Skip to main content
Log in

Adsorption capacity of composite bio-modified geopolymer for multi-component heavy metal system: optimisation, equilibrium and kinetics study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Industrialisation and urbanisation contribute greatly to the deposition of toxic waste and metalloids to the environment. Therefore, the use of efficient and eco-friendly materials such as geopolymers and biopolymers is essential for the adsorption of the toxic metals. The implementation of these low-cost sorbents has fascinated a great deal of interest owing to effectiveness, ease of operation, less environmental impact, etc. In this study, biocomposites were synthesised from bio-treatment of geopolymer (kaolin and palm oil fuel ash) using an anionic biopolymer. The biocomposites were utilised as biosorbent for removal of Cu, Fe and Zn in a multi-component system, with the process parameters optimised. FTIR and SEM/EDX outcomes clearly denoted the microporous framework of geopolymer structures and the presence of bio-molecules from the biopolymer. XRD and XRF techniques on the precursors described suitability for geopolymerisation due to the rich aluminate-silicate content. Based on response surface methodology, the adsorption capacities for Cu, Fe and Zn are 35.01 mg/g, 45.175 mg/g and 44.630 mg/g at optimal conditions of pH (7.5), time (40.5 min), metal ion concentration (80 mg/l), biosorbent dosage (0.2 g) and biopolymer concentration (0.75 g in 50 ml). The multi-component system was apt with the modified competitive Langmuir isotherm which described the homogeneity of the prominent sites of the biocomposites. Based on the adsorption kinetics, Cu was only dominated by the pseudo-first-order reaction (PFOR) while Fe and Zn were influenced by both PFOR and intra-particle diffusion processes. The result obtained from the synthesised biocomposites recommends application to actual wastewater systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary materials.

References

  • Agunwamba, J. C., Onyia, M. E., & Nwonu, D. C. (2020). Development of expansive soil geopolymer binders for use in waste containment facility. Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00400-0

    Article  Google Scholar 

  • Ahmer, A., Muhammed, R., Muhammed, I., Nurul, E., Muhammad, Z., Zakaria, M., ... Khairum, A. (2018). A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. Journal of Environmental Management, 224, 327–339. https://doi.org/10.1016/j.jenvman.2018.07.046

  • Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  Google Scholar 

  • Al-Harahsheh, M. S., Al Zhoon, K., Al-Makhadmeh, L., Hararah, M., & Mahasneh, M. (2015). Fly ash based geopolymer for heavy metal removal: A case study on copper removal. Journal of Environmental Chemical Engineering, 3, 1669–1677.

    Article  CAS  Google Scholar 

  • Alshaaer, M., Slatyi, F., Khoury, H., Rahier, H., & Wastiels, J. (2010). Development of low-cost functional geopolymeric materials. Advances for materials science for environmental and nuclear technology (pp. 159–168). Wiley.

    Chapter  Google Scholar 

  • Alshaaer, M., Zaharaki, D., & Komnitsas, K. (2014). Microstructural characteristics and adsorption potential of a zeolite tuff-metakaolin geopolymer. Desalination and Water Treatment, 56, 338–345.

    Article  Google Scholar 

  • Al-Zhoon, K., Al-smadi, B. M., & Al-Khawaldh, S. (2016). Natural volcanic tuff-based geopolymer for Zn removal: Adsorption isotherm, kinetics, and thermodynamic study. Water, Air, and Soil Pollution, 227, 1–22.

    Article  Google Scholar 

  • Andrejkovicova, S., Sudagar, A., Rocha, J., Patinha, C., Hajjaji, W., Da Silva, E. F., ... Rocha, F. (2016). The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Applied Clay Science, 126, 141–152.

  • Araujo, C. S., Carvalho, D. C., Rezende, H. C., Almeida, I. L., Coelho, L. M., Coelho, N. M., ... Alves, V. N. (2013). Bioremediation of waters contaminated with heavy metls using Moringa oleifera seeds as biosorbent. IntechOpenhttps://doi.org/10.5772/56157

  • Azzouz, A., Kailasa, S. K., Lee, S. S., Rascon, A. J., Ballesteros, E., Zhang, M., & Kim, K. (2018). Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC Trends in Analytical Chemistry, 108, 347–369. https://doi.org/10.1016/j.trac.2018.08.009

    Article  CAS  Google Scholar 

  • Basu, H., Saha, S., Kailasa, S. K., & Singhai, R. K. (2020). Present status of hybrid materials for potable water decontamination: A review. Environmental Science: Water Research & Technology, 6(12), 3214–3248.

    Google Scholar 

  • Buasri, A., Chaiyut, N., Tapang, K., & Jaroensin, S. (2012). Equilibrium and Kinetic studies of biosorption of Zn(II) ions from wastewater using modified corn cob. J. APCBEE, 60–64. https://doi.org/10.1016/j.apcbee.2012.06.046

  • Byram, P. K., Chaitanaya, A., & Barik. (2016). Biomimetic silk fibroin and xanthan gum blended hydrogels for connective tissue regeneration. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac-2020.09.231

    Article  Google Scholar 

  • Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H., & Yang, S. F. (2012). The heavy metal adsorption characteristics on metakaolin-based geopolymer. Applied Clay Science, 56, 90–96.

    Article  CAS  Google Scholar 

  • Das, B. (2017). Responsesurface modeling of copper (II) adsorption from aqueous solution onto neem (Azadirachta indica) bark powder. Central Composite Design Approach, 8(II), 2442–2454.

  • Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219.

    Article  Google Scholar 

  • El-Eswed, B., Alshaaer, M., Yousef, R. I., Hamadneh, I., & Khalili, F. (2013). Adsorption of Cu(II), Ni(II), Zn(II), Cd(II) and Pb(II) onto kaolin/zeolite based-geopolymers. Advances in Materials Physics and Chemistry, 2, 119–125. https://doi.org/10.4236/ampc.2012.24B032

    Article  Google Scholar 

  • Elgamouz, A., Tijani, N., Shehadi, I., Hasan, K., & Kawam, M. A. (2019). Characterization of the firing behaviour of an illite-kaolinite clay mineral and its potential use as membrane support. Heliyon, 5, e02281. https://doi.org/10.1016/j.heliyon.2019.e02281

    Article  Google Scholar 

  • Fouda-Mbanga, B. G., Prabakaran, E., & Pillay, K. (2021). Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents incuding latent fingerprint detection: a review. Biotechnology Reports, 20, e00609.

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418.

    Article  CAS  Google Scholar 

  • Gaikwad, M. S., & Balomajumder, C. (2017). Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive de-ionization (CDI): Multicomponent isotherm modeling and kinetic study. Seperation and Purification Technology, 186, 272–281.

    Article  CAS  Google Scholar 

  • Girish, C. R. (2017). Various isotherm models for multicomponent adsorption: A review. International Journal of Civil Engineering and Technology (IJCIET), 8(10), 80–86.

    Google Scholar 

  • Gunatilake, S. (2015). Method of removing heavy metals from industrial wastewater. Mehods, 14, 1.

    Google Scholar 

  • Guppy, L., & Anderson, K. (2017). Water crisis report: The facts. United Nations University Institute for Water, Environment and Health.

    Google Scholar 

  • Hilda, E. R., Didilia, I. M., Adesina, A. O., & Adrian, B. (2016). A survey of multi-componentsorption models for the competitive removal of heavy metal ions using bush mango and flamboyant biomassess. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2016.10.061

    Article  Google Scholar 

  • Idowu, A. A., Temilade, F. A., Vahidhabanu, S., & Babu, B. R. (2019). Agro waste material as ecofriendly adsorbent for the removal of Zn(II): Isotherm, kinetic, thermodynamic and optimization studies. Desalination and Water Treatment, 155, 250–258.

    Article  CAS  Google Scholar 

  • Ikeagwuani, C. C., Obeta, I. N., & Agunwamba, J. C. (2019). Stabilization of black cotton soil subgrade using sawdust ash and lime. Soils and Foundations, 59(1), 162–175. https://doi.org/10.1016/j.sandf.2018.2018.10.004

    Article  Google Scholar 

  • Inam, E., Etim, U. J., Akpabio, E. G., & Umoren, S. A. (2016). Process optimization for the application of carbon from plantain peels in dye abstraction. Journal of Taibah University for Science. https://doi.org/10.1016/j.jtusci.2016.01.003

    Article  Google Scholar 

  • Kailasa, S. K., Koduru, J. R., Park, J. P., Singhal, R. K., & Wu, H. F. (2021). Applications of single-drop microextraction in analytical chemistry: A review. Trends in Environmental Analytical Chemistry, 29, e00113.

  • Kara, I., Tune, D., Sayin, F., & Akar, S. T. (2018). Study on the performance of metakaolin based geopolymer for Mn(II) and Co(II) removal. Applied Clay Science, 161, 184–193. https://doi.org/10.1016/j.clay.2018.04.027

    Article  CAS  Google Scholar 

  • Khan, I. U., Bhat, A. H., Masset, P. J., Khan, F. U., & Rehman, W. U. (2016). Synthesis and characterisation of palm oil fuel ash (POFA) and metakaolin based geopolymer for possible application in nanocoating. The American Institute of Physics. https://doi.org/10.1063/j.ijbiomac.2020.09.027

    Article  Google Scholar 

  • Khim, H., Hakimi, M., & Ahmad, A. (2012). Adsorption and removal of zinc (II) from aqueous solution using powdered fish bones. APCBEE Procedia, 1, 96–102. https://doi.org/10.1016/j.apcbee.2012.03.017

    Article  CAS  Google Scholar 

  • Lei, Z., Fei, P., Arshad, M., & Yali, z., Shuai, H., Ashfaq, U. R., … Yong, W. (2020). Protective effect and mechanism of action of Xanthan gum on the color stability of black rice anthocyanins in model beverage systems. International Journal of Biological Macromolecules, 164, 3800–3807. https://doi.org/10.1016/j.ijbiomac.2020.09.027

    Article  CAS  Google Scholar 

  • Lopez, F. J., Sugita, S., Tagaya, M., & Kobayashi, T. (2014). Metakaolin-based geopolymer for targeted adsorbents to heavy metal ion seperation. Journal of Materials and Chemical Engineering, 2, 16–27. https://doi.org/10.4236/msce.2014.27002

    Article  CAS  Google Scholar 

  • Luukkonen, T., Heponiemi, A., Runtti, H., Pesonen, J., Yliniemi, J., & Lassi, U. (2019). Application of alkali-activated materias for water and wastewater treatment: A review. Reviews in Environmental Science & Biotechnology, 18, 271–297. https://doi.org/10.1007/s11157-019-09494-0

    Article  CAS  Google Scholar 

  • Luukkonen, T., Runtti, H., Niskanen, M., Tolonen, E. T., Sarkkinen, M., Kamppainen, K., & al., e. (2015). Simultaneous removal of Ni(II), As(III) and Sb(III) from spiked mine effluent with metakaolin and blast furnace slag geopolymers. Journal of Environmental Management, 166, 579–588. https://doi.org/10.1016/j.jenvman.2015.11.007

    Article  CAS  Google Scholar 

  • Luukkonen, T., Runtti, H., Niskanen, M., Tolonen, E., Sarkkinen, M., Kemppainen, K., ... Lassi, U. (2016). Simultaneous removal of Ni (II), As (III) and Sb (III) from spiked mine effluent with metakaolin and blast-furnance-slag geopolymer. Journal of Environmental Management, 166, 579–588.

  • Magdalena, K., & Piotr, R. (2018). The effect of calcinations temperature on metakaolin structure for the synthesis of zeolites. Clay Minerals, 53, 657–663.

    Article  Google Scholar 

  • Mahmoud, M. E., Abou Kana, M. T., & Hendy, A. A. (2015). Synthesis and implementation of nano-chitosan and its acetophenone derivative for enhanced removal of metals. International Journal of Biological Macromolecules, 81, 672–680.

    Article  CAS  Google Scholar 

  • Mama, C. N., Igwe, O., Ezugwu, C. K., Ozioko, O. H., & Ugwuoke, I. J. (2021). Statistical approach to unravelling heavy metal contamination on sub-soils and roadside dust. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2021.1958801

    Article  Google Scholar 

  • Mama, C. N., Nnaji, C. C., Igwe, O., Ozioko, O. H., Ezugwu, C. K., & Ugwuoke, I. J. (2020a). Assessment of heavy metal pollution in soils: A case study of Nsukka metropolis. Environmental Forensics. https://doi.org/10.1080/15275922.2020.1850567

    Article  Google Scholar 

  • Mama, C. N., Nnaji, C. C., Nnam, J. P., & Opata, O. C. (2020b). Environmental burden of unprocessed solid waste handling in Enugu state. Nigeria. Environmental Science and Pollution Research, 28(15), 19439–19457.

    Article  Google Scholar 

  • Meriem, M., Larbi, K., & Clastres, P. (2019). Elaboration of geopolymer binders from poor kaolin and dam sludge waste. Heliyon, 5https://doi.org/10.1016/j.heliyon.2019.e01938

  • Muriel, B., Sabine, H., Marion, O., Esther, K., Jean-Francois, H., & Irene, M. (2016). Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology, 32, 107–115. https://doi.org/10.1016/j.temb.2016.02.006

    Article  Google Scholar 

  • Muzek, M. N., Svilovic, S., & Zelic, J. (2014). Fly ash-based geopolymeric adsorbent for copper ion removal from wastewater. Desalinaton and Water Treatment, 52, 2519–2529.

    Article  CAS  Google Scholar 

  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Experimental designs for fitting response surfaces-I. Response surface methodology: Process and product optimization using designed experiments (pp. 499–624). John Wiley & Sons.

    Google Scholar 

  • Nadeem, M., Mahmooda, A., Shahid, S. A., Shah, S. S., Khalid, A. M., & McKaye, G. (2006). Sorption of lead from aqueous solution by chemically modified carbon adsorbents. Journal of Hazardous Materials, 138(3), 604–613.

    Article  CAS  Google Scholar 

  • Nakagawa, M., Santoshi, M., Yoshikura, S., Miura, M., Fukuda, T., & Harada, A. (2006). Kaolin deposits at Melthonnakkal and Pallipuram within Trivandrum block, southern India. Gondwana Research, 9, 530–538.

    Article  CAS  Google Scholar 

  • Nnaji, C. C., Agim, A. E., Mama, C. N., Emenike, P. C., & Ogarekpe, N. M. (2021). Equilibrium and thermodynamics investigation of biosorption of nickel from water by activated carbon made from palm kernel chaff. Scientific Reports. https://doi.org/10.1038/s41598-021-86932-6

    Article  Google Scholar 

  • Nwonu, D. C. (2021). Exploring soil geopolymer technology in soft ground improvement: A brief excursion. Arabian Journal of Geosciences, 14(460), 1–20.

    Google Scholar 

  • Nwonu, D. C., & Ikeagwuani, C. C. (2019). Evaluating the effect of agro-based admixture on lime-treated expansive soil for subgrade material. International Journal of Pavement Engineering, 1–15. Retrieved from https://doi.org/10.1080/10298436.2019.1703979

  • Nwonu, D. C., & Ikeagwuani, C. C. (2020). Microdust effect on the physical condition and microstructure of tropical black clay. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s41062-020-00400-0

    Article  Google Scholar 

  • Onyia, M. E., Agunwamba, J. C., & Nwonu, D. C. (2021). Hydraulic conductivity behaviour of expansive soil geopolymer binders. Arabian Journal of Geosciences, 14, 503. https://doi.org/10.1007/s12517-021-06851-8

    Article  CAS  Google Scholar 

  • Pan, S., Haddad, A. Z., & Gadgil, A. J. (2019). Towards greener and more sustainable manufacture of bauxite derived adsorbents for water defluoridation. ACS Sustainable Chemical Engineering, 1823–1833.

  • Pooresmaeil, M., & Namazi, H. (2020). Application of polysaccharide-based hydrogels for water treatments. In Hydrogels based on natural polymers (pp. 411–455). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816421-1.00014-8

  • Pooresmaiel, M., et al. (2018). Efficient removal of methylene blue by novel magnetic hydrogel nanocomposites of poly(acrylic acid). Advances in Polymer Technology, 37(1), 262–274.

    Article  Google Scholar 

  • Provis, J. L., Yong, S. L., & Duxson, P. (2009). Nanostructure/microstructure of metakaolin geopolymers. Geopolymers - Structures, processing, properties and industrial applications (pp. 72–88). Woodhead Publishing Limited.

    Google Scholar 

  • Rai, P. K., Lee, J., Kaliasa, S. K., Kwon, E. E., Tsang, Y. F., Ok, Y. S., & Kim, K. H. (2018). Acritical review of ferrate(IV)-based remediation of soil and groundwater. Enviromental Research, 160, 420–448.

    Article  CAS  Google Scholar 

  • Rajczykowski, K., Salasinka, O., & Loska, K. (2018). Zinc removal from the aqueous solutions by the chemically modeified biosorbents. Journal of Water, Air and Soil Pollution, 6, 229.

    Google Scholar 

  • Rao, R., & Sahu, J. N. (2018). Process optimization and adsorption modeling using activated carbon derived from palm oil kernel shell for Zn(II) disposal from the aqueous environment using differential evolution embedded neural network. Journal of Molecular Liquids, 265, 592–602. https://doi.org/10.1016/j.molliq.2018.06.040

    Article  CAS  Google Scholar 

  • Rothon, R. (2017). China clay or kaolin. In Fillers for polymer applications. Polymers and Polymeric Composites: A Reference Series (pp. 161–175). Cham: Springer.

  • Salam, J., Pawlak, J. J., Venditti, R. A., & Tahlawy, K. (2011). Incorporation of carboxyl groups into xylan for improved absorbency. Cellulose, 18, 1033–1041.

    Article  CAS  Google Scholar 

  • Sandra, F., Carmen, L., Oliveira, P., Sergio, A., Lemosde, M., Manuel, G., ... Vicelma, L. C. (2011). Characterisation of xanthan gum produced from sugar cane broth. Carbohydrate Polymers, 86, 469–476. https://doi.org/10.1026/j.carbpol.2011.04.063

  • Sarkar, C., Basu, J. K., & Samanta, A. N. (2018). Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for zinc(II) removal. Advanced Powder Technology, 29, 1142–1152.

    Article  CAS  Google Scholar 

  • Shen, J., Kaur, I., Baktash, M. M., He, Z., & Ni, Y. (2013). A combined process of activated carbon adsorption ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process. Biores.

  • Singh, N., & Gupta, S. K. (2016). Adsorption of heavy metals: A review. International Journal of Innovative Research in Science, Engineering and Engineering Technology, 2267–2281.

  • Soltani, A. (2017). Discussion of “Optimization of carpet waste fibres and steel slag to reinforce expansive soil using response surface methodology” by M Shahbazi, M Rowshanzamir, SM Abtahi, SM Hejazi (Appl Clay Sci, https://doi.org/10.1016/j.clay.2016.11.027). Applied Clay Science. Retrieved from https://doi.org/10.1016/j.clay.2017.07.020

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2006). Modelling individual and competitive adsorption of cadmium(II) and zinc(II) metal ions from aqueous solution onto bagasse fly ash. Seperation Science and Technology, 41(12), 2685–2710. https://doi.org/10.1080/01496390600725687

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2008). Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash. Colloids and Surfaces A: Physicochem. Eng. Aspects, 312, 172–184. https://doi.org/10.1016/j.colsurfa.2007.06.048

    Article  CAS  Google Scholar 

  • Tony, M. A., Parker, H. L., & Clark, J. H. (2018). Evaluating Algibon adsorbent and adsorption kineticss for launderette water treatment: Towards sustainable water management. Water and Environmental Journal, 1–8. https://doi.org/10.1111/wej.12412

  • Ugwu, E. I., & Agunwamba, J. C. (2020). Optimal conditions for adsorption of zinc from industrial wastewater using groundnut husk ash. Environmental Monitoring and Assessment, 193:345, 192:345. https://doi.org/10.1007/s10661-020-08262-w

  • United Nations World Water Development Report. (2019). Leaving no one behind. 7, Place de Fontenoy, 75352 Paris 07 SP, France: The United Nations Educational, Scientific and Cultural Organization.

  • Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., ... Amouzgar, P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 113, 115–130.

  • Vazquez, G., Calvo, M., Freire, M. S., Gonzalez-alvarez, J., & Antorrena, G. (2009). Chestnut shell as heavy metal adsorbent: Optimization study of lead, copper and zinc cations removal. Journal of Hazardous Materials, 172, 1402–1414.

    Article  CAS  Google Scholar 

  • Villa, C., Pecina, E. T., Torres, R., & Gomez, L. (2010). Geopolymer synthesis using alkaline activation of natural zeolite. Construction and Building Materials, 24, 2084–2090.

    Article  Google Scholar 

  • Vimal, C. S., Indra, D. M., & Indra, M. M. (2014). Modelling individual and competitive adsorption of cadmium(II) and zinc(II) metal ion from aqueous solution onto bagasse fly ash. Journal of Separation Science and Technology, 2686–2710. https://doi.org/10.1080/014963906007252687

  • WHO. (2011). World Health Organization guidelines for drinking water quality. Acceptibility aspects: taste, odour and apperence, Geneva, 4th Edition, 1–294.

  • Wuana, R. A., Sha’Ato, R., & Iorhen, S. (2015). Preparation, characterization, and evaluation of Moringa oleifera pod husk adsorbents for aqueous phase removal of norfloaxin. Desalination and Water Treatment, 1–13. https://doi.org/10.1080/19443994.2015.1046150

  • Zamani, S. A., Yunus, R., Samsuri, A. W., Salleh, M. A., & Asady, B. (2017). Removal of zinc from aqueous solution by optimed oil palm empty fruit brunches biochar as low cost adsorbent. Bioinorganic Chemistry and Application. https://doi.org/10.1155/2017/7914714

    Article  Google Scholar 

  • Zia, Z., Hartland, A., & Mucalo, M. R. (2020). Use of low-cost biopolymers and biopolymeric composite systems for heavy metal removal from water. International Journal of Environmental Science and Technology, 1–18. https://doi.org/10.1007/s13762-020-02764-3

  • Zolgharnein, J., Bagtash, M., Feshki, S., & Zolgharnein, P. (2017). Crossed mixture process design optimization and adsorption characterization of multi-metal (Cu(II), Zn(III) and Ni(II)) removal by modified buxus sempervirens tree leaves. Journal of the Taiwan Institute of Chemical Engineers, 78, 104–117. https://doi.org/10.1016/j.jtice.2017.03.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the immense assistance of Okeugo Dennis and Ikechukwu Okechukwu during the execution of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Chimobi Nwonu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mama, C.N., Nwonu, D.C., Akanno, C.C. et al. Adsorption capacity of composite bio-modified geopolymer for multi-component heavy metal system: optimisation, equilibrium and kinetics study. Environ Monit Assess 194, 134 (2022). https://doi.org/10.1007/s10661-021-09733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09733-4

Keywords

Navigation