Skip to main content
Log in

Perchlorate-reducing bacteria from Antarctic marine sediments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Perchlorate is a contaminant that can persist in groundwater and soil, and is frequently detected in different ecosystems at concentrations relevant to human health. This study isolated and characterised halotolerant bacteria that can potentially perform perchlorate reduction. Bacterial microorganisms were isolated from marine sediments on Deception, Horseshoe and Half Moon Islands of Antarctica. The results of the 16S ribosomal RNA (rRNA) gene sequence analysis indicated that the isolates were phylogenetically related to Psychrobacter cryohalolentis, Psychrobacter urativorans, Idiomarina loihiensis, Psychrobacter nivimaris, Sporosarcina aquimarina and Pseudomonas lactis. The isolates grew at a sodium chloride concentration of up to 30% and a perchlorate concentration of up to 10,000 mg/L, which showed their ability to survive in saline conditions and high perchlorate concentrations. Between 21.6 and 40% of perchlorate was degraded by the isolated bacteria. P. cryohalolentis and P. urativorans degraded 30.3% and 32.6% of perchlorate, respectively. I. loihiensis degraded 40% of perchlorate, and P. nivimaris, S. aquimarina and P. lactis degraded 22%, 21.8% and 21.6% of perchlorate, respectively. I. loihiensis had the highest reduction in perchlorate, whereas P. lactis had the lowest reduction. This study is significant as it is the first finding of P. cryohalolentis and. P. lactis on the Antarctic continent. In conclusion, these bacteria isolated from marine sediments on Antarctica offer promising resources for the bioremediation of perchlorate contamination due to their ability to degrade perchlorate, showing their potential use as a biological system to reduce perchlorate in high-salinity ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analysed during the current study are available in the GenBank repository with code numbers MW130840, MW130841, MZ420735, MZ420736, MZ420737, MZ420738 and MZ420739.

References

  • Abd-Elnaby, H. M., Abou-Elela, G. M., Ghozlan, H. A., Hussein, H., & Sabry, S. A. (2016). Characterization and bioremediation potential of marine Psychrobacter species. The Egyptian Journal of Aquatic Research, 42(2), 193–203. https://doi.org/10.1016/j.ejar.2016.04.003

  • Acevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., & Olivero-Verbel, J. (2016). Perchlorate tolerant bacteria from saline environments at the Caribbean region of Colombia. Toxicology Letters, 259, S103. https://doi.org/10.1016/j.toxlet.2016.07.257

    Article  Google Scholar 

  • Acevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., & Olivero-Verbel, J. (2019a). Perchlorate-reducing bacteria from hypersaline soils of the Colombian Caribbean. International Journal of Microbiology, 2019, 1–13. https://doi.org/10.1155/2019/6981865

    Article  CAS  Google Scholar 

  • Acevedo-Barrios, R., & Olivero-Verbel, J. (2021). Perchlorate contamination: Sources, effects, and technologies for remediation (pp. 103–120). https://doi.org/10.1007/398_2021_66

  • Acevedo-Barrios, R., Rubiano-Labrador, C., & Miranda-Castro, W. (2022). Presence of perchlorate in marine sediments from Antarctica during 2017–2020. Environmental Monitoring and Assessment, 194(2), 102. https://doi.org/10.1007/s10661-022-09765-4

    Article  Google Scholar 

  • Acevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25(14), 13697–13708. https://doi.org/10.1007/s11356-018-1565-6

    Article  CAS  Google Scholar 

  • Acevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2019b). Perchlorate toxicity in organisms from different trophic levels, (September), 2–3. https://doi.org/10.1016/j.toxlet.2019.09.002

  • Achenbach, L. A., & Coates, J. D. (2004). Microbial perchlorate reduction: Roket-fuelled metabolism. Nature reviews. Microbiology, 2(July). https://doi.org/10.1038/nrmicro926

  • Achenbach, L. A., Michaelidou, U., Bruce, R. A., Fryman, J., & Coates, J. D. (2001). Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per) chlorate-reducing bacteria and their phylogenetic position. International Journal of Systematic and Evolutionary Microbiology, 51(2), 527–533.

  • Aguila-Müller, I. (2015). Invasores Antárticos. Universidad de Magallanes.

    Google Scholar 

  • Ahn, C. H., Oh, H., Ki, D., Van Ginkel, S. W., Rittmann, B. E., & Park, J. (2009). Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine. Applied Microbiology and Biotechnology, 81(6), 1169–1177. https://doi.org/10.1007/s00253-008-1797-3

    Article  CAS  Google Scholar 

  • Amato, P., & Christner, B. C. (2009). Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Applied and Environmental Microbiology, 75(3), 711–718. https://doi.org/10.1128/AEM.02193-08

    Article  CAS  Google Scholar 

  • Azevedo, J. S. N., Correia, A., & Henriques, I. (2013). Molecular analysis of the diversity of genus Psychrobacter present within a temperate estuary. FEMS Microbiology Ecology, 84(3), 451–460. https://doi.org/10.1111/1574-6941.12075

    Article  CAS  Google Scholar 

  • Bahamdain, L., Fahmy, F., Lari, S., & Aly, M. (2015). Characterization of some Bacillus strains obtained from marine habitats using different taxonomical methods. Life Science Journal, 12(4).

  • Bakermans, C., Ayala-del-Río, H. L., Ponder, M. A., Vishnivetskaya, T., Gilichinsky, D., Thomashow, M. F., & Tiedje, J. M. (2006). Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. International Journal of Systematic and Evolutionary Microbiology, 56(6), 1285–1291. https://doi.org/10.1099/ijs.0.64043-0

  • Bardiya, N., & Bae, J. H. (2011). Dissimilatory perchlorate reduction: A review. Microbiological Research, 166(4), 237–254. https://doi.org/10.1016/j.micres.2010.11.005

    Article  CAS  Google Scholar 

  • Bendia, A. G., Araujo, G. G., Pulschen, A. A., Contro, B., Duarte, R. T. D., Rodrigues, F., et al. (2018a). Surviving in hot and cold: Psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles, 22(6), 917–929. https://doi.org/10.1007/s00792-018-1048-1

    Article  CAS  Google Scholar 

  • Bendia, A. G., Signori, C. N., Franco, D. C., Duarte, R. T. D., Bohannan, B. J. M., & Pellizari, V. H. (2018b). A mosaic of geothermal and marine features shapes microbial community structure on deception Island Volcano, Antarctica. Frontiers in Microbiology, 9(MAY), 1–13. https://doi.org/10.3389/fmicb.2018.00899

    Article  Google Scholar 

  • Boone, D. R., Castenholz, R. W., Garrity, G. M., Brenner, D. J., Krieg, N. R., & Staley, J. T. (2005). Bergey’s Manual® of Systematic Bacteriology. (Brenner D. J., Krieg N. R., & Staley J. T., Eds.)Bergey’s Manual® of Systematic Bacteriology (Vol. 2). Boston, MA: Springer Science & Business Media.

  • Bowman, J. P. (2006). The genus Psychrobacter. In The Prokaryotes (pp. 920–930). https://doi.org/10.1099/00207713-42-1-44

  • Bowman, J. P., Cavanagh, J., Austin, J. J., & Sanderson, K. (1996). Novel Psychrobacter species from Antarctic ornithogenic soils. International Journal of Systematic Bacteriology, 46(4), 841–848. https://doi.org/10.1099/00207713-46-4-841

    Article  CAS  Google Scholar 

  • Bozal, N., Montes, M. J., Tudela, E., & Guinea, J. (2003). Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. and Psychrobacter fozii sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53(4), 1093–1100. https://doi.org/10.1099/ijs.0.02457-0

  • Brown, G. M., & Gu, B. (2006). The chemistry of perchlorate in the environment. Perchlorate: Environmental Occurrence, Interactions and Treatment, 17–47. https://doi.org/10.1007/0-387-31113-0_2

  • Bruce, R. A., Achenbach, L. A., & Coates, J. D. (1999). Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environmental Microbiology, 1(4), 319–329. https://doi.org/10.1046/j.1462-2920.1999.00042.x

    Article  CAS  Google Scholar 

  • Calderón, R., Godoy, F., Escudey, M., & Palma, P. (2017). A review of perchlorate (ClO4−) occurrence in fruits and vegetables. Environmental Monitoring and Assessment, 189(2). https://doi.org/10.1007/s10661-017-5793-x

  • Calderón, R., Palma, P., Parker, D., Molina, M., Godoy, F. A., & Escudey, M. (2014). Perchlorate levels in soil and waters from the Atacama Desert. Archives of Environmental Contamination and Toxicology, 66(2), 155–161. https://doi.org/10.1007/s00244-013-9960-y

    Article  CAS  Google Scholar 

  • Cang, Y., Roberts, D. J., & Clifford, D. A. (2004). Development of cultures capable of reducing perchlorate and nitrate in high salt solutions. Water Research, 38(14), 3322–3330.

    Article  CAS  Google Scholar 

  • Cao, F., Jaunat, J., Sturchio, N., Cancès, B., Morvan, X., Devos, A., et al. (2019). Worldwide occurrence and origin of perchlorate ion in waters: A review. Science of the Total Environment, 661, 737–749. https://doi.org/10.1016/j.scitotenv.2019.01.107

    Article  CAS  Google Scholar 

  • Carlström, C. I., Lucas, L. N., Rohde, R. A., Haratian, A., Engelbrektson, A. L., & Coates, J. D. (2016). Characterization of an anaerobic marine microbial community exposed to combined fluxes of perchlorate and salinity. Applied Microbiology and Biotechnology, 100(22), 9719–9732. https://doi.org/10.1007/s00253-016-7780-5

    Article  CAS  Google Scholar 

  • Castelán-Sánchez, H. G., Elorrieta, P., Romoacca, P., Liñan-Torres, A., Sierra, J. L., Vera, I., et al. (2019). Intermediate-salinity systems at high altitudes in the Peruvian Andes unveil a high diversity and abundance of bacteria and viruses. Genes, 10(11), 891. https://doi.org/10.3390/genes10110891

    Article  CAS  Google Scholar 

  • Centurion, V. B., Delforno, T. P., Lacerda-Júnior, G. V., Duarte, A. W. F., Silva, L. J., Bellini, G. B., et al. (2019). Unveiling resistome profiles in the sediments of an Antarctic volcanic island. Environmental Pollution, 255, 113240. https://doi.org/10.1016/j.envpol.2019.113240

    Article  CAS  Google Scholar 

  • Chambers, S. D., Hong, S. B., Williams, A. G., Crawford, J., Griffiths, A. D., & Park, S. J. (2014). Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island. Atmospheric Chemistry and Physics, 14(18), 9903–9916. https://doi.org/10.5194/acp-14-9903-2014

    Article  CAS  Google Scholar 

  • Chaudhuri, S. K., O’connor, S. M., Gustavson, R. L., Achenbach, L. A., & Coates, J. D. (2002). Environmental factors that control microbial perchlorate reduction. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 68(9), 4425–4430. https://doi.org/10.1128/AEM.68.9.4425-4430.2002

    Article  CAS  Google Scholar 

  • Che, S., Song, L., Song, W., Yang, M., Liu, G., & Lin, X. (2013). Complete genome sequence of Antarctic bacterium Psychrobacter sp. strain G. Genome Announcements, 1(5), 2012–2013. https://doi.org/10.1128/genomeA.e00725-13

  • Chung, J., Shin, S., & Oh, J. (2009). Characterization of a microbial community capable of reducing perchlorate and nitrate in high salinity. Biotechnology Letters, 31(7), 959–966. https://doi.org/10.1007/s10529-009-9960-1

    Article  CAS  Google Scholar 

  • Correa, T., & Abreu, F. (2020). Antarctic microorganisms as sources of biotechnological products. In Physiological and Biotechnological Aspects of Extremophiles (pp. 269–284). Elsevier. https://doi.org/10.1016/B978-0-12-818322-9.00020-4

  • Cowan, D. A., Makhalanyane, T. P., Dennis, P. G., & Hopkins, D. W. (2014). Microbial ecology and biogeochemistry of continental antarctic soils. Frontiers in Microbiology, 5(APR), 1–10. https://doi.org/10.3389/fmicb.2014.00154

  • Crawford, T. Z., Kub, A. D., Peterson, K. M., Cox, T. S., & Cole-Dai, J. (2017). Reduced perchlorate in West Antarctica snow during stratospheric ozone hole. Antarctic Science, 29(3), 292–296. https://doi.org/10.1017/S0954102016000705

    Article  Google Scholar 

  • Deng, Z., Han, X., Chen, C., Wang, H., Ma, B., & Zhang, D. (2020). The distribution characteristics of polychlorinated biphenyls ( PCBs ) in the surface sediments of Ross Sea and Drake Passage, Antarctica: A 192 congeners analysis. Marine Pollution Bulletin, 154 (December 2019), 111043. https://doi.org/10.1016/j.marpolbul.2020.111043

  • Donachie, S. P. (2003). Idiomarina loihiensis sp. nov., a halophilic -Proteobacterium from the Lo’ihi submarine volcano, Hawai’i. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 53(6), 1873–1879. https://doi.org/10.1099/ijs.0.02701-0

  • Eck, W. S. (2015). Chapter 28 - Wildlife Toxicity assessment for perchlorate. In M. A. Williams, G. Reddy, M. J. Quinn, & M. S. Johnson (Eds.), Wildlife toxicity assessments for chemicals of military concern (pp. 499–553). Elsevier. https://doi.org/10.1016/B978-0-12-800020-5.00028-4

  • Fernández, L. A., Zalba, P., Gómez, M. A., & Sagardoy, M. A. (2005). Bacterias solubilizadoras de fosfato inorgánico aisladas de suelos de la región sojera. Ciencia Del Suelo, 23(1), 31–37.

    Google Scholar 

  • Flores, P. A. M., Correa Llantén, D. N., & Blamey, J. M. (2018). A thermophilic microorganism from Deception Island, Antarctica with a thermostable glutamate dehydrogenase activity. Biological Research, 51(1), 1–7. https://doi.org/10.1186/s40659-018-0206-3

    Article  CAS  Google Scholar 

  • Galbán-Malagón, C., Collins, B., & Barria, K. (2019). Las rutas de la contaminación antártica.

  • Gholamian, F., Sheikh-Mohseni, M. A., & Salavati-Niasari, M. (2011). Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper. Materials Science and Engineering C, 31(8), 1688–1691. https://doi.org/10.1016/j.msec.2011.07.017

    Article  CAS  Google Scholar 

  • Goordial, J., Lamarche-Gagnon, G., Lay, C.-Y., & Whyte, L. (2013). Left out in the cold: Life in cryoenvironments. Polyextremophiles, 27, 249–267. https://doi.org/10.1007/978-94-007-6488-0

    Article  Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium, 41, 95–98.

  • Isobe, T., Ogawa, S. P., Sugimoto, R., Ramu, K., Sudaryanto, A., Malarvannan, G., et al. (2013). Perchlorate contamination of groundwater from fireworks manufacturing area in South India. Environmental Monitoring and Assessment, 185(7), 5627–5637. https://doi.org/10.1007/s10661-012-2972-7

    Article  CAS  Google Scholar 

  • Jackson, W. A., Böhlke, J. K., Gu, B., Hatzinger, P. B., & Sturchio, N. C. (2010). Isotopic composition and origin of indigenous natural perchlorate and co-occurring nitrate in the southwestern United States. Environmental Science & Technology, 44(13), 4869–4876.

    Article  CAS  Google Scholar 

  • Jackson, W. A., Davila, A. F., Estrada, N., Berry Lyons, W., Coates, J. D., & Priscu, J. C. (2012). Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Geochimica Et Cosmochimica Acta, 98, 19–30. https://doi.org/10.1016/j.gca.2012.09.014

    Article  CAS  Google Scholar 

  • Jiang, S., Cole-dai, J., An, C., Shi, G., Yu, J., & Sun, B. (2020). Spatial variability of perchlorate in East Antarctic surface snow: Implications for atmospheric production. Atmospheric Environment, 238(451), 117743. https://doi.org/10.1016/j.atmosenv.2020.117743

    Article  CAS  Google Scholar 

  • Jiang, S., Cox, T. S., Cole-Dai, J., Peterson, K. M., & Shi, G. (2016). Trends of perchlorate in Antarctic snow: Implications for atmospheric production and preservation in snow. Geophysical Research Letters, 43(18), 9913–9919. https://doi.org/10.1002/2016GL070203

    Article  Google Scholar 

  • Jiang, S., Li, Y.-S., & Sun, B. (2013). Determination of trace level of perchlorate in Antarctic snow and ice by ion chromatography coupled with tandem mass spectrometry using an automated sample on-line preconcentration method. Chinese Chemical Letters, 24(4), 311–314. https://doi.org/10.1016/j.cclet.2013.02.011

    Article  CAS  Google Scholar 

  • Jiang, S., Shi, G., Cole-Dai, J., An, C., & Sun, B. (2021). Occurrence, latitudinal gradient and potential sources of perchlorate in the atmosphere across the hemispheres (31°N to 80°S). Environment International, 156, 106611. https://doi.org/10.1016/j.envint.2021.106611

  • Kokoulin, M. S., Kuzmich, A. S., Romanenko, L. A., Chikalovets, I. V., & Chernikov, O. V. (2020). Structure and in vitro bioactivity against cancer cells of the capsular polysaccharide from the marine bacterium Psychrobacter marincola. Marine Drugs. https://doi.org/10.3390/md18050268

    Article  Google Scholar 

  • Koneman, E. W., Allen, S., Janda, W., Schreckenberger, P., Winn, W., Woods, G., & Procop, G. (2006). Koneman’s color atlas and textbook of diagnostic microbiology (6th ed.).

  • Kounaves, S. P., Stroble, S. T., Anderson, R. M., Moore, Q., Catling, D. C., Douglas, S., et al. (2010). Discovery of natural perchlorate in the Antarctic dry valleys and its global implications. Environmental Science and Technology, 44(7), 2360–2364. https://doi.org/10.1021/es9033606

    Article  CAS  Google Scholar 

  • Kucharzyk, K. H., Crawford, R. L., Paszczynski, A. J., & Hess, T. F. (2010). A method for assaying perchlorate concentration in microbial cultures using the fluorescent dye resazurin. Journal of Microbiological Methods, 81(1), 26–32. https://doi.org/10.1016/j.mimet.2010.01.019

    Article  CAS  Google Scholar 

  • Kucharzyk, K. H., Soule, T., & Hess, T. F. (2013). Maximizing microbial perchlorate degradation using a genetic algorithm: Consortia optimization. Biodegradation, 24(5), 583–596. https://doi.org/10.1007/s10532-012-9602-5

    Article  Google Scholar 

  • Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Ex-situ remediation technologies for environmental pollutants: A critical perspective Saranya. Reviews of Environmental Contamination and Toxicology. https://doi.org/10.1007/978-3-319-20013-2

    Article  Google Scholar 

  • Lasek, R., Dziewit, L., Ciok, A., Decewicz, P., Romaniuk, K., Jedrys, Z., et al. (2017). Genome content, metabolic pathways and biotechnological potential of the psychrophilic Arctic bacterium Psychrobacter sp. DAB_AL43B, a source and a host of novel Psychrobacter-specific vectors. Journal of Biotechnology, 263, 64–74. https://doi.org/10.1016/j.jbiotec.2017.09.011

    Article  CAS  Google Scholar 

  • Laye, V. J., & DasSarma, S. (2018). An Antarctic extreme halophile and its polyextremophilic enzyme: Effects of perchlorate salts. Astrobiology, 18(4), 412–418. https://doi.org/10.1089/ast.2017.1766

    Article  CAS  Google Scholar 

  • Liebensteiner, M. G., Oosterkamp, M. J., & Stams, A. J. M. (2015). Microbial respiration with chlorine oxyanions: Diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms. Annals of the New York Academy of Sciences, 1365(1), 59–72. https://doi.org/10.1111/nyas.12806

    Article  CAS  Google Scholar 

  • Logan, B. E., Wu, J., & Unz, R. F. (2001). Biological perchlorate reduction in high-salinity solutions. Water Research, 35(12), 3034–3038. https://doi.org/10.1016/S0043-1354(01)00013-6

    Article  CAS  Google Scholar 

  • Long, X., Tian, J., Liao, X., & Tian, Y. (2018). Adaptations of Bacillus shacheensis HNA-14 required for long-term survival under osmotic, 27525–27536. https://doi.org/10.1039/c8ra05472j

  • LPSN. (n.d.). Genus: Psychrobacter. https://lpsn.dsmz.de/genus/psychrobacter. Accessed 6 October 2020

  • Lv, P. L., Shi, L. D., Dong, Q. Y., Rittmann, B., & Zhao, H. P. (2020). How nitrate affects perchlorate reduction in a methane-based biofilm batch reactor. Water Research, 171(3), 115397. https://doi.org/10.1016/j.watres.2019.115397

    Article  CAS  Google Scholar 

  • Malavenda, R., Rizzo, C., Michaud, L., Gerçe, B., Bruni, V., Syldatk, C., et al. (2015). Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biology, 38(10), 1565–1574. https://doi.org/10.1007/s00300-015-1717-9

    Article  Google Scholar 

  • Marina-Montes, C., Pérez-Arribas, L. V., Escudero, M., Anzano, J., & Cáceres, J. O. (2020). Heavy metal transport and evolution of atmospheric aerosols in the Antarctic region. Science of the Total Environment, 721, 137702. https://doi.org/10.1016/j.scitotenv.2020.137702

    Article  CAS  Google Scholar 

  • Martin, A., Hall, J., & Ryan, K. (2009). Low salinity and high-level UV-B radiation reduce single-cell activity in Antarctic sea ice bacteria. Applied and Environmental Microbiology, 75(23), 7570–7573. https://doi.org/10.1128/AEM.00829-09

    Article  CAS  Google Scholar 

  • Matsubara, T., Fujishima, K., Saltikov, C. W., Nakamura, S., & Rothschild, L. J. (2017). Earth analogues for past and future life on Mars: Isolation of perchlorate resistant halophiles from Big Soda Lake. International Journal of Astrobiology, 16(3), 218–228. https://doi.org/10.1017/S1473550416000458

  • Muñoz-Villagrán, C. M., Mendez, K. N., Cornejo, F., Figueroa, M., Undabarrena, A., Morales, E. H., et al. (2018). Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula. PeerJ, 2018(2), 1–23. https://doi.org/10.7717/peerj.4402

    Article  CAS  Google Scholar 

  • Nam, J. H., Ventura, J. R. S., Yeom, I. T., Lee, Y., & Jahng, D. (2016). A novel perchlorate- and nitrate-reducing bacterium, Azospira sp. PJM. Applied Microbiology and Biotechnology, 100(13), 6055–6068. https://doi.org/10.1007/s00253-016-7401-3

    Article  CAS  Google Scholar 

  • Nor, S. J., Lee, S. H., Cho, K. S., Cha, D. K., Lee, K. I., & Ryu, H. W. (2011). Microbial treatment of high-strength perchlorate wastewater. Bioresource Technology, 102(2), 835–841. https://doi.org/10.1016/j.biortech.2010.08.127

    Article  CAS  Google Scholar 

  • Nozawa-Inoue, M., Scow, K. M., & Rolston, D. E. (2005). Reduction of perchlorate and nitrate by microbial communities in vadose soil. Applied and Environmental Microbiology, 71(7), 3928–3934. https://doi.org/10.1128/AEM.71.7.3928-3934.2005

    Article  CAS  Google Scholar 

  • Parker, D. R. (2009). Perchlorate in the environment: The emerging emphasis on natural occurrence. Environmental Chemistry, 6(1), 10–27.

    Article  CAS  Google Scholar 

  • Peix, A., Ramírez-Bahena, M.-H., & Velázquez, E. (2018). The current status on the taxonomy of Pseudomonas revisited: An update. Infection, Genetics and Evolution, 57, 106–116. https://doi.org/10.1016/j.meegid.2017.10.026

    Article  Google Scholar 

  • Pereira, J. L., Pereira, P., Padeiro, A., Gonçalves, F., Amaro, E., Leppe, M., et al. (2017). Environmental hazard assessment of contaminated soils in Antarctica: Using a structured tier 1 approach to inform decision-making. Science of the Total Environment, 574, 443–454. https://doi.org/10.1016/j.scitotenv.2016.09.091

    Article  CAS  Google Scholar 

  • Prabagaran, S. R., Manorama, R., Delille, D., & Shivaji, S. (2007). Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiology Ecology, 59(2), 342–355. https://doi.org/10.1111/j.1574-6941.2006.00213.x

    Article  CAS  Google Scholar 

  • Reddy, G. S. N., Matsumoto, G. I., & Shivaji, S. (2003). Sporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo Dry Valleys, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1363–1367. https://doi.org/10.1099/ijs.0.02628-0

  • Riddle, M., & Chapman, P. (2005). Toxic effects of contaminants in polar marine Environments. Environmental, Sciencie and Technology, 6–8.

  • Rose, N. L., Jones, V. J., Noon, P. E., Hodgson, D. A., Flower, R. J., & Appleby, P. G. (2012). Long-range transport of pollutants to the Falkland Islands and Antarctica: Evidence from lake sediment fly ash particle records.

  • Rubiano-Labrador, C., Díaz-Cárdenas, C., López, G., Gómez, J., & Baena, S. (2019). Colombian Andean thermal springs: Reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes. Extremophiles, 23(6), 793–808. https://doi.org/10.1007/s00792-019-01132-5

    Article  CAS  Google Scholar 

  • Ryu, H. W., Nor, S. J., Moon, K. E., Cho, K.-S., Cha, D. K., & Rhee, K. I. (2011). Reduction of perchlorate by salt tolerant bacterial consortia. Bioresource Technology, 103(1), 279–285. https://doi.org/10.1007/s10529-009-9960-1

    Article  CAS  Google Scholar 

  • Santos, A. F., Pires, F., Jesus, H. E., Santos, A. L. S., Peixoto, R., Rosado, A. S., et al. (2015). Detection of proteases from Sporosarcina aquimarina and Algoriphagus antarcticus isolated from Antarctic soil. Anais Da Academia Brasileira De Ciências, 87(1), 109–119. https://doi.org/10.1590/0001-3765201520130519

    Article  CAS  Google Scholar 

  • Sarria, M., Gonzales, J. M., Gerrity, D., & Batista, J. (2019). Biological reduction of nitrate and perchlorate in soil microcosms: An electron donor comparison of glycerol, emulsified oil, and mulch extract. Groundwater Monitoring and Remediation, 39(2), 32–42. https://doi.org/10.1111/gwmr.12315

    Article  CAS  Google Scholar 

  • Sevda, S., Sreekishnan, T. R., Pous, N., Puig, S., & Pant, D. (2018). Bioelectroremediation of perchlorate and nitrate contaminated water. Bioresource Technology, 255, 331–339. https://doi.org/10.1016/j.biortech.2018.02.005

  • Silva, T. R., Duarte, A. W. F., Passarini, M. R. Z., Ruiz, A. L. T. G., Franco, C. H., Moraes, C. B., et al. (2018). Bacteria from Antarctic environments: Diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biology, 41(7), 1505–1519. https://doi.org/10.1007/s00300-018-2300-y

    Article  Google Scholar 

  • Singh, R. P., & Jha, P. N. (2016). A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Frontiers in Plant Science, 7(DECEMBER2016), 1–18. https://doi.org/10.3389/fpls.2016.01890

    Article  CAS  Google Scholar 

  • Smith, D. J., Schuerger, A. C., Davidson, M. M., Pacala, S. W., Bakermans, C., & Onstott, T. C. (2009). Survivability of psychrobacter cryohalolentis K5 under simulated martian surface conditions. Astrobiology, 9(2), 221–228. https://doi.org/10.1089/ast.2007.0231

    Article  CAS  Google Scholar 

  • Song, W., Gao, B., Zhang, X., Li, F., Xu, X., & Yue, Q. (2019). Biological reduction of perchlorate in domesticated activated sludge considering interaction effects of temperature, pH, electron donors and acceptors. Process Safety and Environmental Protection, 123, 169–178. https://doi.org/10.1016/j.psep.2019.01.009

    Article  CAS  Google Scholar 

  • Ucar, D., Cokgor, E. U., Sahinkaya, E., Cetin, U., Bereketoglu, C., Calimlioglu, B., et al. (2017). Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system. International Biodeterioration and Biodegradation, 116, 83–90. https://doi.org/10.1016/j.ibiod.2016.10.017

    Article  CAS  Google Scholar 

  • Urbansky, E. T. (2002). Perchlorate as an environmental contaminant. Environmental Science and Pollution Research, 9(3), 187–192. https://doi.org/10.1007/BF02987487

    Article  CAS  Google Scholar 

  • Vega, M., Nerenberg, R., & Vargas, I. T. (2018). Perchlorate contamination in Chile: Legacy, challenges, and potential solutions. Environmental Research, 164(March), 316–326. https://doi.org/10.1016/j.envres.2018.02.034

    Article  CAS  Google Scholar 

  • Wan, D., Liu, Y., Wang, Y., Wang, H., & Xiao, S. (2017). Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: Kinetics and bacterial community structure. Water Research, 108, 280–292. https://doi.org/10.1016/j.watres.2016.11.003

    Article  CAS  Google Scholar 

  • Wang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., et al. (2020). Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Science of the Total Environment, 707, 136092. https://doi.org/10.1016/j.scitotenv.2019.136092

    Article  CAS  Google Scholar 

  • Xu, Q., Chu, Z., Gao, Y., Mei, Y., Yang, Z., Huang, Y., et al. (2020). Levels, sources and influence mechanisms of heavy metal contamination in topsoils in Mirror Peninsula, East Antarctica. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.113552

    Article  Google Scholar 

  • Yan, N., Marschner, P., Cao, W., Zuo, C., & Qin, W. (2015). Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3(4), 316–323. https://doi.org/10.1016/j.iswcr.2015.11.003

    Article  Google Scholar 

  • Ye, L., You, H., Yao, J., & Su, H. (2012). Water treatment technologies for perchlorate: A review. Desalination, 298, 1–12. https://doi.org/10.1016/j.desal.2012.05.006

    Article  CAS  Google Scholar 

  • Yumoto, I., Hirota, K., Kimoto, H., Nodasaka, Y., Matsuyama, H., & Yoshimune, K. (2010). Psychrobacter piscatorii sp. nov., a psychrotolerant bacterium exhibiting high catalase activity isolated from an oxidative environment. International Journal of Systematic and Evolutionary Microbiology, 60(1), 205–208. https://doi.org/10.1099/ijs.0.010959-0

  • Zhang, D. C., Brouchkov, A., Griva, G., Schinner, F., & Margesin, R. (2013). Isolation and characterization of bacteria from ancient Siberian permafrost sediment. Biology, 2(1), 85–106. https://doi.org/10.3390/biology2010085

    Article  Google Scholar 

  • Zhao, H. P., Van Ginkel, S., Tang, Y., Kang, D. W., Rittmann, B., & Krajmalnik-Brown, R. (2011). Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environmental Science and Technology, 45(23), 10155–10162. https://doi.org/10.1021/es202569b

    Article  CAS  Google Scholar 

  • Zhu, Y., Gao, N., Chu, W., Wang, S., & Xu, J. (2016). Bacterial reduction of highly concentrated perchlorate: Kinetics and influence of co-existing electron acceptors, temperature, pH and electron donors. Chemosphere, 148, 188–194.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Directorate of Research at the Universidad Tecnológica de Bolívar for financing this project. They also thank the Colombian Ocean Commission coordinator of the Colombian Antarctic Program, Spanish Polar Committee-CPE, Spanish Navy, and Spanish Oceanographic Ship BIO Hespérides A-33 for providing logistic support for the displacement and sampling of different evaluation points in Antarctica. The authors also thank Sandra Baena of the Pontificia Universidad Javeriana and Carolina Díaz Cardenas for their support with the molecular analysis of the isolates.

Funding

This research was supported by the Research, Innovation, and Entrepreneurship Directorate of the Technological University of Bolivar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Acevedo-Barrios.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acevedo-Barrios, R., Rubiano-Labrador, C., Navarro-Narvaez, D. et al. Perchlorate-reducing bacteria from Antarctic marine sediments. Environ Monit Assess 194, 654 (2022). https://doi.org/10.1007/s10661-022-10328-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10328-w

Keywords

Navigation