Skip to main content
Log in

Response of rice (Oryza sativa L.) cultivars to elevated ozone stress

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The plant response to elevated ozone stress reveals inter-species and intra-species disparity. Ozone-induced crop yield loss is predicted to increase in the future, posing a threat to the world economy. This study aims to evaluate the cultivar specific variation in rice exposed to elevated ozone. Fifteen short-duration rice cultivars were exposed to 50 ppb ozone for 30 days at reproductive stage. The physiological, biochemical, growth and yield traits of all test cultivars were significantly affected in response to elevated ozone. On an average, ozone stress decreased the tiller number by 22.52%, number of effective tillers by 30.43%, 1000 grain weight by 0.62% and straw weight by 23.83% over control. Spikelet sterility increased by 19.26% and linear multiregression 3D model significantly fits the spikelet sterility and photosynthetic traits with the R2 of 0.74 under elevated ozone. Principal Component Analysis with total variance of 57.5% categorized 15 rice cultivars into four major groups, i.e., ozone sensitive (MDU6, TRY(R)2 and ASD16), moderately ozone sensitive (ASD18, ADT43, and MDU5), moderately ozone tolerant (ADT37, ADT(R)45, TPS5, Anna(R)4, PMK(R)3, and ADT(R)48), and ozone tolerant (CO51, CO47, and ADT36). This study indicates that the different responses of rice cultivars to elevated ozone stress through a change in plant physiology, biochemical, growth, and yield traits and the results directed to provide scientific information on plant adaptations to ozone stress and helps in efforts to search ozone tolerant gene for plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data materials

The authors declare that complete data set is provided in the results and supplementary file of this paper.

References

  • Ainsworth, E. A. (2008). Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology, 14(7), 1642–1650. https://doi.org/10.1111/j.1365-2486.2008.01594.x

    Article  Google Scholar 

  • Akhtar, N., Yamaguchi, M., Inada, H., Hoshino, D., Kondo, T., Fukami, M., Funada, R., & Izuta, T. (2010). Effects of ozone on growth, yield and leaf gas exchange rates of four Bangladeshi cultivars of rice (Oryza sativa L.). Environmental Pollution, 158(9), 2970–2976. https://doi.org/10.1016/j.envpol.2010.05.026

  • Ashrafuzzaman, M., Haque, Z., Ali, B., Mathew, B., Yu, P., Hochholdinger, F., de Abreu Neto, J. B., McGillen, M. R., Ensikat, H. J., Manning, W. J., & Frei, M. (2018). Ethylenediurea (EDU) mitigates the negative effects of ozone in rice: Insights into its mode of action. Plant Cell & Environment, 41(12), 2882–2898. https://doi.org/10.1111/pce.13423

    Article  CAS  Google Scholar 

  • Ashrafuzzaman, M., Lubna, F. A., Holtkamp, F., Manning, W. J., Kraska, T., & Frei, M. (2017). Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L.) with ethylenediurea (EDU). Environmental Pollution, 230, 339–350. https://doi.org/10.1016/j.envpol.2017.06.055

    Article  CAS  Google Scholar 

  • Baier, M., Kandlbinder, A., Golldack, D., & Dietz, K. J. (2005). Oxidative stress and ozone: Perception, signalling and response. Plant Cell & Environment, 28(8), 1012–1020. https://doi.org/10.1111/j.1365-3040.2005.01326.x

    Article  CAS  Google Scholar 

  • Bates, L. S., Waldren, S. P., & Teare, I. D. (1973). Rapid determination of proline for water-stressed studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Bellini, E., & De Tullio, M. C. (2019). Ascorbic acid and ozone: Novel perspectives to explain an elusive relationship. Plants, 8(5), 122. https://doi.org/10.3390/plants8050122

    Article  CAS  Google Scholar 

  • Chaudhary, N., & Agrawal, S. B. (2013). Intraspecific responses of six Indian clover cultivars under ambient and elevated levels of ozone. Environmental Science and Pollution Research, 20(8), 5318–5329. https://doi.org/10.1007/s11356-013-1517-0

    Article  CAS  Google Scholar 

  • Chen, C. P., Frei, M., & Wissuwa, M. (2011). The OzT8 locus in rice protects leaf carbon assimilation rate and photosynthetic capacity under ozone stress. Plant Cell & Environment, 34(7), 1141–1149. https://doi.org/10.1111/j.1365-3040.2011.02312.x

    Article  CAS  Google Scholar 

  • Crous, K. Y., Vandermeiren, K., & Ceulemans, R. (2006). Physiological responses to cumulative ozone uptake in two white clover (Trifolium repens L. cv. Regal) clones with different ozone sensitivity. Environmental and Experimental Botany, 58(1–3), 169–179. https://doi.org/10.1016/j.envexpbot.2005.07.007

  • David, L. M., & Nair, P. R. (2013). Tropospheric column O3 and NO2 over the Indian Region observed by ozone monitoring instrument (OMI): Seasonal changes and long-term trends. Atmospheric Environment, 65, 25–39. https://doi.org/10.1016/j.atmosenv.2012.09.033

    Article  CAS  Google Scholar 

  • Deb Roy, S., Beig, G., & Ghude, S. D. (2009). Exposure-plant response of ambient ozone over the tropical Indian Region. Atmospheric Chemistry and Physics, 9(14), 5253–5260. https://doi.org/10.5194/acp-9-5253-2009

    Article  Google Scholar 

  • Fatima, A., Singh, A. A., Mukherjee, A., Dolker, T., Agrawal, M., & Agrawal, S. B. (2019). Assessment of ozone sensitivity in three wheat cultivars using ethylenediurea. Plants, 8(4), 80. https://doi.org/10.3390/plants8040080

    Article  CAS  Google Scholar 

  • Feng, Z., De Marco, A., Anav, A., Gualtieri, M., Sicard, P., Tian, H., Fornasier, F., Tao, F., Guo, A., & Paoletti, E. (2019). Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environment International, 131, 104966. https://doi.org/10.1016/j.envint.2019.104966

    Article  CAS  Google Scholar 

  • Fischer, T. (2019). Wheat yield losses in India due to ozone and aerosol pollution and their alleviation: A critical review. Outlook on Agriculture, 48(3), 181–189. https://doi.org/10.1177/0030727019868484

    Article  Google Scholar 

  • Fiscus, E. L., Booker, F. L., & Burkey, K. O. (2005). Crop responses to ozone: Uptake, modes of action, carbon assimilation and partitioning. Plant Cell & Environment, 28(8), 997–1011. https://doi.org/10.1111/j.1365-3040.2005.01349.x

    Article  CAS  Google Scholar 

  • Frei, M. (2015). Breeding of ozone resistant rice: Relevance, approaches and challenges. Environmental Pollution, 197, 144–155. https://doi.org/10.1016/j.envpol.2014.12.011

    Article  CAS  Google Scholar 

  • Frei, M., Tanaka, J. P., & Wissuwa, M. (2008). Genotypic variation in tolerance to elevated ozone in rice: Dissection of distinct genetic factors linked to tolerance mechanisms. Journal of Experimental Botany, 59(13), 3741–3752. https://doi.org/10.1093/jxb/ern222

    Article  CAS  Google Scholar 

  • Ghude, S. D., Jena, C., Chate, D. M., Beig, G., Pfister, G. G., Kumar, R., & Ramanathan, V. (2014). Reductions in India’s crop yield due to ozone. Geophysical Research Letters, 41(15), 5685–5691. https://doi.org/10.1002/2014GL060930

    Article  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189–198. https://doi.org/10.1016/0003-9861(68)90654-1

  • IPCC. (2013) Climate Change 2013: The Physical Science Basis. In: T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

  • IPCC. (2021). Summary for Policymakers. In: V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

  • Jing, L., Dombinov, V., Shen, S., Wu, Y., Yang, L., Wang, Y., & Frei, M. (2016). Physiological and genotype-specific factors associated with grain quality changes in rice exposed to high ozone. Environmental Pollution, 210, 397–408. https://doi.org/10.1016/j.envpol.2016.01.023

    Article  CAS  Google Scholar 

  • Kakar, N., Jumaa, S. H., Redoña, E. D., Warburton, M. L., & Reddy, K. R. (2019). Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice, 12(1), 1–14. https://doi.org/10.1186/s12284-019-0317-7

    Article  Google Scholar 

  • Kao, C. H. (2015). Role of L-ascorbic acid in rice plants. Crop Environment & Bioinformatics, 12(1), 1–7.

    CAS  Google Scholar 

  • Keller, T., & Schwager, H. (1977). Air pollution and ascorbic acid. European Journal of Forest Pathology, 7(6), 338–350. https://doi.org/10.1111/j.1439-0329.1977.tb00603.x

    Article  CAS  Google Scholar 

  • Kibria, M. G., Hossain, M., Murata, Y., & Hoque, M. A. (2017). Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Science, 24(3), 155–162. https://doi.org/10.1016/j.rsci.2017.05.001

    Article  Google Scholar 

  • Krishna sharma, R. & Nagaveena, S. (2016). Variation of ozone with meteorology in surface air over two sites of southern Tamil Nadu, India. Indian Journal of Radio & Space Physics (IJRSP), 45(2), 79–86.

    Google Scholar 

  • Kumari, S., Lakhani, A., & Kumari, K. M. (2020). First observation-based study on surface O3 trend in Indo-Gangetic Plain: Assessment of its impact on crop yield. Chemosphere, 255, 126972. https://doi.org/10.1016/j.chemosphere.2020.126972

    Article  CAS  Google Scholar 

  • Lal, D. M., Ghude, S. D., Patil, S. D., Kulkarni, S. H., Jena, C., Tiwari, S., & Srivastava, M. K. (2012). Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP), India. Atmospheric Research, 116, 82–92. https://doi.org/10.1016/j.atmosres.2012.02.014

    Article  CAS  Google Scholar 

  • Lal, S., Venkataramani, S., Naja, M., Kuniyal, J. C., Mandal, T. K., Bhuyan, P. K., Kumari, K. M., Tripathi, S. N., Sarkar, U., Das, T., & Swamy, Y. V. (2017). Loss of crop yields in India due to surface ozone: An estimation based on a network of observations. Environmental Science and Pollution Research, 24(26), 20972–20981. https://doi.org/10.1007/s11356-017-9729-3

    Article  CAS  Google Scholar 

  • Li, C., Zhu, J., Zeng, Q., Luo, K., Liu, B., Liu, G., & Tang, H. (2017). Different responses of transgenic Bt rice and conventional rice to elevated ozone concentration. Environmental Science and Pollution Research, 24(9), 8352–8362. https://doi.org/10.1007/s11356-017-8508-5

    Article  CAS  Google Scholar 

  • Lin, Z., Zhang, X., Yang, X., Li, G., Tang, S., Wang, S., Ding, Y., & Liu, Z. (2014). Proteomic analysis of proteins related to rice grain chalkiness using iTRAQ and a novel comparison system based on a notched-belly mutant with white-belly. BMC Plant Biology, 14(1), 1–17. https://doi.org/10.1186/1471-2229-14-163

    Article  Google Scholar 

  • Löw, M., Deckmyn, G., Op de Beeck, M., Blumenröther, M. C., Oßwald, W., Alexou, M., Jehnes, S., Haberer, K., Rennenberg, H., Herbinger, K., & Häberle, K. H. (2012). Multivariate analysis of physiological parameters reveals a consistent O3 response pattern in leaves of adult European beech (Fagus sylvatica). New Phytologist, 196(1), 162–172. https://doi.org/10.1111/j.1469-8137.2012.04223.x

    Article  CAS  Google Scholar 

  • Masutomi, Y., Kinose, Y., Takimoto, T., Yonekura, T., Oue, H., & Kobayashi, K. (2019). Ozone changes the linear relationship between photosynthesis and stomatal conductance and decreases water use efficiency in rice. Science of the Total Environment, 655, 1009–1016. https://doi.org/10.1016/j.scitotenv.2018.11.132

    Article  CAS  Google Scholar 

  • Mazid, M. S., Rafii, M. Y., Hanafi, M. M., Rahim, H. A., & Latif, M. A. (2013). Genetic variation, heritability, divergence and biomass accumulation of rice genotypes resistant to bacterial blight revealed by quantitative traits and ISSR markers. Physiologia Plantarum, 149(3), 432–447. https://doi.org/10.1111/ppl.12054

    Article  CAS  Google Scholar 

  • Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., & Kanaya, Y. (2017). Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation. Atmospheric Chemistry and Physics, 17(2), 807–837. https://doi.org/10.5194/acp-17-807-2017

    Article  CAS  Google Scholar 

  • Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., & Stevenson, D. S. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics, 15(15), 8889–8973. https://doi.org/10.5194/acp-15-8889-2015

    Article  CAS  Google Scholar 

  • Nahar, S., Vemireddy, L. R., Sahoo, L., & Tanti, B. (2018). Antioxidant protection mechanisms reveal significant response in drought-induced oxidative stress in some traditional rice of Assam India. Rice Science, 25(4), 185–196. https://doi.org/10.1016/j.rsci.2018.06.002

    Article  Google Scholar 

  • Pandey, A. K., Ghosh, A., Agrawal, M., & Agrawal, S. B. (2018). Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality. Ecotoxicology and Environmental Safety, 158, 59–68. https://doi.org/10.1016/j.ecoenv.2018.04.014

    Article  CAS  Google Scholar 

  • Pandey, A. K., Majumder, B., Keski-Saari, S., Kontunen-Soppela, S., Mishra, A., Sahu, N., Pandey, V., & Oksanen, E. (2015). Searching for common responsive parameters for ozone tolerance in 18 rice cultivars in India: Results from ethylenediurea studies. Science of the Total Environment, 532, 230–238. https://doi.org/10.1016/j.scitotenv.2015.05.040

    Article  CAS  Google Scholar 

  • Pang, J., Kobayashi, K., & Zhu, J. (2009). Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agriculture, ecosystems & environment, 132(3–4), 203–211. https://doi.org/10.1016/j.agee.2009.03.012

  • Peng, B., Wang, Y., Zhu, J., Wang, Y., & Yang, L. (2018). Effects of ozone stress on rice growth and yield formation under different planting densities-a face study. International Journal of Agriculture and Biology, 20(11), 2599–2605. https://doi.org/10.17957/IJAB/15.0846

  • Rejeb, K. B., Abdelly, C., & Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, 278–284. https://doi.org/10.1016/j.plaphy.2014.04.007

    Article  CAS  Google Scholar 

  • Shao, Z., Zhang, Y., Mu, H., Wang, Y., Wang, Y., & Yang, L. (2020). Ozone-induced reduction in rice yield is closely related to the response of spikelet density under ozone stress. Science of the Total Environment, 712, 136560. https://doi.org/10.1016/j.scitotenv.2020.136560

    Article  CAS  Google Scholar 

  • Sharma, A., Ojha, N., Pozzer, A., Beig, G., & Gunthe, S. S. (2019). Revisiting the crop yield loss in India attributable to ozone. Atmospheric Environment: X, 1, 100008. https://doi.org/10.1016/j.aeaoa.2019.100008

    Article  CAS  Google Scholar 

  • Shi, G., Yang, L., Wang, Y., Kobayashi, K., Zhu, J., Tang, H., Pan, S., Chen, T., Liu, G., & Wang, Y. (2009). Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agriculture, Ecosystems & Environment, 131(3–4), 178–184. https://doi.org/10.1016/j.agee.2009.01.009

    Article  CAS  Google Scholar 

  • Singh, A. A., Fatima, A., Mishra, A. K., Chaudhary, N., Mukherjee, A., Agrawal, M., & Agrawal, S. B. (2018). Assessment of ozone toxicity among 14 Indian wheat cultivars under field conditions: Growth and productivity. Environmental Monitoring and Assessment, 190(4), 1–14. https://doi.org/10.1007/s10661-018-6563-0

    Article  CAS  Google Scholar 

  • Terao, T., Nagata, K., Morino, K., & Hirose, T. (2010). A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theoretical and Applied Genetics, 120(5), 875–893. https://doi.org/10.1007/s00122-009-1218-8

    Article  CAS  Google Scholar 

  • TNAU. (2019). Tamil Nadu Agricultural University-Crop production guide: agriculture-nutrient management for rice crop. Accessed February 1, 2019, from http://agritech.tnau.ac.in/agriculture/agri_nutrientmgt_rice.html

  • Udayasoorian, C., Jayabalakrishnan, R. M., Suguna, A. R., Venkataramani, S., & Lal, S. (2013). Diurnal and seasonal characteristics of ozone and NOx over a high altitude Western Ghats location in Southern India. Advances in Applied Science Research, 4(5), 309–320.

    CAS  Google Scholar 

  • Ueda, Y., Frimpong, F., Qi, Y., Matthus, E., Wu, L., Höller, S., Kraska, T., & Frei, M. (2015). Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. Journal of experimental botany, 66(1), 293–306. https://doi.org/10.1093/jxb/eru419

  • Ueda, Y., Uehara, N., Sasaki, H., Kobayashi, K., & Yamakawa, T. (2013). Impacts of acute ozone stress on superoxide dismutase (SOD) expression and reactive oxygen species (ROS) formation in rice leaves. Plant Physiology and Biochemistry, 70, 396–402. https://doi.org/10.1016/j.plaphy.2013.06.009

    Article  CAS  Google Scholar 

  • Upadhyaya, H., Khan, M. H., & Panda, S. K. (2007). Hydrogen peroxide induces oxidative stress in detached leaves of Oryza sativa L. General and Applied Plant Physiology, 33(1–2), 83–95.

    CAS  Google Scholar 

  • Urban, J., Ingwers, M. W., McGuire, M. A., & Teskey, R. O. (2017). Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. Journal of Experimental Botany, 68(7), 1757–1767. https://doi.org/10.1093/jxb/erx052

    Article  CAS  Google Scholar 

  • Vainonen, J. P., & Kangasjärvi, J. (2015). Plant signalling in acute ozone exposure. Plant, Cell & Environment, 38(2), 240–252. https://doi.org/10.1111/pce.12273

    Article  CAS  Google Scholar 

  • Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., & Cofala, J. (2009). The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43(3), 604–618. https://doi.org/10.1016/j.atmosenv.2008.10.033

    Article  CAS  Google Scholar 

  • Wang, J., Zeng, Q., Zhu, J., Liu, G., & Tang, H. (2013). Dissimilarity of ascorbate–glutathione (AsA–GSH) cycle mechanism in two rice (Oryza sativa L.) cultivars under experimental free-air ozone exposure. Agriculture, Ecosystems & Environment, 165, 39–49. https://doi.org/10.1016/j.agee.2012.12.006

    Article  CAS  Google Scholar 

  • Wang, Y., Yang, L., Höller, M., Zaisheng, S., Pariasca-Tanaka, J., Wissuwa, M., & Frei, M. (2014). Pyramiding of ozone tolerance QTLs OzT8 and OzT9 confers improved tolerance to season-long ozone exposure in rice. Environmental and Experimental Botany, 104, 26–33. https://doi.org/10.1016/j.envexpbot.2014.03.005

    Article  CAS  Google Scholar 

  • Wang, Y., Yang, L., Kobayashi, K., Zhu, J., Chen, C. P., Yang, K., Tang, H., & Wang, Y. (2012). Investigations on spikelet formation in hybrid rice as affected by elevated tropospheric ozone concentration in China. Agriculture, Ecosystems & Environment, 150, 63–71. https://doi.org/10.1016/j.agee.2012.01.016

    Article  CAS  Google Scholar 

  • Yang, N., Wang, X., Zheng, F., & Chen, Y. (2017). The impact of elevated ozone on the ornamental features of two flowering plants (Tagetes erecta Linn. and Petunia hybrida Vilm.). International Journal of Environment and Pollution, 61(1), 29–45. https://doi.org/10.1504/IJEP.2017.10003698

  • Zheng, F., Wang, X., Zhang, W., Hou, P., Lu, F., Du, K., & Sun, Z. (2013). Effects of elevated O3 exposure on nutrient elements and quality of winter wheat and rice grain in Yangtze River Delta, China. Environmental Pollution, 179, 19–26. https://doi.org/10.1016/j.envpol.2013.03.051

    Article  CAS  Google Scholar 

  • Ziemke, J. R., Oman, L. D., Strode, S. A., Douglass, A. R., Olsen, M. A., McPeters, R. D., Bhartia, P. K., Froidevaux, L., Labow, G. J., Witte, J. C., & Thompson, A. M. (2019). Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation. Atmospheric Chemistry and Physics, 19(5), 3257–3269. https://doi.org/10.5194/acp-19-3257-2019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Physical Research Laboratory (PRL), Indian Space Research Organisation (ISRO), Ahmadabad, India, and Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

Funding

This work was financially supported by the Physical Research Laboratory (PRL), Indian Space Research Organisation (ISRO), Ahmadabad under Atmospheric Trace gases Chemistry Transport Modeling (ATCTM) Scheme granted to Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Periyasamy Dhevagi.

Ethics declarations

Competing interests

The authors declare that they have no known competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, A., Dhevagi, P., Priyatharshini, S. et al. Response of rice (Oryza sativa L.) cultivars to elevated ozone stress. Environ Monit Assess 193, 808 (2021). https://doi.org/10.1007/s10661-021-09595-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09595-w

Keywords

Navigation