Skip to main content
Log in

A critical review of oil spills in the Niger Delta aquatic environment: causes, impacts, and bioremediation assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Niger Delta region in South-South Nigeria, on Africa’s West Coast, is densely populated. The region, which contains a substantial stock of crude oil and natural gas, has been nicknamed “the engine room” for Nigeria’s economic development and progress. It is responsible for up to 90% of the country's economic growth (or gross domestic product/GDP). The region has multiple ecosystems, such as the aquatic environment, that are critical to the survival of the area’s various habitats and living species. However, the same region has witnessed unjustifiable environmental pollution arising from oil activities over the years of exploration and production which has orchestrated negative consequences on the Niger Delta ecosystem. This has led to extended negative consequences on natural resources, which also have detrimental repercussions psychologically, ecologically, socially, economically, and physically which, in turn, impacts the overall health of the affected individuals. This write-up provides an overview of the major drivers of the oil leakage in Nigeria’s Niger Delta ecosystem as well as the major impacts on the environment. It will also analyze numerous means of remediation in use and extend such for a more inclusive and productive option. Moreover, this review offers key measures that may help to maintain long-term policies for reducing adverse implications and increasing the living standard for the Niger Delta area’s affected communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abioye, O. P. (2011). Biological remediation of hydrocarbon and heavy metals contaminated soil. In: Soil Contamination. Simone Puscucci (Editor). InTech Web, Croatia, pp: 127–142.

  • Abioye, O. P., Agamuthu, P., & Abdul-Aziz, R. A. (2012). Biodegradation of used motor oil using organic waste amendment. Hindawi Publishing Corporation.

  • Abdulrasheed, M., Zakaria, N. N., Roslee, A. F. A., Shukor, M. Y., Zulkharnain, A., Napis, S., Convey, P., Alias, S. A., Gonzalez-Rocha, G., & Ahmad, S. A. (2020). Biodegradation of diesel oil by cold-adapted bacterial strains of Arthrobacter spp. from Antarctica. Antarctic Science, 32, 1–13.

    Article  Google Scholar 

  • Adati, A. K. (2012). Oil exploration and spillage in the niger Delta of Nigeria. Civil and Environmental Research, 2(3), 38–51.

    Google Scholar 

  • Adekola, J., Fischbacher-Smith, M., & Fischbacher-Smith, D. (2017). Health risks from environmental degradation in the Niger Delta, Nigeria. Environment and Planning C: Politics and Space, 35(2), 334–354.

  • Adesipo, A. A., Freese, D., & Nwadinigwe, A. O. (2020). Prospects of in-situ remediation of crude oil contaminated lands in Nigeria. Scientific African, 8, 1–15.

    Article  Google Scholar 

  • Adriano, J. S., Oyong, G. G., Cabrera, E. C., & Janairo, J. I. B. (2018). Screening of silver-tolerant bacteria from a major Philippine landfill as potential bioremediation agents. Ecological Chemistry and Engineering Science, 25(3), 469–485.

    Article  CAS  Google Scholar 

  • Afzal, M., Rehman, K., Shabir, G., Tahseen, R., Ijaz, A., Hashmat, A. J., & Brix, H. (2019). Large-scale remediation of oil-contaminated water using floating treatment wetlands. NPJ Clean Water, 2, 3.

    Article  CAS  Google Scholar 

  • Agbaji, J. E., Nwaichi, E. O., & Abu, G. O. (2020). Optimization of bioremediation-cocktail for application in the eco-recovery of crude oil polluted soil. AAS Open Research, 3(7), 1–25.

    Google Scholar 

  • Agu, K. C., Edet, B. E., Ada, I. C., Sunday, A. N., Chidi, O. B., Anaukwu, C. G., Ezenwa, C. U., Orji, M. U., & Okafor, A. C. (2015). Isolation and Characterization of Microorganisms from Oil Polluted Soil in Kwata, Awka South, Nigeria. American Journal of Current Microbiology, 3, 46–59.

    Google Scholar 

  • Ahmed, F., & Fakhruddin, A. N. M. (2018). A review on environmental contamination of petroleum hydrocarbons and its biodegradation. International Journal of Environmental Sciences and Natural Resources, 11, 63–69.

    Google Scholar 

  • Akpoghelie, J. O. (2017). PH level, ascorbic acid, proline and soluble sugar as bio– indicators for pollution. ChemSearch Journal, 8(2), 41–49.

  • Akpoghelie, O. J., Igbuku, U.A., & Osharechiren, E. (2021). Oil Spill and the Effects on the Niger Delta Vegetation: A Review. Nigerian Research Journal of Chemical Sciences, 9(1), 1–12.

  • Al-Dhabi, N. A., Esmail, G. A., & Arasu, M. V. (2020). enhanced production of biosurfactant from Bacillus subtilis strain Al-Dhabi-130 under solid-state fermentation using date molasses from Saudi Arabia for bioremediation of crude-oil-contaminated soils. International Journal of Environmental Research and. Public Health, 17, 8446.

  • Al-Hawash, A. B., Dragh, M. A., Li, S., Alhujaily, A., Abbood, H. A., Zhang, X., & Ma, F. (2018). Principles of microbial degradation of petroleum hydrocarbons in the environment. Egyptian Journal of Aquatic Research, 44, 71–76.

    Article  Google Scholar 

  • Al-Khalid, T., & El-Naas, M. H. (2018). Organic contaminants in refinery wastewater: Characterization and novel approaches for biotreatment. Recent Insights in Petroleum Science and Engineering, 371.

  • Al-Wasify, R. S., & Hamed, S. R. (2014). “Bacterial biodegradation of crude oil using local isolates,” International Journal of Bacteriology, 1–8. Article ID 863272.

  • Al-Zaban, M. I., Mahmoud, M. A., AlHarbi, M. A., & Bahatheq, A. M. (2020). Bioremediation of crude oil by rhizosphere fungal isolates in the presence of silver nanoparticles. International Journal of Environmental Research and Public Health, 17, 6564–6579.

    Article  CAS  Google Scholar 

  • Alazaiza, M. Y. D., Albahnasawi, A., Ali, G. A. M., Bashir, M. J. K., Copty, N. K., Amr, S. S. A., Abushammala, M. F. M., & AlMaskari, T. (2021). Recent advances of nanoremediation technologies for soil and groundwater remediation: A review. Water, 13, 2186–2212.

    Article  CAS  Google Scholar 

  • Alotaibi, F., Hijri, M., & St-Arnaud, M. (2021). Overview of Approaches to Improve Rhizoremediation of Petroleum Hydrocarbon-Contaminated Soils. Applied Microbiology, 1(2), 329–351.

  • Altomare, T., Tarwater, P. M., Ferguson, A. C., Solo-Gabriele, H. M., & Mena, K. D. (2021). Estimating health risks to children associated with recreational play on oil spill-contaminated beaches. International Journal of Environmental Research and Public, 18, 126.

    CAS  Google Scholar 

  • Anaejionu, O., Ahiarammunnah, P. A., & Nri-ezedi, C. J. (2015). Hydrocarbon pollution in the Niger-Delta: Geographies of impacts and appraisal of lapses in extant legal framework. Resources Policy, 45, 65–77.

    Article  Google Scholar 

  • Aniefiok, E. I., Thomas, A. H., Clement, O. O., Ekpedeme, R. A., & Iniemem, J. (2018). Petroleum hydrocarbon contamination of surface water and groundwater in the Niger Delta Region of Nigeria. Journal of Environment Pollution and Human Health, 6(2), 51–61.

    Article  Google Scholar 

  • Anih, C. E., Okewale, A., & Nsidibe-Obong, E. M. (2019). Effect of nutrients on bioremediation of crude oil-polluted water. American Journal of Environmental Science and Engineering, 3(1), 1–7.

    Article  Google Scholar 

  • Badr-El-Din, S. M., Moussa, T. A., Moawad, H., & Sharaf, O. A. (2014). Isolation and characterization of polyaromatic hydrocarbons degrading bacteria from compost leachate. Journal of Advances in Biology, 5, 651–660.

    Google Scholar 

  • Baniasadi, M., Vakilchap, F., Bahaloo-Horeh, N., Mohammad-Mousavi, S., & Sebastien, S. (2019). Advances in bioleaching as a sustainable method for metal recovery from e-waste: A review. Journal of Industrial and Engineering Chemistry, 76, 75–90.

    Article  CAS  Google Scholar 

  • Bashir, M. T. (2021). Environmental, public health and socio-economic issues of oil spillage in Niger Delta, Nigeria. International Journal of Engineering Research & Technology, 10(2), 62–66.

    Google Scholar 

  • Bibi, S., Khan, R. L., & Nazir, R. (2016). Heavy metals in drinking water of Lakki Marwat District, KPK. Pakistan. World Applied Sciences Journal, 34(1), 15–19.

    CAS  Google Scholar 

  • Bierkens, J., & Geerts, L. (2014). Environmental hazard and risk characterization of petroleum substances: A guided “walking tour” of petroleum hydrocarbons. Environment International, 66, 182–193.

    Article  CAS  Google Scholar 

  • Bodor, A., Petrovszki, P., Kis, Á. E., Vincze, G. E., Laczi, K., Bounedjoum, N., Szilágyi, Á., Szalontai, B., Feigl, G., & Kovács, K. L. (2020). Intensification of ex situ bioremediation of soils polluted with used lubricant oils: A comparison of biostimulation and bioaugmentation with a special focus on the type and size of the inoculum. International Journal of Environmental Research and Public Health, 17, 4106.

    Article  CAS  Google Scholar 

  • Borah, D., & Yadav, R. N. S. (2016). Bioremediation of petroleum-based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain. Egyptian Journal of Petroleum, 26, 181–188.

    Article  Google Scholar 

  • Brzeszcz, J., Kapusta, P., Steliga, T., & Turkiewicz, A. (2020). hydrocarbon removal by two differently developed microbial inoculants and comparing their actions with biostimulation treatment. Molecules, 25, 661.

    Article  CAS  Google Scholar 

  • Cai, Y., Wang, R., Rao, P., Wu, B., Yan, L., Hu, L., Park, S., Ryu, M., & Zhou, X. (2021). Bioremediation of petroleum hydrocarbons using Acinetobacter sp. SCYY-5 isolated from contaminated oil sludge: Strategy and effectiveness study. International Journal of Environmental Research and Public Health, 18, 819.

  • Chang, S.E., Stone, J., Demes, K., & Pessitelli, M. (2014). Consequences of Oil Spill: A Review Framework for Informing Planning. Ecology and Society, 19(2), 26. Retrieved September 1, 2021, from https://www.ecologyandsociety.org/vol19/iss2/art26/#literatureci17

  • Chauhan, R., Yadav, H. O. S., & Sehrawat, N. (2020). Nanobioremediation: A new and a versatile tool for sustainable environmental clean-up – Overview. Journal of Materials and Environmental Sciences, 11(4), 564–573.

    Google Scholar 

  • Chen, W. Y., Wu, J. H., Lin, Y. Y., Huang, H. J., & Chang, J. E. (2013). Bioremediation potential of soil contaminated with highly substituted polychlorinated dibenzo-p-dioxins and dibenzofurans: Microcosm study and microbial community analysis. Journal of Hazardous Materials, 261, 351–361.

    Article  CAS  Google Scholar 

  • Clay, L., & Pichtel, J. (2019). Treatment of simulated oil and gas produced water via pilot-scale rhizofiltration and constructed wetlands. International Journal of Environmental Research, 13, 185–198.

    Article  CAS  Google Scholar 

  • Cui, J. Q., He, Q. S., Liu, M. H., Chen, H., Sun, M. B., & Wen, J. P. (2020). Comparative study on different remediation strategies applied in petroleum-contaminated soils. International Journal of Environmental Research and Public Health, 17, 1606.

    Article  CAS  Google Scholar 

  • Daccò, C., Girometta, C., Asemoloye, M. D., Carpani, G., Picco, A. M., & Tosi, S. (2020). Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: A review. International Biodeterioration and Biodegradation, 147, 104866.

    Article  Google Scholar 

  • Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 1–13. Article ID 941810. https://doi.org/10.4061/2011/941810

  • Dell-Anno, F., Rastelli, E., Sansone, C., Brunet, C., Ianora, A., & Dell-Anno, A. (2021). Bacteria, fungi and microalgae for the bioremediation of marine sediments contaminated by petroleum hydrocarbons in the omics era. Microorganisms, 9, 1695–1717.

    Article  CAS  Google Scholar 

  • De-la-Huz, R., Lastra, M., & López, J. (2018). Other environmental health issues: oil spill. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, NJ, USA, pp. 251–255.

  • Dvoˇrák, P., Nikel, P. I., Damborský, J., & De-Lorenzo, V. (2017). Bioremediation 3.0: Egineering pollutant-removing bacteria in the times of systemic biology. Biotechnology Advances, 35, 845–866. https://doi.org/10.1016/j.biotechadv.2017.08.001

    Article  CAS  Google Scholar 

  • Ebegbulem, J. C., Dickson, E., & Theophilus, O. A. (2013). Oil exploration and poverty in the Niger Delta region of Nigeria: A critical analysis. International Journal of Business and Social Science, 4(3), 279–287.

    Google Scholar 

  • Ekpo, I. E., Obot, O. I., & David, G. S. (2018). Impact of oil spill on living aquatic resources of the Niger Delta region: A review. Journal of Wetlands and Waste Management, 2(1), 48–57.

    Google Scholar 

  • Emuedo, O. A., Anoliefo, G. O., & Emuedo, C. O. (2014). Oil pollution and water quality in the Niger Delta: Implications for the sustainability of the mangrove ecosystem. Global Journal of Human Social Science, 14(6), 9–16.

    Google Scholar 

  • Environmental Pollution Center. (2017). Oil Spill Pollution. Retrieved April 19, 2021, from www.environmentalpollutioncenters.orghttps://www.environmentalpollutioncenters.org/oil-spill/

  • Esmaeli, A.S.T., & Akbar, A. (2015). Occurrence of Pseudomonas aeruginosa in Kuwait soil. Chemosphere, 120, 100–107.

  • Fahid, M., Arslan, M., Shabir, G., Younus, S., Yasmeen, T., Rizwan, M., Siddique, K., Ahmad, S. R., Tahseen, R., & Iqbal, S. (2020). Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. Chemosphere, 240, 124890.

    Article  CAS  Google Scholar 

  • Ferguson, A., Solo-Gabriele, H., & Mena, K. (2020). Assessment for oil spill chemicals: Current knowledge, data gaps, and uncertainties addressing human physical health risk. Marine Pollution Bulletin, 150, 110746.

    Article  CAS  Google Scholar 

  • Fowler, S. J., Toth, C. R., & Gieg, L. M. (2016). Community structure in methanogenic enrichments provides insight into syntrophic interactions in hydrocarbon-impacted environments. Frontiers in Microbiology, 7, 562. https://doi.org/10.3389/fmicb.2016.00562

    Article  Google Scholar 

  • Geetha, S. J., Sanket, J. J., & Shailesh, K. (2013). Isolation and characterization of hydrocarbon degrading bacterial isolate from oil contaminated sites. Science Direct, 5, 237–241.

    CAS  Google Scholar 

  • Giadom, F. D. (2015). Groundwater contamination and environmental risk assessment of a hydrocarbon contaminated site in eastern Niger. Environmental Earth Sciences, 5, 166–176.

    Google Scholar 

  • Giwa, O. E., & Ibitoye, F. E. (2017). Bioremediation of heavy metal in crude oil contaminated soil using isolated Indigenous microorganism cultured with E. coli DE3 BL21. International Journal of Engineering and Applied Sciences (IJEAS), 4(6): 67–70.

  • Goswami M, Chakraborty P, Mukherjee K, Mitra, G., Bhattacharyya, P., Samrat Dey, S., & Tribedi, P. (2018). Bioaugmentation and biostimulation: a potential strategy for environmental remediation. Journal of Microbiology & Experimentation, 6(5), 223‒231. https://doi.org/10.15406/jmen.2018.06.00219

  • Goveas, L.C. (2020). Isolation and characterization of bacteria from refinery effluent for degradation of petroleum crude oil in seawater. Journal of Pure and Applied Microbiology, 14(1), 473–484.

  • Guerra, F. D., Attia, M. F., Whitehead, D. C., & Frank-Alexis, F. (2018). Nanotechnology for Environmental Remediation: Materials and Applications. Molecules, 1760, 1–23. https://doi.org/10.3390/molecules23071760

    Article  CAS  Google Scholar 

  • Gupta, A., & Sar, P. (2020). “Treatment options for acid mine drainage: remedial achievements through microbial-mediated processes,” in Combined Application of Physico-Chemical and Microbiological Processes for Industrial Effluent Treatment Plant, eds M. P. Shah, and A. Banerjee (Berlin: Springer), 145–185.

  • Gupte, A., & Sonawdekar, S. (2015). Study of oil degrading bacteria isolated from oil contaminated sites. International Journal for Research in Applied Science & Engineering Technology, 3(2), 345–349.

    Google Scholar 

  • Halanych, K. M., Ainsworth, C. H., Cordes, E. E., Dodge, R. E., Huettel, M., Mendelssohn, I. A., Murawski, S. A., Paris-Limouzy, C. B., Schwing, P. T., & Shaw, R. F. (2021). Effects of petroleum by-products and dispersants on ecosystems. Oceanography, 34, 152–163.

    Article  Google Scholar 

  • Hamoudi-Belarbi, L., Hamoudi, S., Khaled Belkacemi, K., Nouri, L., Bendifallah, L., & Mohamed Khodja, M. (2018). Bioremediation of polluted soil sites with crude oil hydrocarbons using carrot peel waste. Environments, 5(124), 1–12. https://doi.org/10.3390/environments5110124

    Article  Google Scholar 

  • Haseena, M., Malik, M. F., Javed, A., Arshad, S., Asif, N., Zulfiqar, S., & Hanif, J. (2017). Water pollution and human health. Environmental Risk Assessment and Remediation, 1(3), 16–19.

    Article  Google Scholar 

  • Hassanshahian, M. (2014). The effects of crude oil on marine microbial communities in sediments from the Persian Gulf and the Caspian Sea: A microcosm experiment. International Journal of Advanced Biological and Biomedical Research, 2(1), 1–17.

  • He, S., Zhong, L., Duan, J., Feng, Y., Yang, B., & Yang, L. (2017). Bioremediation of wastewater by iron oxide-biochar nanocomposites loaded with photosynthetic bacteria. Frontiers in Microbiology, 8, 823. https://doi.org/10.3389/fmicb.2017.00823

    Article  Google Scholar 

  • Ichor, T., Okerentugba, P.O., & Okpokwasili, G.C. (2014). Biodegradation of Total Petroleum Hydrocarbon by Aerobic Heterotrophic Bacteria Isolated from Crude Oil Contaminated Brackish Waters of Bodo Creek. Journal of Bioremediation and Biodegradation, 5, 1000236. https://doi.org/10.4172/2155-6199.1000236

  • Ifelebuegu, A., Ukpebor, J., Ahukannah, A. U., Theophilus, S., & Nnadi, E. (2017). Environmental effects of crude oil spill on the physicochemical and hydrobiological characteristics of the Nun River. Niger Delta. Environmental Monitoring and Assessment, 189(4), 173. https://doi.org/10.1007/s10661-017-5882-x

    Article  CAS  Google Scholar 

  • Ite, A. E., Ibok, U. J., Ite, M. U., & Petters, S. W. (2013). Petroleum exploration and production: Past and present environmental issues in the Nigeria’s Niger Delta. American Journal of Environmental Protection, 1, 78–90.

    Article  Google Scholar 

  • Izah, S.C., Angaye, C.N., & Aigberua, A.O. (2017). Uncontrolled bush burning in the Niger Delta region of Nigeria: potential causes and impacts on biodiversity. International Journal of Molecular Ecology and Conservation, 7(1), 1‒15.

  • Jayaswal, K., Sahu, V., & Gurjar, B. R. (2018). Water pollution, human health and remediation. In Pollutants from Energy Sources; Springer Nature: Singapore, pp. 11–27.

  • Jiang, Y., Brassington, K. J., Prpich, G., Paton, G. I., Semple, K. T., Pollard, S. J. T., & Coulon, F. (2016). Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation. Chemosphere, 161, 300–307.

    Article  CAS  Google Scholar 

  • John, R. C., Ntino, E. S., & Itah, A. Y. (2016). Impact of crude oil on soil nitrogen dynamics and uptake by legumes grown in wetland ultisol of the Niger Delta, Nigeria. Journal of Environmental Protection (Irvine, Calif.), 7, 507–515.

  • Karlapudi, A. P., Venkateswarulu, T., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Dirisala, V. R., & Kodali, V. P. (2018). Role of biosurfactants in bioremediation of oil pollution—A review. Petroleum, 4, 241–249.

    Article  Google Scholar 

  • Khalid, F. E., Lim, Z. S., Sabri, S., Gomez-Fuentes, C., Zulkharnain, A., & Ahmad, S. A. (2021). Bioremediation of diesel contaminated marine water by bacteria: A review and bibliometric analysis. Journal of Marine Science and Engineering, 9, 155–174.

    Article  Google Scholar 

  • Khan, N., Hussain, S. T., & Saboor, A. (2013). Physiochemical investigation of the drinking water sources from Mardan, Khyber Pakhtunkhwa Pakistan. International Journal of Physical Sciences, 8(33), 1661–1671.

    Google Scholar 

  • Kim, H., Choe, Y., & Huh, C. (2019). Estimation of a mechanical recovery system’s oil recovery capacity by considering boom loss. Journal of Marine Science and Engineering, 7, 458.

    Article  Google Scholar 

  • Könnet, B. R. (2014). Inadequate monitoring and enforcement in the Nigerian oil industry: The case of shell and ogoniland. Cornell International Law Journal, 11, 181–205.

    Google Scholar 

  • Kumar, B. L., & Gopal, D. V. R. (2015). Effective role of indigenous microorganisms for sustainable environment. Biotechnology, 5(6), 867–876.

    Google Scholar 

  • Kumar, V., Shahi, S. K., & Singh, S. (2018). Bioremediation: An eco-sustainable approach for restoration of contaminated sites. In Microbial Bioprospecting for Sustainable Development; Springer Nature: Singapore, pp. 115–136.

  • Kumar, L., & Bharadvaja, N. (2019). Enzymatic bioremediation: A smart tool to fight environmental pollutants. In B. V. Elsevier (Ed.), Smart Bioremediation Technologies (pp. 99–118). Amsterdam, The.

    Chapter  Google Scholar 

  • Lea-Smith, D. J., Biller, S. J., Davey, M. P., Cotton, C. A., Sepulveda, B. M. P., & Turchyn, A. V. (2015). Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 112, 13591–13596.

    Article  CAS  Google Scholar 

  • Lim, M. W., Lau, E. V., & Poh, P. E. (2016). A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Marine Pollution Bulletin, 109(1), 14–45.

    Article  CAS  Google Scholar 

  • Linden, O., & Palsson, J. (2013). Oil contamination in ogoniland, Niger Delta. Ambio, 42, 685–701.

    Article  CAS  Google Scholar 

  • Major, D.N., & Wang, H. (2012). How public health impact is addressed: a retrospective view on three different oil spills. Toxicological and Environmental Chemistry, 94, 442‒467.

  • Mohapatra, B., & Phale, P. S. (2021). Microbial degradation of naphthalene and substituted naphthalenes: Metabolic diversity and genomic insight for bioremediation. Frontiers in Bioengineering and Biotechnology, 9, 1–28.

    Article  Google Scholar 

  • Muhammad, S. A., Magaji, M. B., & Idris, M. A. (2020). Assessment of physicochemical parameters in crude oil contaminated water samples of three communities of Ikpokpo, Atanba, and Okpele-Ama of Gbaramatu Kingdom, Along the Escravos River in Warri South West Local Government Area of Delta State, Nigeria. International Journal of Environment and Pollution Research, 8(1), 57–76.

    Google Scholar 

  • Narayanan, C. M., & Narayanan, V. (2019). Biological wastewater treatment and bioreactor design: A review. Sustainable Environment Research, 29, 1–17.

    Article  Google Scholar 

  • Nazmuz-Sakib, S.M. (2021). The Impact of Oil and Gas Development on the Landscape and Surface in Nigeria. Asian Pacific Journal of Environment and Cancer, 4(1), 9‒17.

  • Niger Delta Development Commission NDDC. (2014). Niger Delta development master plan 2006. Retrieved August 15, 2021, from https://www.nddc.gov.ng/NDRMPChapter1.pdf

  • Nnaji, J. C. (2017). Nanomaterials for remediation of petroleum contaminated soil and water. Umudike Journal of Engineering and Technology, 3(2), 23–29.

    Google Scholar 

  • Nwachukwu, M. I. (2010). Biophysical properties of abattoir wastes and biodegradation of Polycyclic Aromatic Hydrocarbons by associated microorganisms. Ph.D. Thesis Rivers State University of Science and Technology, pp 1–210

  • Nwankwoala, H.O., Egesi, E., & Agi, C.C. (2016). Analysis of the water resources of Kaiama area of Bayelsa State, Eastern Niger Delta. International Journal of Environmental Science and Technology, 1(2), 7‒12.

  • Ofoegbu, R. U., Momoh, Y. O. L., & Nwaogazie, I. L. (2014). Bioremediation of crude oil contaminated soil using organic and inorganic fertilizers. Journal of Petroleum & Environmental Biotechnology, 6(198), 1–6. https://doi.org/10.4172/2157-7463.1000198

    Article  CAS  Google Scholar 

  • Ogbonna, D. N., Ideriah, T. J. K., & Nwachukwu, M. I. (2012). Biodegradation of polycyclic aromatic hydrocarbons by associated microbes from abattoir wastes in the Niger Delta Nigeria. Journal of Microbiology Research, 2(6), 157–169. https://doi.org/10.5923/j.microbiology.20120206.02

    Article  Google Scholar 

  • Ogeleka., D.F., Tudararo-Aherobo, L.E., & Okiemen, F.E. (2017). Ecological Effects of Oil Spill on Water and Sediment from two Riverine Communities in Warri, Nigeria. International Journal of Biological and Chemical Sciences, 11(1), 453‒461.

  • Ojha, N., Mandal, S. K., & Das, N. (2019). Enhanced degradation of indeno (1, 2, 3-cd) pyrene using Candida tropicalis NN4 in presence of iron nanoparticles and produced biosurfactant: a statistical approach. 3 Biotech, 9, 86–99.

  • Okoye, C. O., & Iteyre, P. O. (2014). Implications of polluting warri river in Delta State Nigeria. International Journal of Engineering Science Invention, 3(4), 35–43.

    Google Scholar 

  • Olujimi, J. A., Adewumi, E. A., & Odunwole, S. (2011). Environmental Implications of oil exploration and exploitation in the coastal region of Ondo State. Journal of Geography and Regional Planning, 4(3), 110–121.

    Google Scholar 

  • Ordinioha, B., & Brisibe, S. (2013). "The human health implications of crude oil spills in the Niger delta, Nigeria: An interpretation of published studies", Nigerian Medical Journal, vol. 54, no. 1, p. 10, 2013. Available: https://doi.org/10.4103/0300-1652.108887

  • Orji, F. A., Ibiene, A. A., & Ugbogu, O. C. (2012). Petroleum hydrocarbon pollution of mangrove swamps: The promises of remediation by enhanced natural attenuation. American Journal of Agricultural and Biological Sciences, 7, 207–216.

    Article  Google Scholar 

  • Osuagwu, E. S., & Olaifa, E. (2018). Effects of oil spills on fish production in the Niger Delta. PLoS ONE, 13(10), e0205114. https://doi.org/10.1371/journal.pone.0205114

    Article  CAS  Google Scholar 

  • Owamah, H.I. (2013). Heavy Metals Determination and Assessment in a Petroleum Impacted River in the Niger Delta Region of Nigeria. Journal of Petroleum & Environmental Biotechnology, 4, 135. https://doi.org/10.4172/2157-7463.1000135

  • Oyedeji, A.A., Adebiyi, A.O., Omotoyinbo, M.A., & Ogunkunle, C.O. (2012). Effect of Crude Oil-Contaminated Soil on Germination and Growth Performance of Abelmoschus esculentus L. Moench—A Widely Cultivated Vegetable Crop in Nigeria. American Journal of Plant Sciences, 3(10), 1451‒1454.

  • Perdigo, R., Almeida, C.M.R., Santos, F., Carvalho, M.F., & Mucha, A.P. (2021). Optimization of an autochthonous bacterial consortium obtained from beach sediments for bioremediation of petroleum hydrocarbons. Water, 13, 66.

  • Pete, A. J., Bharti, B., & Benton, M. G. (2021). Nano-enhanced bioremediation for oil spills: A review. ACS Environmental Science and Technology Engineering, 1, 928–946.

    CAS  Google Scholar 

  • Peterson, C.H., Rice, S.D., Short, J.W., Esler, D., Bodkin, J.L., Ballachey, B.E., & Irons, D.B. (2003). Long-term ecosystem response to the Exxon Valdez oil spill. Science, 302, 2082‒2086.

  • Rehman, K., Imran, A., Amin, I., & Afzal, M. (2018). Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. Journal of Hazardous Materials, 349, 242–251.

    Article  CAS  Google Scholar 

  • Rizwan, M. D., Singh, M., Mitra, C. K., & Morve, R. K. (2014). Ecofriendly application of nanomaterials: Nanobioremediation. Journal of Nanoparticles, 8, 1–7.

    Article  Google Scholar 

  • Samhan, F. A., Elliethy, M. A., Hemdan, B. A., Youssef, M., & El-Taweel, G. E. (2017). Bioremediation of oil-contaminated water by bacterial consortium immobilized on environment-friendly biocarriers. The Journal of the Egyptian Public Health Association, 92(1), 44–51.

    Article  Google Scholar 

  • Sanchez, D.N., Knapp, C.W., Olalekan, R.M., & Nanalok, N.H. (2021). Oil Spills in the Niger Delta Region, Nigeria: Environmental Fate of Toxic Volatile Organics. Research Square, 3(3), 7‒19.

  • Sarkar, J., Roy, A., Sar, P., & Kazy, S. K. (2020). ““Accelerated bioremediation of petroleum refinery sludge through biostimulation and bioaugmentation of native microbiome”,” in Emerging Technologies in Environmental Bioremediation, eds M. Shah, S. Rodriguez-Couto, and S. Sengor (Amsterdam: Elsevier), 23–65. https://doi.org/10.1016/B978-0-12-819860-5.00002-X

  • Sayed, K., Baloo, L., & Sharma, N. K. (2021). Bioremediation of total petroleum hydrocarbons (TPH) by bioaugmentation and biostimulation in water with floating oil spill containment booms as bioreactor basin. International Journal of Environmental Research and Public Health, 18, 2226–2252.

    Article  CAS  Google Scholar 

  • Singh, H. (2020). Environmental impacts of oil spills and their remediation by magnetic nanomaterials. Environmental Nanotechnology, Monitoring & Management, 14, 100305.

  • Sonawdekar, S. (2012). Bioremediation; A boon to hydrocarbon degradation. International Journal of Environmental Science, 2(4), 2408–2424.

    CAS  Google Scholar 

  • Speight, J. G. (2018). Biological transformation. In reaction mechanisms in environmental engineering: Analysis and prediction; Butterworth Heinemann: Waltham, MA, USA, 2018.

  • Spini, G., Spina, F., Poli, A., Blieux, A., Regnier, T., Gramellini, C., Varese, G. C., & Edoardo, P. E. (2018). Molecular and microbiological insights on the enrichment procedures for the isolation of petroleum degrading bacteria and fungi. Frontiers in Microbiology, 9, 1–19.

    Article  Google Scholar 

  • Stakeholder Democracy Network. (2019). A History of the Niger Delta. Retrieved 17 June 2019 at https://www.stakeholderdemocracy.org/the-niger-delta/niger-delta-history/

  • Tripathi, S., Sanjeevi, R., Jayaraman, A., Chauhan, D. S., & Rathoure, A. (2018). Nano-bioremediation: Nanotechnology and Bioremediation. https://doi.org/10.4018/978-1-5225-4162-2.ch012

  • Umeojiakor, C. T., Ojiabo, K. T., Umeojiakor, A. O., Anyikwa, S. O., & Nwanwe, C. C. (2019). Effectiveness of biostimulants amendment with indigenous microbes on bioremediation of crude oil contaminated soil in Niger Delta region of Nigeria. International Journal of Engineering Research & Technology, 8(11), 751–755.

    Google Scholar 

  • United Nations Environmental Program UNEP. (2011). Environmental assessment of ogoniland. UNEP, Switzerland.

  • Uzoekwe, S. A., & Oghosanine, F. A. (2011). The effect of refinery and petrochemical effluent on water quality of Ubeji Creek Warri, Southern Nigeria. Ethiopian Journal of Environmental Studies and Management, 4(2), 107–115.

    Google Scholar 

  • Villaverde, J., Laiz, L., Lara-Moreno, A., Gonzalez-Pimentel, J. L., & Morillo, E. (2019). Bioaugmentation of PAH-contaminated soils with novel specific degrader strains isolated from a contaminated industrial site. Effect of Hydroxypropyl-β-Cyclodextrin as PAH Bioavailability Enhancer. Frontiers in Microbiology, 10, 2588.

  • Wizor, C.H., & Wali, E., (2020). Crude Oil Theft in the Niger Delta: The Oil Companies and Host Communities Conundrum. International Journal of Research and Scientific Innovation (IJRSI), 7(1), 22‒32.

  • World Health Organization, & WHO. (2011). Guidelines for drinking-water quality (4th ed.). Geneva.

    Google Scholar 

  • Xu, X., Liu, W., Tian, S., Wang, W., Qi, O., Jiang, P., Gao, X., Li, F., Li, H., & Yu, H. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Frontiers in Microbiology, 9, 1–11.

    Article  Google Scholar 

  • Yakubu, O. H. (2017). Addressing environmental health problems in ogoniland through implementation of United Nations Environment Program recommendations: Environmental management strategies. Environments, 4(28), 1–19.

    Google Scholar 

  • Yang, C., Offiong, N. A., Zhang, C., Liu, F., & Dong, J. (2021). Mechanisms of irreversible density modification using colloidal biliquid aphron for dense nonaqueous phase liquids in contaminated aquifer remediation. Journal of Hazardous Materials, 415, 125667.

    Article  CAS  Google Scholar 

  • Yarima, A., Ali, R., Abdullahi, A. A., & Idris, Z. (2020). Nanotechnology: Review on emerging techniques in remediating water and soil pollutions. Journal of Applied Sciences and Environmental Management, 24(5), 933–941.

    Article  Google Scholar 

  • Yosef, H., & Melkamu, T. (2016). Mycoremediation of heavy metals and hydrocarbons contaminated environment. Asian Journal of Natural and Applied Sciences, 5(2), 48–58.

    Google Scholar 

  • Yuniati, M. D. (2018). Bioremediation of petroleum-contaminated soil, review. IOP Conference Series: Earth and Environmental Science, 118, 1315–1755.

    Google Scholar 

  • Zabbey, N., & Olsson, G. (2017). Conflicts – Oil Exploration and Water. Global Challenges, 1, 1‒10.

  • Zabbey, N., Samb, K., & Onyebuchi, A. T. (2017). Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges. Science of the Total Environment, 586, 952–965.

    Article  CAS  Google Scholar 

  • Zafirakou, A., Themeli, S., Tsami, E., & Aretoulis, G. (2018). Multi-criteria analysis of different approaches to protect the marine and coastal environment from oil spills. Journal of Marine Science and Engineering, 6, 125.

    Article  Google Scholar 

  • Zhang, B., Matchinski, E. J., Chen, B., Ye, X., Jing, L., & Lee, K. (2019). Marine oil spills—oil pollution, sources and effects. In world seas: an environmental evaluation; Sheppard, C., Ed.; Elsevier: London, UK, pp. 391–406.

  • Zubairu, A., Luka, Y., & Highina, B. K. (2018). Bioremediation -A solution to environmental pollution-A review. American Journal of Engineering Research, 7, 101–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abioye OP.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AA, I., OP, A., UJJ, I. et al. A critical review of oil spills in the Niger Delta aquatic environment: causes, impacts, and bioremediation assessment. Environ Monit Assess 194, 816 (2022). https://doi.org/10.1007/s10661-022-10424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10424-x

Keywords

Navigation