Skip to main content
Log in

Heavy metal concentrations in rivers and drinking water of Esmeraldas (Ecuador) under an intermittent water supply service

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Universal access to safe water is a major global goal, but these efforts could be at stake because drinking water sources are becoming polluted in many developing countries. Chlorine, major ions, and heavy metals were measured in rivers and drinking water of Esmeraldas because potential pollution sources raise concerns about the quality of the water supply, and because users have developed strategies to cope with water shortages including collecting river water and water distributed by tankers, storing water at home, and consuming commercial bottled water. We sampled water from the water distribution system (WDS) and the Esmeraldas and Teaone rivers including the intake to the potabilization plant, water distributed by tankers, and commercial bottled water. Most of the samples collected from the Esmeraldas and Teaone rivers, the WDS, and tankers complied with drinking water standards, but higher concentration of cadmium and other metals in the eastern part of the city is an indication of corrosion inside the WDS. Commercial bottled and WDS water showed similar heavy metal concentrations, but regular consumption of some brands may lead to higher exposure to arsenic and mineral deficiencies. Chlorine concentrations in the water supplied by the WDS were below the values required for safe disinfection, and in-house chlorination is uncommon in the city. Strengthening pollution control in the Esmeraldas river, monitoring corrosion of the WDS, and promoting point-use chlorination and better water handling practices are required to secure a safer water supply in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author J. Molinero upon reasonable request.

Code availability

Not applicable.

References

  • Abdeldayem, R. (2020). A preliminary study of heavy metals pollution risk in water. Applied Water Science, 10, 1. https://doi.org/10.1007/s13201-019-1058-x

    Article  CAS  Google Scholar 

  • Abraham, M., & Susan, T. (2017). Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in Western Uganda; implications for domestic water quality. Chemosphere, 169, 281–287. https://doi.org/10.1016/j.chemosphere.2016.11.077

    Article  CAS  Google Scholar 

  • ACSAM (2012). Sistema regional de agua potable Esmeraldas. Informe final. Cuenca, Ecuador: ACSAM Consultores.

  • Agathokleous, A., Christodoulou, C., & Christodoulou, S. (2017). Influence of intermittent water supply operations on the vulnerability of water distribution networks. Journal of Hydroinformatics, 19, 838–852. https://doi.org/10.2166/hydro.2017.133

    Article  Google Scholar 

  • Ali, M., Ali, M., Islam, M., & Rahman, M. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring & Management, 5, 27–35. https://doi.org/10.1016/j.enmm.2016.01.002

    Article  Google Scholar 

  • Al-Saleh, I., & Al-Doush, I. (1998). Survey of trace elements in household and bottled drinking water samples collected in Riyadh, Saudi Arabia. Science of the Total Environment, 216, 181–192.

    Article  CAS  Google Scholar 

  • Aris, A., Kam, R., Lim, A., & Praveena, S. (2013). Concentration of ions in selected bottled water samples sold in Malaysia. Applied Water Science, 3, 67–75. https://doi.org/10.1007/s13201-012-0060-3

    Article  CAS  Google Scholar 

  • Badr, E., Agrama, A., & Badr, S. (2011). Heavy metals in drinking water and human health. Egypt. Nutrition and Food Science, 41, 210–217. https://doi.org/10.1108/00346651111132484

    Article  Google Scholar 

  • Bempah, C., & Ewusi, A. (2016). Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana. Environmental Monitoring and Assessment, 188, 261. https://doi.org/10.1007/s10661-016-5241-3

    Article  CAS  Google Scholar 

  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.

    Article  Google Scholar 

  • Bhuyan, M., Bakar, M., Akhtar, A., Hossain, M., Ali, M., & Islam, M. (2017). Heavy metal contamination in surface water and sediment of the Meghna River, Bangladesh. Environmental Nanotechnology, Monitoring & Management, 8, 273–279. https://doi.org/10.1016/j.enmm.2017.10.003

    Article  Google Scholar 

  • Borja-Serrano, P., Ochoa-Herrera, V., Maurice, L., Morales, G., Quilumbaqui, C., Tejera, E. et al. (2020). Determination of the microbial and chemical loads in rivers from the Quito capital province of Ecuador (Pichincha). A preliminary analysis of microbial and chemical quality of the main rivers. International Journal of Environmental Research and Public Health, 17, 5048. https://doi.org/10.3390/ijerph17145048

  • Calderón, C., Núñez, A. & Wanner, Z. (2018). Speaking of water. Washington, USA: Inter-American Development Bank.

  • Carter, R., Tyrrel, S., & Howsam, P. (1993). Lessons learned from the UN water decade. Water and Environment Journal, 7, 646–650. https://doi.org/10.1111/j.1747-6593.1993.tb00898.x

    Article  Google Scholar 

  • Chalchisa, D., Megersa, M., & Beyene, A. (2017). Assessment of the quality of drinking water in storage tanks and its implication on the safety of urban water supply in developing countries. Environmental Systems Research, 6, 12. https://doi.org/10.1186/s40068-017-0089-2

    Article  Google Scholar 

  • Chiarenzelli, J., & Pominville, C. (2008). Bottled water selection and health considerations from multi-element analysis of products sold in New York state. Journal of Water and Health, 6, 505–512. https://doi.org/10.2166/wh.2008.064

    Article  CAS  Google Scholar 

  • Chowdhury, S., Mazumder, M., Al-Attas, O., & Husain, T. (2016). Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of the Total Environment, 569–570, 476–488. https://doi.org/10.1016/j.scitotenv.2016.06.166

    Article  CAS  Google Scholar 

  • Cipriani-Avila, I., Molinero, J., Jara-Negrete, E., Barrado, M., Arcos, C., Mafla, S. et al. (2020). Heavy metal assessment in drinking waters of Ecuador: Quito, Ibarra and Guayaquil. Journal of Water and Health. https://doi.org/10.2166/wh.2020.093

  • Dandadzi, P., Hoko, Z., & Nhiwatiwa, T. (2019). Investigating the quality of stored drinking water from the Harare water distribution system, Zimbabwe. Journal of Water, Sanitation and Hygiene for Development, 9, 90–101. https://doi.org/10.2166/washdev.2018.107

    Article  Google Scholar 

  • Daniele, L., Cannatelli, C., Buscher, J., & Bonatici, G. (2019). Chemical composition of Chilean bottled waters: Anomalous values and possible effects on human health. Science of the Total Environment, 689, 526–533. https://doi.org/10.1016/j.scitotenv.2019.06.165

    Article  CAS  Google Scholar 

  • Dong, W., Zhang, Y., & Quan, X. (2020). Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian. China. Chemosphere, 242, 125113. https://doi.org/10.1016/j.chemosphere.2019.125113

    Article  CAS  Google Scholar 

  • EAPA (2018). Informe de rendición de cuentas. Presentación a la ciudadanía. Esmeraldas, Ecuador: Empresa de Agua Potable y Alcantarillado San Mateo.

  • Egbueri, J., Ezugwu, C., Ameh, P., Unigwe, C., & Ayejoto, D. (2020). Appraising drinking water quality in Ikem rural area (Nigeria) based on chemometrics and multiple indexical methods. Environmental Monitoring and Assessment, 192, 308. https://doi.org/10.1007/s10661-020-08277-3

    Article  CAS  Google Scholar 

  • Egbueri, J., & Unigwe, C. (2019). An integrated indexical investigation of selected heavy metals in drinking water resources from a coastal plain aquifer in Nigeria. SN Applied Sciences, 1, 135–138. https://doi.org/10.1007/s42452-019-1489-x

    Article  CAS  Google Scholar 

  • Egbueri, J., & Unigwe, C. (2020). Understanding the extent of heavy metal pollution in drinking water supplies from Umunya, Nigeria: An indexical and statistical assessment. Analytical Letters, 13, 1–23. https://doi.org/10.1080/00032719.2020.1731521

    Article  CAS  Google Scholar 

  • Erickson, J., Smith, C., Goodridge, A., & Nelson, K. (2017). Water quality effects of intermittent water supply in Arraiján, Panama. Water Research, 114, 338–350. https://doi.org/10.1016/j.watres.2017.02.009

    Article  CAS  Google Scholar 

  • Fagerli, K., Trivedi, K., Sodha, S., Blanton, E., Ati, A., Nguyen, T., et al. (2017). Comparison of boiling and chlorination on the quality of stored drinking water and childhood diarrhoea in Indonesian households. Epidemiology and Infection, 145, 3294–3302. https://doi.org/10.1017/s0950268817002217

    Article  CAS  Google Scholar 

  • Fallahzadeh, R., Ghaneian, M., Miri, M., & Dashti, M. (2017). Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources. Environmental Science and Pollution Research, 24, 24790–24802. https://doi.org/10.1007/s11356-017-0102-3

    Article  CAS  Google Scholar 

  • Galaitsi, S., Russell, R., Bishara, A., Durant, J., Bogle, J., & Huber-Lee, A. (2016). Intermittent domestic water supply: A critical review and analysis of causal-consequential pathways. Water, 8, 274. https://doi.org/10.3390/w8070274

    Article  Google Scholar 

  • Garrett, V., Ogutu, P., Mabonga, P., Ombeki, S., Mwaki, A., Aluoch, G., et al. (2008). Diarrhoea prevention in a high-risk rural Kenyan population through point-of-use chlorination, safe water storage, sanitation, and rainwater harvesting. Epidemiology and Infection, 136, 1463–1471. https://doi.org/10.1017/s095026880700026x

    Article  CAS  Google Scholar 

  • Güler, C. (2007). Evaluation of maximum contaminant levels in Turkish bottled drinking waters utilizing parameters reported on manufacturers labeling and government-issued production licenses. Journal of Food Composition and Analysis, 20, 262–272. https://doi.org/10.1016/j.jfca.2006.10.005

    Article  CAS  Google Scholar 

  • Haddad, M., Mcneil, L., & Omar, N. (2014). Model for predicting disinfection by-product (DBP) formation and occurrence in intermittent water supply systems: Palestine as a case study. Arabian Journal for Science and Engineering, 39, 5883–5893. https://doi.org/10.1007/s13369-014-1200-x

    Article  CAS  Google Scholar 

  • Hadiani, M., Dezfooli-manesh, S., Shoeibi, S., Ziarati, P., & Khaneghah, A. (2014). Trace elements and heavy metals in mineral and bottled drinking waters on the Iranian market. Food Additives and Contaminants: Part B, 8, 18–24. https://doi.org/10.1080/19393210.2014.947526

    Article  CAS  Google Scholar 

  • Hashwa, F., & Tokajian, S. (2004). Intermittent water supply and domestic water quality in the Middle East. In F. Zereini & W. Jaeschke (Eds.), Water in the Middle East and in North Africa (pp. 157–166). Springer.

    Chapter  Google Scholar 

  • Hussain, S., Ur-Rehman, M., Khanam, T., Sheer, A., Kebin, Z., & Jianjun, Y. (2019). Health risk assessment of different heavy metals dissolved in drinking water. International Journal of Environmental Research and Public Health, 16, 1737. https://doi.org/10.3390/ijerph16101737

    Article  CAS  Google Scholar 

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B., & Beeregowda, K. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  Google Scholar 

  • Klingel, P. (2012). Technical causes and impacts of intermittent water distribution. Water Supply, 12, 504–512. https://doi.org/10.2166/ws.2012.023

    Article  Google Scholar 

  • Kozisek, F. (2005). Health risks from drinking demineralized water. Nutrients in drinking water (pp. 148–163). World Health Organization.

    Google Scholar 

  • Kumpel, E., & Nelson, K. (2013). Comparing microbial water quality in an intermittent and continuous piped water supply. Water Research, 47, 5176–5188. https://doi.org/10.1016/j.watres.2013.05.058

    Article  CAS  Google Scholar 

  • Kumpel, E., & Nelson, K. (2014). Mechanisms affecting water quality in an intermittent piped water supply. Environmental Science and Technology, 48, 2766–2775. https://doi.org/10.1021/es405054u

    Article  CAS  Google Scholar 

  • Kumpel, E., & Nelson, K. (2016). Intermittent water supply: Prevalence, practice, and microbial water quality. Environmental Science and Technology, 50, 542–553. https://doi.org/10.1021/acs.est.5b03973

    Article  CAS  Google Scholar 

  • Lei, Y., Lei, X., Westerhoff, P., Zhang, X. & Yang, X. (2020). Reactivity of chlorine radicals (Cl and Cl2) with dissolved organic matter and the formation of chlorinated byproducts. Environmental Science & Technology, 55, 689–699, https://doi.org/10.1021/acs.est.0c05596

  • Liao, F., Wang, G., Shi, Z., Huang, X., Xu, F., Xu, Q., et al. (2017). Distributions, sources, and species of heavy metals/trace elements in shallow groundwater around the Poyang Lake, East China. Exposure and Health, 10, 211–227. https://doi.org/10.1007/s12403-017-0256-8

    Article  CAS  Google Scholar 

  • Liu, Q., Han, W., Han, B., Shu, M. & Shi, B. (2018). Assessment of heavy metals in loose deposits in drinking water distribution system. Environmental Monitoring and Assessment, 190. https://doi.org/10.1007/s10661-018-6761-9

  • MAGAP. (2016). Mapa de cobertura de uso del suelo a escala provincial de los años 2013–14.. Ministerio de Agricultura, Ganaderıía, Acuicultura y Pesca de Ecuador, Quito..

  • Mahajan, R., Walia, T., & Lark-Sumanjit, B. (2006). Analysis of physical and chemical parameters of bottled drinking water. International Journal of Environmental Health Research, 16, 89–98. https://doi.org/10.1080/09603120500538184

    Article  CAS  Google Scholar 

  • Malakootian, M., Mohammadi, A., & Faraji, M. (2020). Investigation of physicochemical parameters in drinking water resources and health risk assessment: A case study in NW Iran. Environmental Earth Sciences, 79, 195. https://doi.org/10.1007/s12665-020-08939-y

    Article  CAS  Google Scholar 

  • Mason, S., Welch, V., & Neratko, J. (2018). Synthetic polymer contamination in bottled water. Frontiers in Chemistry, 6, 407. https://doi.org/10.3389/fchem.2018.00407

    Article  CAS  Google Scholar 

  • Mazhar, S., & Ahmad, S. (2020). Assessment of water quality pollution indices and distribution of heavy metals in drinking water in Ramganga aquifer, Bareilly District Uttar Pradesh. India. Groundwater for Sustainable Development, 10, 100304. https://doi.org/10.1016/j.gsd.2019.100304

    Article  Google Scholar 

  • Naja, G., & Volesky, B. (2017). Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. In L. Wang, M. Wang, Y. Hung, N. Shammas, & P. Chen (Eds.), Handbook of Advanced Industrial and Hazardous Wastes Management (pp. 855–903). CRC Press.

    Chapter  Google Scholar 

  • Nawab, J., Khan, S., Ali, S., Sher, H., Rahman, Z., Khan, K., et al. (2016). Health risk assessment of heavy metals and bacterial contamination in drinking water sources: A case study of Malakand Agency. Pakistan. Environmental Monitoring and Assessment, 188, 286. https://doi.org/10.1007/s10661-016-5296-1

    Article  CAS  Google Scholar 

  • Ojekunle, O., Ojekunle, O., Adeyemi, A., Taiwo, A., Sangowusi, O., Taiwo, A., et al. (2016). Evaluation of surface water quality indices and ecological risk assessment for heavy metals in scrap yard neighbourhood. Springerplus, 5, 560. https://doi.org/10.1186/s40064-016-2158-9

    Article  CAS  Google Scholar 

  • Oßsmann, B., Sarau, G., Holtmannspötter, H., Pischetsrieder, M., Christiansen, S., & Dicke, W. (2018). Small-sized microplastics and pigmented particles in bottled mineral water. Water Research, 141, 307–316. https://doi.org/10.1016/j.watres.2018.05.027

    Article  CAS  Google Scholar 

  • Oyebog, S., Ako, A., Nkeng, G., & Suh, E. (2012). Hydrogeochemical characteristics of some Cameroon bottled waters, investigated by multivariate statistical analyses. Journal of Geochemical Exploration, 112, 118–130. https://doi.org/10.1016/j.gexplo.2011.08.003

    Article  CAS  Google Scholar 

  • Peres-Neto, P., Jackson, D., & Somers, K. (2003). Giving meaningful interpretation to ordination axes: Assessing loading significance in principal component analysis. Ecology, 84, 2347–2363. https://doi.org/10.1890/00-0634

    Article  Google Scholar 

  • Pip, E. (2000). Survey of bottled drinking water available in Manitoba, Canada. Environmental Health Perspectives, 108, 863–866.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2015). R: a language and environment for statistical computing. https://www.r-project.org/

  • Razak, N., Praveena, S., Aris, A., & Hashim, Z. (2016). Quality of Kelantan drinking water and knowledge, attitude and practice among the population of Pasir Mas, Malaysia. Public Health, 131, 103–111. https://doi.org/10.1016/j.puhe.2015.11.006

    Article  Google Scholar 

  • Rezaei, H., Zarei, A., Kamarehie, B., Jafari, A., Fakhri, Y., Bidarpoor, F., et al. (2019). Levels, distributions and health risk assessment of lead, cadmium and arsenic found in drinking groundwater of Dehgolan’s villages. Iran. Toxicology and Environmental Health Sciences, 11, 54–62. https://doi.org/10.1007/s13530-019-0388-2

    Article  Google Scholar 

  • Rosenberg, D., Talozi, S., & Lund, J. (2008). Intermittent water supplies: Challenges and opportunities for residential water users in Jordan. Water International, 33, 488–504. https://doi.org/10.1080/02508060802474574

    Article  Google Scholar 

  • Saleh, M., Abdel-Rahman, F., Woodard, B., Clark, S., Wallace, C., Aboaba, A., et al. (2008). Chemical, microbial and physical evaluation of commercial bottled waters in greater Houston area of Texas. Journal of Environmental Science and Health, Part A, 43, 335–347. https://doi.org/10.1080/10934520701795400

    Article  CAS  Google Scholar 

  • Saleh, M., Ewane, E., Jones, J., & Wilson, B. (2001). Chemical evaluation of commercial bottled drinking water from Egypt. Journal of Food Composition and Analysis, 14, 127–152.

    Article  CAS  Google Scholar 

  • Sun, H., Shi, B., Yang, F. & Wang, D. (2017). Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system. Water Research, 114, 69–77. https://doi.org/10.1016/j.watres.2017.02.021

  • Tesfamariam, Z., & Younis, Y. (2016). Assessment of physicochemical parameters and levels of heavy metals concentrations in drinking water of Asmara city, Eritrea III. American Journal of Research Communication, 4, 30–44.

    Google Scholar 

  • Tokajian, S., & Hashwa, F. (2003). Water quality problems associated with intermittent water supply. Water Science and Technology, 47, 229–234.

    Article  CAS  Google Scholar 

  • UN. (2015). The millennium development goals report. New York, USA: United Nations.

  • UNESCO. (2019). Leaving no one behind. Paris, France: United Nations Educational, Scientific and Cultural Organization.

  • UNICEF & WHO. (2019). Progress on household drinking water, sanitation and hygiene 2000–2017. Special focus on inequalities. New York, USA: United Nations Children’s Fund and World Health Organization.

  • Vetrimurugan, E., Brindha, K., Elango, L., & Ndwandwe, O. (2016). Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Applied Water Science, 7, 3267–3280. https://doi.org/10.1007/s13201-016-0472-6

    Article  CAS  Google Scholar 

  • Voloshenko-Rossin, A., Gasser, G., Cohen, K., Gun, J., Cumbal-Flores, L., Parra-Morales, W., et al. (2015). Emerging pollutants in the Esmeraldas watershed in Ecuador: Discharge and attenuation of emerging organic pollutants along the San Pedro-Guayllabamba-Esmeraldas rivers. Environmental Science: Processes and Impacts, 17, 41–53. https://doi.org/10.1039/c4em00394b

    Article  CAS  Google Scholar 

  • Wasike, P., Nawiri, M. & Wanyonyi, A. (2019). Levels of heavy metals (Pb, Mn, Cu and Cd) in water from river Kuywa and the adjacent wells. Environment and Ecology Research, 7, 135–138. https://doi.org/10.13189/eer.2019.070303

  • WBG. (2018). Atlas of sustainable development goals from world development indicators. Washington, USA: World Bank Group.

  • WHO. (2017a). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. World Health Organization.

    Google Scholar 

  • WHO. (2017b). Principles and practices of drinking-water chlorination. World Health Organization.

    Google Scholar 

  • WHO & UNICEF. (2006). Meeting the MDG drinking water and sanitation target: the urban and rural challenge of the decade. Geneve, Switzerland: World Health Organization and United Nations Children’s Fund.

  • Yagloa, C. (2016). Análisis del mercado del sector de embotelladoras de agua sin gas en la ciudad de Esmeraldas. Pontificia Universidad Católica del Ecuador Sede Esmeraldas.

    Google Scholar 

  • Yan, X., Zhao, W., Yang, X., Liu, C. & Zhou, Y. (2020). Input-output balance of cadmium in typical agriculture soils with historical sewage irrigation in China. Journal of Environmental Management, 276, 111298. https://doi.org/10.1016/j.jenvman.2020.111298

  • Zhang, S., Liu, G., Sun, R., & Wu, D. (2016). Health risk assessment of heavy metals in groundwater of coal mining area: A case study in Dingji coal mine, Huainan coalfield, China. Human and Ecological Risk Assessment, 22, 1469–1479. https://doi.org/10.1080/10807039.2016.1185689

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Technical and human support provided by SGIker (UPV/EHU, MINECO, GV/EJ, ERDF, and ESF), and use of digital information from the Instituto Geografico Militar (IGM, www.igm.gob.ec) and the Instituto Nacional de Metereología e Hidrología (INAMHI, www.serviciometeorologico.gob.ec) are gratefully acknowledged.

Funding

This project has been financed by the Pontificia Universidad Catolica del Ecuador Sede Esmeraldas and the Pontificia Universidad Catolica del Ecuador (Research Project O13025).

Author information

Authors and Affiliations

Authors

Contributions

J. Molinero, I. Cipriani-Avila, and M. Barrado designed the study, performed the field and laboratory work, and contributed to the discussion of the manuscript. J. Molinero performed the statistical analyses and wrote the manuscript.

Corresponding author

Correspondence to Jon Molinero.

Ethics declarations

Conflict of interest

The authors declare no competing interests,

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28.8 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molinero, J., Cipriani-Avila, I. & Barrado, M. Heavy metal concentrations in rivers and drinking water of Esmeraldas (Ecuador) under an intermittent water supply service. Environ Monit Assess 193, 775 (2021). https://doi.org/10.1007/s10661-021-09579-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09579-w

Keywords

Navigation