Skip to main content

Advertisement

Log in

Analyzing WSTP trend: a new method for global warming assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper tries to introduce a time-series of temperature parameters as a potential method for studying the global warming. So, we investigated the spatial–temporal variations of warm-season temperature parameters (WSTP), including start time, end time, length of season, base value, peak time, peak value, amplitude, large integrated value, right drive, and left drive, using a database of 30 years’ period in different climates of Iran. We used daily temperature data from 1989 to 2018 over Iran to extract the parameters by TIMESAT software. We studied the trend analysis of WSTP through the Mann–Kendall method. Then, we considered the Pearson correlation coefficient to calculate the correlation between WSTP and time. We assessed the trends of the slope using a simple linear regression method. Then, we compared the results of the WSTP trend analysis in climatic zones. Our results accused the hyper-arid climatic zone has the longest warm season (194.89 days a year). The warm season in this region starts earlier than other regions and increases with moderate speed (left drive, 0.19 °C day−1). Then, it reaches a peak value (31.3 °C) earlier than the different climatic zones. On the other hand, the humid regions’ warm season starts with the shortest length and ends later than the other climatic zones (112.1 and 297.5 days a year for start and end times, respectively). We detected that the trend of the start time parameter has decreased by 98.02% of the study area during the last 30 years. The base value, length, and large integrated value parameters have an increasing trend of 66.47%, 80.11%, and 92.95% in Iran. The highest correlation coefficient with time was for start time and large integrated value parameters. Hence, the start time and large integrated value parameters have almost the most negative (< − 0.5) and positive (> 5) trend slope, among other parameters, respectively. In general, these results demonstrate that the studied region has faced global warming impacts over time by increasing the warm season and thermal energy, especially in arid and hyper-arid. We highlight the necessity of planning the land use under the high natural vulnerability of the studied local, especially in this new age of global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data are within the manuscript.

Notes

  1. - International Panel on Climate Change.

References

  • Ahmad, N., Shaffril, H. A. M., Samah, A. A., Idris, K., Samah, B. A., & Hamdan, M. E. (2020). The adaptation towards climate change impacts among islanders in Malaysia. Science of The Total Environment, 699, 134404.

  • Ahmadi, F., Nazeri Tahroudi, M., Mirabbasi, R., Khalili, K., & Jhajharia, D. (2018). Spatiotemporal trend and abrupt change analysis of temperature in Iran. Meteorological Applications, 25(2), 314–321.

    Article  Google Scholar 

  • Amiri, M. J., & Eslamian, S. S. (2009). Deficit irrigation is the way to improve water productivity in agriculture. Agriculture in Zagros region and adaptation for sustainable development. Yasoj Islamic Azad University.

  • Amiri, M. J., & Eslamian, S. S. (2010). Investigation of climate change in Iran. Journal of Environmental Science and Technology, 3(4), 208–216.

    Article  Google Scholar 

  • Behrang Manesh, M., Khosravi, H., Alamdarloo, E, H., Alekasir, M, S., Gholami, A., & Singh, V, P. (2019). Linkage of agricultural drought with meteorological drought in different climates of Iran. Theoretical and Applied Climatology, 1–9.

  • Brown, S. J., Caesar, J., & Ferro, C. A. (2008). Global changes in extreme daily temperature since 1950. Journal of Geophysical Research: Atmospheres, 113(D5).

  • Burns, D. A., Klaus, J., & McHale, M. R. (2007). Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA. Journal of Hydrology, 336(1–2), 155–170.

    Article  Google Scholar 

  • Chakravarty, P., & Kumar, M. (2020). Mann-Kendall Trend analysis of weather parameters (1901–2002) of 4 districts with different land use pattern of Jharkhand during pre-monsoon period. Studies in Indian Place Names, 40(3), 2391–2404.

    Google Scholar 

  • Chatfield, C. (2016). The analysis of time series: An introduction. Chapman and Hall/CRC Press.

    Google Scholar 

  • Croitoru, A. E., Holobaca, I. H., Lazar, C., Moldovan, F., & Imbroane, A. (2012). Air temperature trend and the impact on winter wheat phenology in Romania. Climatic Change, 111(2), 393–410.

    Article  Google Scholar 

  • Dammo, M. N., Abubakar, B. I., & Sangodoyin, A. Y. (2015). Trend and change analysis of monthly and seasonal temperature series over north-eastern Nigeria. Journal of Geography, Environment and Earth Science International, 3(2), 1–8.

    Article  Google Scholar 

  • Das, T., Pierce, D. W., Cayan, D. R., Vano, J. A., & Lettenmaier, D. P. (2011). The importance of warm-season warming to western US streamflow changes. Geophysical Research Letters, 38(23).

  • Dixon, H., Lawler, D. M., & Shamseldin, A. Y. (2006). Streamflow trends in western Britain. Geophysical Research Letters, 33(19).

  • Douglas, E. M., Vogel, R. M., & Kroll, C. N. (2000). Trends in floods and low flows in the United States: Impact of spatial correlation. Journal of Hydrology, 240(1–2), 90–105.

    Article  Google Scholar 

  • Durán, J., Delgado-Baquerizo, M., Dougill, A. J., Guuroh, R. T., Linstädter, A., Thomas, A. D., & Maestre, F. T. (2018). Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe. Ecology, 99(5), 1184–1193.

    Article  Google Scholar 

  • Eklundh, L., & Jönsson, P. (2015). TIMESAT 3.2 with Parallel Processing Software Manual; Lund University. Lund, Sweden, 22–24.

  • Eklundh, L., & Jönsson, P. (2016). TIMESAT for processing time-series data from satellite sensors for land surface monitoring. In Multitemporal Remote Sensing (pp. 177–194). Springer, Cham.

  • Eklundh, L., & Jönsson, P. (2017). TIMESAT 3.2 with Parallel Processing Software Manual; Lund University. Lund, Sweden.

  • El Kenawy, A., López-Moreno, J. I., & Vicente-Serrano, S. M. (2012). Trend and variability of surface air temperature in northeastern Spain (1920–2006): Linkage to atmospheric circulation. Atmospheric Research, 106, 159–180.

    Article  Google Scholar 

  • Fallah, B., Sodoudi, S., Russo, E., Kirchner, I., & Cubasch, U. (2017). Towards modeling the regional rainfall changes over Iran due to the climate forcing of the past 6000 years. Quaternary International, 429, 119–128.

    Article  Google Scholar 

  • Fallah-Ghalhari, G., Shakeri, F., & Dadashi-Roudbari, A. (2019). Impacts of climate changes on the maximum and minimum temperature in Iran. Theoretical and Applied Climatology, 138(3–4), 1539–1562.

    Article  Google Scholar 

  • Fathian, F., Morid, S., & Kahya, E. (2015). Identification of trends in hydrological and climatic variables in Urmia Lake basin. Iran. Theoretical and Applied Climatology, 119(3–4), 443–464.

    Article  Google Scholar 

  • Fengjin, X., & Lianchun, S. (2011). Analysis of extreme low-temperature events during the warm season in Northeast China. Natural Hazards, 58(3), 1333–1344.

    Article  Google Scholar 

  • Ghahraman, B. (2007). Time trend in the mean annual temperature of Iran. Turkish Journal of Agriculture and Forestry, 30(6), 439–448.

    Google Scholar 

  • Ghasemi, A. R. (2015). Changes and trends in maximum, minimum and mean temperature series in Iran. Atmospheric Science Letters, 16(3), 366–372.

    Article  Google Scholar 

  • Guo, W., Ni, X., Jing, D., & Li, S. (2014). Spatial-temporal patterns of vegetation dynamics and their relationships to climate variations in Qinghai Lake Basin using MODIS time-series data. Journal of Geographical Sciences, 24(6), 1009–1021.

    Article  Google Scholar 

  • HadiPour, S., Wahab, A. K. A., & Shahid, S. (2020). Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmospheric Research, 233, 104704.

  • HadiPour, S., Wahab, A., Khairi, A., Shahid, S., & Wang, X. (2019). Spatial pattern of the unidirectional trends in thermal bioclimatic indicators in Iran. Sustainability, 11(8), 2287.

    Article  Google Scholar 

  • Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363.

    Article  Google Scholar 

  • He, M. (2014). Water quantity and water quality trend analysis in northwest Indiana using modified Mann Kendall test (Doctoral dissertation, Purdue University).

  • Hess, A., Iyer, H., & Malm, W. (2001). Linear trend analysis: A comparison of methods. Atmospheric Environment, 35(30), 5211–5222.

    Article  CAS  Google Scholar 

  • Heydari Alamdarloo, E., Behrang Manesh, M., & Khosravi, H. (2018). Probability assessment of vegetation vulnerability to drought based on remote sensing data. Environmental Monitoring and Assessment, 190(12), 702.

    Article  Google Scholar 

  • Inter–Governmental Panel on Climate Change (IPCC). (2007). Climate change and agriculture in Africa: Impact assessment and adaptation strategies. https://www.earthprint.com

  • Iqbal, M. A., Penas, A., Cano-Ortiz, A., Kersebaum, K. C., Herrero, L., & del Río, S. (2016). Analysis of recent changes in maximum and minimum temperatures in Pakistan. Atmospheric Research, 168, 234–249.

    Article  Google Scholar 

  • Jiang, Q., Qi, Z., Xue, L., Bukovsky, M., Madramootoo, C. A., & Smith, W. (2020). Assessing climate change impacts on greenhouse gas emissions, N losses in drainage and crop production in a subsurface drained field. Science of The Total Environment, 705, 135969.

  • Kendall, M. G. (1975). Rank correlation measures. Charles Griffin, London, 202, 15.

    Google Scholar 

  • Khalili, K., Nazeri Tahoudi, M., Mirabbasi, R., & Ahmadi, F. (2016). Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stoch Environ Res Risk Assess, 30(4), 1205–1221.

    Article  Google Scholar 

  • Khaliq, M. N., Ouarda, T. B. M. J., Gachon, P., Sushama, L., & St-Hilaire, A. (2009). Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. Journal of Hydrology, 368(1–4), 117–130.

    Article  Google Scholar 

  • Khan, N., Shahid, S., & bin Ismail, T., & Wang, X. J. (2019). Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theoretical and Applied Climatology, 136(3–4), 899–913.

    Article  Google Scholar 

  • Klein, I., Mayr, S., Gessner, U., Hirner, A., & Kuenzer, C. (2021). Water and hydropower reservoirs: High temporal resolution time series derived from MODIS data to characterize seasonality and variability. Remote Sensing of Environment, 253, 112207.

  • Khosravi, H., Moradi, E., & Darabi, H. (2015). Identification of homogeneous groundwater quality regions using factor and cluster analysis; A case study Ghir Plain of Fars Province. Irrigation and Water Engineering, 6(1), 119–133.

    Google Scholar 

  • Kousari, M. R., & Asadi Zarch, M. A. A. (2011). Minimum, maximum, and mean annual temperatures, relative humidity, and precipitation trends in arid and semi-arid regions of Iran. Arabian Journal of Geosciences, 4(5–6), 907–914.

    Article  Google Scholar 

  • Kousari, M. R., Ahani, H., & Hendi-zadeh, R. (2013). Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Global and Planetary Change, 111, 97–110.

    Article  Google Scholar 

  • Koutroulis, A. G. (2019). Dryland changes under different levels of global warming. Science of the Total Environment, 655, 482–511.

    Article  CAS  Google Scholar 

  • Kumar, S., & Kaur, H. (2012). Face recognition techniques: Classification and comparisons. International Journal of Information Technology and Knowledge Management, 5(2), 361–363.

    Google Scholar 

  • Lamchin, M., Lee, W. K., Jeon, S. W., Wang, S. W., Lim, C. H., Song, C., & Sung, M. (2018). Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Science of the Total Environment, 618, 1089–1095.

    Article  CAS  Google Scholar 

  • Latif, Y., Yaoming, M., Yaseen, M., Muhammad, S., & Wazir, M. A. (2020). Spatial analysis of temperature time series over the Upper Indus Basin (UIB) Pakistan. Theoretical and Applied Climatology, 139(1), 741–758.

    Article  Google Scholar 

  • Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66.

    Article  Google Scholar 

  • Leng, G., Tang, Q., & Rayburg, S. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 126, 23–34.

    Article  Google Scholar 

  • Li, Y., Chen, Y., & Li, Z. (2019). Dry/wet pattern changes in global dryland areas over the past six decades. Global and Planetary Change, 178, 184–192.

    Article  Google Scholar 

  • Liu, S., Huang, S., Huang, Q., Xie, Y., Leng, G., Luan, J., & Li, X. (2017). Identification of the non-stationarity of extreme precipitation events and correlations with large-scale ocean-atmospheric circulation patterns: A case study in the Wei River Basin, China. Journal of Hydrology, 548, 184–195.

    Article  Google Scholar 

  • Mahmoudi, P., Mohammadi, M., & Daneshmand, H. (2019). Investigating the trend of average changes of annual temperatures in Iran. International Journal of Environmental Science and Technology, 16(2), 1079–1092.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245–259.

  • McBean, E., & Motiee, H. (2008). Assessment of impact of climate change on water resources: A long term analysis of the Great Lakes of North America. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 12(1), 239–255.

    Article  Google Scholar 

  • Mekonen, A. A., & Berlie, A. B. (2020). Spatiotemporal variability and trends of rainfall and temperature in the Northeastern Highlands of Ethiopia. Modeling Earth Systems and Environment, 6(1), 285–300.

    Article  Google Scholar 

  • Meshram, S. G., Kahya, E., Meshram, C., Ghorbani, M. A., Ambade, B., & Mirabbasi, R. (2020). Long-term temperature trend analysis associated with agriculture crops. Theoretical and Applied Climatology, 140(3), 1139–1159.

    Article  Google Scholar 

  • Mianabadi, A., Shirazi, P., Ghahraman, B., Coenders-Gerrits, A. M. J., Alizadeh, A., & Davary, K. (2018). Assessment of short- and long-term memory in trends of major climatic variables over Iran: 1966–2015. Theoretical and Applied Climatology, 135(1–2), 677–691.

    Google Scholar 

  • Miri, M., Samakosh, J. M., Raziei, T., Jalilian, A., & Mahmodi, M. (2021). Spatial and temporal variability of temperature in Iran for the twenty-first century foreseen by the CMIP5 GCM models. Pure and Applied Geophysics, 178(1), 169–184.

    Article  Google Scholar 

  • Modarres, R., & da Silva, V. D. P. R. (2007). Rainfall trends in arid and semi-arid regions of Iran. Journal of Arid Environments, 70(2), 344–355.

    Article  Google Scholar 

  • Moradi, E., Khosravi, H., Zehtabian, G., Khalighi-Sigaroodi, S., & Cerda, A. (2020). Vulnerability assessment of land degradation using network analysis process and geographic information system (case study: Maharloo-Bakhtegan Watershed). Iranian Journal of Soil and Water Research, 51(5), 1069–1080.

    Google Scholar 

  • Parece, T. E., & Campbell, J. B. (2018). Intra-urban microclimate effects on phenology. Urban Science, 2(1), 26.

    Article  Google Scholar 

  • Patil, N. S., Chetan, N. L., Nataraja, M., & Suthar, S. (2020). Climate change scenarios and its effect on groundwater level in the Hiranyakeshi watershed. Groundwater for Sustainable Development, 100323.

  • Rahimzadeh, F., Asgari, A., & Fattahi, E. (2009). Variability of extreme temperature and precipitation in Iran during recent decades. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(3), 329–343.

    Article  Google Scholar 

  • Rencher, A. C. (2002). Methods of multivariate analysis (2nd ed.). Wiley.

    Book  Google Scholar 

  • Rihan, W., Zhang, H., Zhao, J., Shan, Y., Guo, X., Ying, H., & Li, H. (2021). Promote the advance of the start of the growing season from combined effects of climate change and wildfire. Ecological Indicators, 125, 107483.

  • Roshan, G., Oji, R., & Al-Yahyai, S. (2014). Impact of climate change on the wheat-growing season over Iran. Arabian Journal of Geosciences, 7(8), 3217–3226.

    Article  Google Scholar 

  • Sharif, M., Burn, D., & Hussain, A. (2010). Climate change impacts on extreme flow measures in Satluj River Basin in India. In World Environmental and Water Resources Congress 2010: Challenges of Change (pp. 46–59).

  • Shokoohi, A. R., Raziei, T., & Daneshkar Arasteh, P. (2014). On the effects of climate change and global warming on water resources in Iran. International Bulletin of Water Resources & Development, 2(4), 1–9.

    Google Scholar 

  • Smadi, M. M. (2006). Observed abrupt changes in minimum and maximum temperatures in Jordan in the 20th century. American Journal of Environmental Sciences, 2(3), 114–120.

    Article  Google Scholar 

  • Tabari, H., Somee, B., & Rezaeianzadeh, M. (2011). Testing for long-term trends in climatic variables in Iran. Atmospheric Research, 100(1), 132–140.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Lopez-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J. M., & Coelho, F. (2014). Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9(4), 044001.

  • Viola, F. M., Paiva, S. L., & Savi, M. A. (2010). Analysis of the global warming dynamics from temperature time series. Ecological Modelling, 221(16), 1964–1978.

    Article  Google Scholar 

  • Vose, R. S., Easterling, D. R., & Gleason, B. (2005). Maximum and minimum temperature trends for the globe: An update through 2004. Geophysical Research Letters, 32(23).

  • You, Q., Min, J., & Kang, S. (2016). Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. International Journal of Climatology, 36(6), 2660–2670.

    Article  Google Scholar 

  • Zarenistanak, M., Dhorde, A. G., & Kripalani, R. H. (2014). Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran. Journal of Earth System Science, 123(2), 281–295.

    Article  Google Scholar 

  • Zhang, Y., Xu, Y. L., Dong, W. J., & Cao, L. J. (2007). A preliminary analysis of distribution characteristics of maximum and minimum temperature and diurnal temperature range changes over China under SRES B2 scenario. Chinese Journal of Geophysics, 50(3), 632–642.

    Article  Google Scholar 

  • Zhou, X., Huang, G., Wang, X., & Cheng, G. (2018). Future changes in precipitation extremes over Canada: Driving factors and inherent mechanism. Journal of Geophysical Research: Atmospheres, 123(11), 5783–5803.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Iran Meteorological Organization (IRIMO) for providing the meteorological data and the Forests, Range and Watershed Management Organization of Iran for giving the climatic map of Iran for this study.

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis: EHA. Methodology: EHA, EM. Resources: MA, YF. Software: EHA, EM, YF. Supervision: HK. Writing—original draft: MA. Writing—review and editing: HK, AMdS.

Corresponding author

Correspondence to Hassan Khosravi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari Alamdarloo, E., Moradi, E., Abdolshahnejad, M. et al. Analyzing WSTP trend: a new method for global warming assessment. Environ Monit Assess 193, 806 (2021). https://doi.org/10.1007/s10661-021-09600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09600-2

Keywords

Navigation