Meiyappan, P., et al. (2015b). Development of decadal (1985–1995–2005) land use and land cover database for India. Remote Sensing, 7(3), 2401–2430.

    Article  Google Scholar 

  • Sahoo, B. P., Sahu, H. B., & Pradhan, D. S. (2021a). Hydrogeochemistry and surface water quality assessment of IB valley coalfield area, India. Applied Water Science, 11(9), 153.

    Article  CAS  Google Scholar 

  • Sahoo, S., Swain, S., Goswami, A., Sharma, R., & Pateriya, B. (2021b). Assessment of trends and multi-decadal changes in groundwater level in parts of the Malwa region, Punjab, India. Groundwater for Sustainable Development, 14, 100644.

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistical Association, 39, 1379–1389.

    Article  Google Scholar 

  • Shadmani, M., Marofi, S., & Roknian, M. (2012). Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resources Management, 26(1), 211–224.

    Article  Google Scholar 

  • Shan, V., Singh, S. K., & Haritash, A. K. (2021). Evaluation of water quality and potential metal contamination in ecologically important Bhindawas bird sanctuary, India. Applied Water Science, 11(1), 8.

    Article  CAS  Google Scholar 

  • Singh, D., Ghosh, S., Roxy, M. K., & McDermid, S. (2019). Indian summer monsoon: Extreme events, historical changes, and role of anthropogenic forcings. Wiley Interdisciplinary Reviews Climate Change, 10(2), e571.

    Article  Google Scholar 

  • Solaimani, K., Habaibnejad, M., & Pirnia, A. (2021). Temporal trends of hydro-climatic variables and their relevance in water resource management. International Journal of Sediment Research, 36(1), 63–75.

    Article  Google Scholar 

  • Srivastava, A. K., Kothawale, D. R., & Rajeevan, M. N. (2017). Variability and long-term changes in surface air temperatures over the Indian subcontinent. In M. N. Rajeevan & S. Nayak (Eds.), Observed climate variability and change over the Indian region (pp. 17–35). Springer Geology. https://doi.org/10.1007/978-981-10-2531-0_2

    Chapter  Google Scholar 

  • Suryavanshi, S., Pandey, A., Chaube, U. C., & Joshi, N. (2014). Long-term historic changes in climatic variables of Betwa Basin, India. Theoretical and Applied Climatology, 117(3–4), 403–418.

    Article  Google Scholar 

  • Swain, S., Dayal, D., Pandey, A., & Mishra, S. K. (2019). Trend analysis of precipitation and temperature for Bilaspur District, Chhattisgarh, India. World environmental and water resources congress 2019: Groundwater, sustainability, Hydro-climate/climate change, and environmental engineering (pp. 193–204). Reston, VA: American Society of Civil Engineers.

    Chapter  Google Scholar 

  • Swain, S., Mishra, S. K., & Pandey, A. (2020a). Assessment of meteorological droughts over Hoshangabad district, India. IOP Conference Series: Earth and Environmental Science, 491(1), 012012.

    Google Scholar 

  • Swain, S., Mishra, S. K., & Pandey, A. (2021). A detailed assessment of meteorological drought characteristics using simplified rainfall index over Narmada river basin, India. Environmental Earth Sciences, 80(6), 221.

    Article  Google Scholar 

  • Swain, S., Mishra, S. K., Pandey, A., & Dayal, D. (2022a). Spatiotemporal assessment of precipitation variability, seasonality, and extreme characteristics over a Himalayan catchment. Theoretical and Applied Climatology, 147, 817–833.

    Article  Google Scholar 

  • Swain, S., Mishra, S. K., Pandey, A., & Kalura, P. (2022b). Inclusion of groundwater and socio-economic factors for assessing comprehensive drought vulnerability over Narmada river basin, India: A geospatial approach. Applied Water Science, 12(2), 14.

    Article  Google Scholar 

  • Swain, S., Nandi, S., & Patel, P. (2018). Development of an ARIMA model for monthly rainfall forecasting over Khordha district, Odisha, India. Recent findings in intelligent computing techniques (pp. 325–331). Singapore: Springer.

    Chapter  Google Scholar 

  • Swain, S., Sahoo, S., & Taloor, A. K. (2022c). Groundwater quality assessment using geospatial and statistical approaches over Faridabad and Gurgaon districts of National Capital Region, India. Applied Water Science, 12(4), 75.

    Article  CAS  Google Scholar 

  • Swain, S., Sahoo, S., Taloor, A. K., Mishra, S. K., & Pandey, A. (2022d). Exploring recent groundwater level changes using Innovative Trend Analysis (ITA) technique over three districts of Jharkhand, India. Groundwater for Sustainable Development, 18, 100783.

    Article  Google Scholar 

  • Swain, S., Sharma, I., Mishra, S. K., Pandey, A., Amrit, K., & Nikam, V. (2020b). A framework for managing irrigation water requirements under climatic uncertainties over Beed district, Maharashtra, India. World environmental and water resources congress 2020: Water resources planning and management and irrigation and drainage (pp. 1–8). ASCE.

    Google Scholar 

  • Swain, S., Taloor, A. K., Dhal, L., Sahoo, S., & Al-Ansari, N. (2022e). Impact of climate change on groundwater hydrology: A comprehensive review and current status of the Indian hydrogeology. Applied Water Science, 12(6), 120.

    Article  Google Scholar 

  • Thomas, T., Gunthe, S. S., Ghosh, N. C., & Sudheer, K. P. (2015). Analysis of monsoon rainfall variability over Narmada basin in central India: Implication of climate change. Journal of Water and Climate Change, 6(3), 615–627.

    Article  Google Scholar 

  • Tiwari, H., & Pandey, B. K. (2019). Non-parametric characterization of long-term rainfall time series. Meteorology and Atmospheric Physics, 131, 627–637.

    Article  Google Scholar 

  • Trenberth, K. E. (2018). Climate change caused by human activities is happening and it already has major consequences. Journal of Energy & Natural Resources Law, 36(4), 463–481.

    Article  Google Scholar 

  • Wong, N. H., Tan, C. L., Nindyani, A. D. S., Jusuf, S. K., & Tan, E. (2012). Influence of water bodies on outdoor air temperature in hot and humid climate. ICSDC 2011: Integrating sustainability practices in the construction industry 2012 (pp. 81–89). ASCE.

    Chapter  Google Scholar 

  • Wu, Z., & Zhang, Y. (2019). Water bodies’ cooling effects on urban land daytime surface temperature: Ecosystem service reducing heat island effect. Sustainability, 11(3), 787.

    Article  Google Scholar 

  • Xu, H., Liu, L., Wang, Y., Wang, S., Hao, Y., Ma, J., & Jiang, T. (2019). Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 and 2.0 0C global warming. Hydrology & Earth System Sciences, 23, 4219–4231.

    Article  Google Scholar 

  • Yang, B., Meng, F., Ke, X., & Ma, C. (2015). The impact analysis of water body landscape pattern on urban heat island: A case study of Wuhan City. Advances in Meteorology, 2015, 416728. https://doi.org/10.1155/2015/416728

    Article  Google Scholar 

  • Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1–4), 254–271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sabyasachi Swain: conceptualization, data curation, formal analysis, visualization, writing–original draft. Surendra Kumar Mishra: supervision, review, and editing. Ashish Pandey: supervision, review, and editing. Deen Dayal: data curation, visualization. Prashant Kumar Srivastava: supervision, review, and editing.

Corresponding author

Correspondence to Sabyasachi Swain.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12529 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, S., Mishra, S.K., Pandey, A. et al. Appraisal of historical trends in maximum and minimum temperature using multiple non-parametric techniques over the agriculture-dominated Narmada Basin, India. Environ Monit Assess 194, 893 (2022). https://doi.org/10.1007/s10661-022-10534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10534-6

Keywords

Navigation