Skip to main content
Log in

Macroinvertebrate and fish communities in the watershed of a re-constructed Mediterranean water body: link to the ecological potential

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The role of benthic macroinvertebrate and fish communities for assessing the ecological quality of an artificial re-constructed, after 50 years of dryness, Mediterranean water body (Karla Reservoir, Greece) is presented. Moreover, we provide knowledge on the structure of the biological communities and their functioning role, for inspiring feature actions that will contribute to biodiversity protection and ecosystem services. Water (physicochemical parameters), benthic macroinvertebrates, and fish were monitored during a 2-year survey (2013–2015) in Karla and Kalamaki reservoirs and the inflowing ditches. A clear temporal pattern was evident for all sampling stations studied, differentiating the low- and high-flow period samples as to their physicochemical parameters. Redundancy analysis (RDA) revealed NO3-N, total nitrogen and total dissolved phosphorous as the most significant environmental parameters in explaining benthic invertebrate variance in ditches. Generally, tolerant to organic pollution macroinvertebrate taxa were abundant in ditches and reservoirs, while the fish fauna in Karla was composed almost exclusively of planktivorous and invertivorous species. Macroinvertebrate (GLBiI) and fish (GLFI) indices classified the ecological quality of Karla Reservoir as “poor” while ditches were classified as “bad” according to HESY-2. The anthropogenic pressures applied in the catchment and the benefits of improving water quality are discussed in the context of the implementation of Water Framework Directive 2000/60/EC for introducing sustainable management plans, taking into account some ecological restoration principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexakis, D., Kagalou, I., & Tsakiris, G. (2013). Assessment of pressures and impacts on surface water bodies of the Mediterranean. Case study: Pamvotis Lake, Greece. Environmental Earth Sciences, 70(2), 687–698. https://doi.org/10.1007/s12665-012-2152-7

    Article  CAS  Google Scholar 

  • Allan, J., & Johnson, L. (1997). Catchment scale analysis of aquatic ecosystems. Freshwater Biology, 37(1), 107–111. https://doi.org/10.1046/j.1365-2427.1997.00155.x

    Article  Google Scholar 

  • Ananiadis, C. I. (1956). Limnological study of lake Karla. Bulletin Institute Oceanography, 1083, 1–19.

    Google Scholar 

  • APHA, A. W. W. A. (2005). WEF, 2005. Standard methods for the examination of water and wastewater, 21st edn. Washington, DC, New York: American Public Health Association.

  • Armitage, P. D., & Hogger, J. (1994). Invertebrates Ecology and Methods of Survey. Bedfordshire: Sandy RSPB.

    Google Scholar 

  • Artemiadou, V., & Lazaridou, M. (2005). Evaluation score and interpretation index for the ecological quality of running waters in Central and Northern Hellas. Environmental Monitoring and Assessment, 110(1–3), 1–40. https://doi.org/10.1007/s10661-005-6289-7

    Article  CAS  Google Scholar 

  • Balvay, G., Gawler, M., & Pelletier, J. P. (1990). Lake trophic status and the development of the clear-water phase in Lake Geneva. In M. M. Tilzer & C. Serruya (Eds.), Large lakes, Ecological Structure and Function (pp. 580–591). Berlin: Springer.

    Chapter  Google Scholar 

  • Beklioglu, M., Romo, S., Kagalou, I., Quintana, X., & Bécares, E. (2007). State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia, 584(1), 317–326. https://doi.org/10.1007/s10750-007-0577-x

    Article  Google Scholar 

  • Bennett, C., Owen, R., Birk, S., Buffagni, A., Erba, S., Mengin, N., Murray-Bligh, J., Ofenböck, G., Pardo, I., van de Bund, W., Wagner, F., & Wasson, J. G. (2011). Bringing European river quality into line: an exercise to intercalibrate macro-invertebrate classification methods. Hydrobiologia, 667(1), 31–48. https://doi.org/10.1007/s10750-011-0635-2

    Article  Google Scholar 

  • Birk, S., Bonne, W., Borja, A., Brucet, S., Courrat, A., Poikane, S., Solimini, A., van de Bund, W., Zampoukas, N., & Hering, D. (2012). Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators, 18, 31–41. https://doi.org/10.1016/j.ecolind.2011.10.009

    Article  Google Scholar 

  • Blindow, I., Andersson, M., Hargeby, A., & Johansson, S. (1993). Long term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology, 30(1), 159–167. https://doi.org/10.1111/j.1365-2427.1993.tb00796.x

    Article  Google Scholar 

  • Brabec, K., Zahrádková, S., Pařil, P., Němejcová, D., Kokeš, J., & Jarkovský, J. (2004). Assessment of organic pollution effect considering differences between lotic and lentic stream habitats. In D. Hering, P. F. M. Verdonschot, O. Moog, & L. Sandin (Eds.), Integrated assessment of running waters in Europe (pp. 331–346). Netherlands: Springer. https://doi.org/10.1007/978-94-007-0993-5_20

    Chapter  Google Scholar 

  • Brooks, S. J., Langdon, P. G., & Heiri, O. (2007). The Identification and use of Palaearctic Chironomidae Larvae in Palaeoecology, QRA Technical Guide No. 10. London: Quaternary Research Association.

    Google Scholar 

  • Brosse, S., Arbuckle, C. J., & Townsend, C. R. (2003). Habitat scale and biodiversity: influence of catchment, stream reach and bed form scales on local invertebrate diversity. Biodiversity and Conservation, 12(10), 2057–2075. https://doi.org/10.1023/A:1024107915183

    Article  Google Scholar 

  • Camargo, J. Α., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environmental International, 32(6), 831–849. https://doi.org/10.1016/j.envint.2006.05.002

    Article  CAS  Google Scholar 

  • CEN. (2003). Water Quality – Sampling of Fish with Electricity. CEN/TC 230, Ref. No. EN 14011, 1–16.

  • CEN. (2005). Water quality—Sampling of Fish with Multimesh Gillnets. Ref. No. 14757, 1–29.

    Google Scholar 

  • Chamoglou, M., Papadimitriou, T., & Kagalou, I. (2014). Keys-descriptors for the functioning of a Mediterranean reservoir: the case of a new Lake Karla-Greece. Environmental Processes, 1(2), 127–135. https://doi.org/10.1007/s40710-014-0011-0

    Article  CAS  Google Scholar 

  • Chatzinikolaou, Y., Dakos, V., & Lazaridou, M. (2006). Longitudinal impacts of anthropogenic pressures on benthic macroinvertebrate assemblages in a large transboundary Mediterranean river during the low flow period. Acta Hydrochimica et Hydrobiologica, 34(5), 453–463. https://doi.org/10.1002/aheh.200500644

    Article  CAS  Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: Primer-E, Ltd.

    Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2006). PRIMER V6: User Manual-tutorial. Plymouth: PRIMER-E, Ltd.

    Google Scholar 

  • Clarke, K. R., Gorley, R. N., Somerfield, P. J., & Warwick, R. M. (2014). Change in marine communities: an approach to statistical analysis and interpretation (3rd ed.). Plymouth: PRIMER-E Ltd.

    Google Scholar 

  • Collier, K. J., Ilcock, R. J., & Meredith, A. S. (1998). Influence of substrate type and physic-chemical conditions on macroinvertebrate faunas and biotic indices of some lowland Waikato, New Zealand, streams. New Zealand Journal of Marine and Freshwater Research, 32(1), 1–19. https://doi.org/10.1080/00288330.1998.9516802

    Article  Google Scholar 

  • Copp, G. H., & Fox, M. G. (2007). Growth and life history traits of introduced pumpkinseed (Lepomis gibbosus) in Europe, and the relevance to its potential invasiveness. In F. Gherardi (Ed.), Biological invaders in inland waters: Profiles, distribution, and threats (pp. 289–306). Netherlands: Springer. https://doi.org/10.1007/978-1-4020-6029-8_15

    Chapter  Google Scholar 

  • Covich, A. P., Palmer, M. A., & Crowl, T. A. (1999). The role of benthic invertebrate species in freshwater ecosystems. Bioscience, 49(2), 119–127. https://doi.org/10.2307/1313537

    Article  Google Scholar 

  • Dodds, W. K., & Welch, Ε. B. (2000). Establishing nutrient criteria in streams. Journal of the North American Benthological Society, 19(1), 186–196. https://doi.org/10.2307/1468291

    Article  Google Scholar 

  • Economidis, P. S. (1991). Check list of freshwater fishes of Greece: recent status of threats and protection. Athens: Hellenic Society for the Protection of Nature.

    Google Scholar 

  • Economidis, P. S., Bobori, D. C. & Pergantis, F. (2003). Ichthyologic Study in the Area of the Previous Lake Karla. Technical Report, Aristotle University of Thessaloniki, 1–157 (in Greek).

    Google Scholar 

  • EGY. (2013). River Basin Management Plan of Thessaly. Report in Greek. Accessed on: 01/05/2017. Available from: http://wfd.ypeka.gr/pdf/GR08_Sxedio_diaxeirisis%20neron_ ypogegrammeno.pdf.

  • EN 27828 (1994). Water quality - Methods of biological sampling - Guidance on handnet sampling of aquatic benthic macro-invertebrates (ISO 7828 1985). European Committee for Standardization, 1–16.

  • European Commission. (1992). Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of European Communities, 206, 7.

    Google Scholar 

  • European Commission. (2000). Directive 2000/60/EC of the European Parliament and the Council of the 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of European Communities, 327, 1–73.

    Google Scholar 

  • European Commission. (2005). Guidance on the Intercalibration Process 2004–2006. Guidance document no. 14, 1-26.

  • European Commission. (2006). Directive 2006/44/EC of the European Parliament and of the Council of 6 September 2006 on the quality of fresh waters needing protection or improvement in order to support fish life. Official Journal of European Union, 264, 20.

    Google Scholar 

  • FAME Consortium (2004). Manual for the application of the European Fish Index – EFI. A fish based method to assess the ecological status of European rivers in support of the water Framework Directive. Version 1.1, January 2005.

  • Fausch, K. D., Lyons, J. O. H. N., Karr, J. R., & Angermeier, P. L. (1990). Fish communities as indicators of environmental degradation. American Fisheries Society Symposium, 8, 123–144.

    Google Scholar 

  • Fox, M. G. (1994). Growth, density, and interspecific influences on pumpkinseed sunfish life histories. Ecology, 75(4), 1157–1171. https://doi.org/10.2307/1939439

    Article  Google Scholar 

  • Fox, M. G., Vila-Gispert, A., & Copp, G. H. (2007). Life-history traits of introduced Iberian pumpkinseed Lepomis gibbosus relative to native populations. Can differences explain colonization success? Journal of Fish Biology, 71(sd), 56–69.

    Article  Google Scholar 

  • Gkelis, S., Panou, M., Chronis, I., Zervou, S.K., Christophoridis, C., Manolidi, K., Ntislidou, C., Triantis, M.T., Kaloudis, T., Hiskia, A., Kagalou, I., & Lazaridou, M. (2017). Monitoring a newly re-born patient: Water quality and cyanotoxin occurrence in a reconstructed shallow Mediterranean lake. Advances in Oceanography and Limnology, 8(1), 33–51. https://doi.org/10.4081/aiol.2017.6350.

  • Gliwicz, Z. M. (2002). On the different nature of top-down and bottom-up effects in pelagic food webs. Freshwater Biology, 47(12), 2296–2312. https://doi.org/10.1046/j.1365-2427.2002.00990.x

    Article  Google Scholar 

  • Gonzalez, S. M., Jeppensen, E., Goma, J., Sondergaard, M., Jensen, J., Lauridsen, T., Graneli, W., & Solander, D. (1988). Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia, 170, 245–266.

    Article  Google Scholar 

  • Gulati, R. D., & van Donk, E. (2002). Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review. Hydrobiologia, 478(1/3), 73–106. https://doi.org/10.1023/A:1021092427559

    Article  Google Scholar 

  • Hering, D., Buffagni, A., Moog, O., Sandin, L., Sommerhäuser, M., Stubauer, I., Feld, C., Johnson, R., Pinto, P., Skoulikidis, N., Verdonschot, P., & Zahrádková, S. (2003). The development of a system to assess the ecological quality of streams based on macroinvertebrates—design of the sampling program within the AQEM project. International Review of Hydrobiology, 88(3–4), 345–361. https://doi.org/10.1002/iroh.200390030

    Article  Google Scholar 

  • Hilty, J., & Merenlender, A. (2000). Faunal indicator taxa selection for monitoring ecosystem health. Biological Conservation, 92(2), 185–197. https://doi.org/10.1016/S0006-3207(99)00052-X

    Article  Google Scholar 

  • ISO 7828 (1985). Water Quality – Methods of Biological Sampling – Guidance on Handnet Sampling of Aquatic Benthic Macro-Invertebrates. Ref. No. ISO 7828–1985. International Organization for Standardization, Ref. No. ISO 7828–1985, 1–12.

  • Jeppesen, E., Jensen, J. P., Kristensen, P., Søndergaard, M., Mortensen, E., Sortkjaer, O., & Olrik, K. (1990). Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia, 200(1), 219–227.

    Article  Google Scholar 

  • Jeppesen, E., Janse, I., Sondergaard, M., & Lauridsen, T. (1997). Top down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia, 342(343), 151–164.

    Article  Google Scholar 

  • Jerrentrup, H. (1990). The fauna of the former Lake Karla. In P. Gerakis (Ed.), Conservation and Management of the Greek Wetlands (pp. 527–535). Thessaloniki: WWF, IUCN and Aristotle University.

    Google Scholar 

  • Joniak, T., Kowalczewska-Madura, K., & Kozak, A. (2003). Trophic state of a lowland reservoir during 10 years after restoration. Hydrobiologia, 506(1–3), 759–765.

    Google Scholar 

  • Joy, M. K., & Death, R. G. (2002). Predictive modelling of freshwater fish as a biomonitoring tool in New Zealand. Freshwater Biology, 47(11), 2261–2275. https://doi.org/10.1046/j.1365-2427.2002.00954.x

    Article  Google Scholar 

  • Karatayev, A. Y., Burlakova, L. E., Vander Zanden, M. J., Lathrop, R. C., & Padilla, D. K. (2013). Change in a lake benthic community over a century: evidence for alternative community states. Hydrobiologia, 700(1), 287–300. https://doi.org/10.1007/s10750-012-1238-2

    Article  Google Scholar 

  • Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6(6), 21–27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2

    Article  Google Scholar 

  • Karr, J. R. (1987). Biological monitoring and environmental assessment: a conceptual framework. Environmental Management, 11(2), 249–256. https://doi.org/10.1007/BF01867203

    Article  Google Scholar 

  • Karr, J. R., Fausch, K. D., Angermeier, P. L., Yant, P. R., & Schlosser, I. J. (1986). Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey Special Publication, 5, 1–28.

    Google Scholar 

  • Kemitzoglou, D. (2004). The effectiveness of the semi-quantitative sampling method using benthic macroinvertebrates. Master Thesis. Aristotle University of Thessaloniki, Greece.

  • Klink, A. G., & Moller Pillot, H. K. M. (2003). Chironomidae Larvae: key to the higher taxa and species of the lowlands of Northwestern Europe. Amsterdam: Biodiversity Center of ETI, CD-ROM.

    Google Scholar 

  • Kottelat, M., & Freyhof, J. (2007). Handbook of European freshwater fishes Cornol, Switzerland: Publications Kottelat.

    Google Scholar 

  • Latinopoulos, D., Ntislidou, C., & Kagalou, I. (2016). Multipurpose plans for the sustainability of the Greek lakes: emphasis on multiple stressors. Environmental Processes, 3(3), 589–602. https://doi.org/10.1007/s40710-016-0152-4

    Article  Google Scholar 

  • Lazaridou, M., Ntislidou, C., Karaouzas, I., & Skoulikidis, N. (2018). Harmonization of a new assessment method for estimating the ecological quality status of Greek running waters. Ecological Indicators, 84, 683–694. https://doi.org/10.1016/j.ecolind.2017.09.032

    Article  CAS  Google Scholar 

  • Legakis, A., & Maragou, P. (2009). The Red Data Book of threatened animal species of Greece. Athens: Hellenic Zoological Society.

    Google Scholar 

  • Lijklema, L. (1994). Nutrient dynamics in shallow lakes: effects of changes in loading and role of sediment-water interactions. Hydrobiologia, 275(1), 335–348.

    Article  Google Scholar 

  • Moreno, P., & Callisto, M. (2006). Benthic macroinvertebrates in the watershed of an urban reservoir in southeastern Brazil. Hydrobiologia, 560(1), 311–321. https://doi.org/10.1007/s10750-005-0869-y

    Article  Google Scholar 

  • Naspleda, J., Vila-Gispert, A., Fox, M. G., Zamora, L., & Ruiz-Navarro, A. (2012). Morphological variation between non-native lake and stream dwelling pumpkinseed Lepomis gibbosus in the Iberian Peninsula. Journal of Fish Biology, 81(6), 1915–1935. https://doi.org/10.1111/j.1095-8649.2012.03416.x

    Article  CAS  Google Scholar 

  • Ntislidou, C., Lazaridou, M., Tsiaoussi, V., & Bobori D. (2016). Report on the development of the national assessment method for the ecological quality of natural lakes in Greece, using the Biological Quality Element “Benthic invertebrates” (GLBiI, Greek Lake Benthic invertebrate Index). Aristotle University of Thessaloniki, School of Biology, 1–25.

    Google Scholar 

  • Nurminen, L., Pekcan-Hekim, Z., & Horppila, J. (2010). Feeding efficiency of planktivorous perch Perca fluviatilis and roach Rutilus rutilus in varying turbidity: an individual-based approach. Journal of Fish Biology, 76(7), 1848–1855. https://doi.org/10.1111/j.1095-8649.2010.02600.x

    Article  CAS  Google Scholar 

  • Oberdorff, T., Pont, D., Hugueny, B., & Porcher, J. P. (2002). Development and validation of a fish-based index for the assessment of ‘river health’ in France. Freshwater Biology, 47(9), 1720–1734. https://doi.org/10.1046/j.1365-2427.2002.00884.x

    Article  Google Scholar 

  • Ofenböck, T., Moog, O., Gerritsen, J., & Barbour, M. (2004). A stressor specific multimetric approach for monitoring running waters in Austria using benthic macro-invertebrates. In Integrated Assessment of Running Waters in Europe (pp. 251–268). Netherlands: Springer Netherlands.

    Chapter  Google Scholar 

  • Olin, M., Rask, M., Ruuhljärvi, J., Kurkilahti, M., Ala-Opas, P., & Ylönen, O. (2002). Fish community structure in mesotrophic and eutrophic lakes of southern Finland: the relative abundances of percids and cyprinids along a trophic gradient. Journal of Fish Biology, 60(3), 593–612. https://doi.org/10.1111/j.1095-8649.2002.tb01687.x

    Article  Google Scholar 

  • Orendt, C., & Spies, M. (2014). Chironomus (Meigen) (Diptera: Chironomidae). Key to the larvae of importance to biological water analysis in Germany and adjacent areas. Bilingual edition (German/English). Leipzig: 1–24.

  • Pamplin, P. A. Z., Almeida, T. C. M., & Rocha, O. (2006). Composition and distribution of benthic macroinvertebrates in Americana Reservoir (SP, Brazil). Acta Limnologica Brasiliensia, 18(2), 121–132.

    Google Scholar 

  • Pardo, I., Gómez-Rodríguez, C., Abraín, R., García-Roselló, E., & Reynoldson, T. B. (2014). An invertebrate predictive model (NORTI) for streams and rivers: sensitivity of the model in detecting stress gradients. Ecological Indicators, 45, 51–62. https://doi.org/10.1016/j.ecolind.2014.03.019

    Article  Google Scholar 

  • Petriki, O., Lazaridou, M., & Bobori, D. C. (2016). Report on the development of the national assessment method for the ecological quality of natural lakes in Greece, using the Biological Quality Element “Fish” (GLFI, Greek Lake Fish Index), Aristotle University of Thessaloniki, School of Biology, 1–24.

    Google Scholar 

  • Petriki, O., Lazaridou, M., & Bobori, D. C. (2017). A fish-based index for the assessment of the ecological quality of temperate lakes. Ecological Indicators, 78, 556–565. https://doi.org/10.1016/j.ecolind.2017.03.029

    Article  CAS  Google Scholar 

  • Rosenberg, D. M., & Resh, V. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman & Hall.

    Google Scholar 

  • Scheffer, M. (2004). Ecology of shallow lakes. Dordrecht/Boston/London: Kluver Academic Publishers.

    Book  Google Scholar 

  • Sidiropoulos, P., Chamoglou, M., & Kagalou, I. (2017). Combining conflicting, economic, and environmental pressures: evaluation of the restored Lake Karla (Thessaly, Greece). Ecohydrology & Hydrobiology, 17(3), 177–189. https://doi.org/10.1016/j.ecohyd.2017.04.002

    Article  Google Scholar 

  • Stabouli, Z., Papadimitriou, T., & Kagalou, I. (2012). Assessment of the ecological status of Lake Karla, using populations of zooplankton. Proceedings of the 34th Hellenic Society of Biological Sciences, Trikala, 17-19 June, 260-261.

  • Straškraba, M., Tundisi, J. G., & Duncan, A. (1993). State-of-the-art of reservoir limnology and water quality management. In M. Straškraba, J. G. Tundisi, & A. Duncan (Eds.), Comparative reservoir limnology and water quality management (pp. 213–288). Netherlands: Springer. https://doi.org/10.1007/978-94-017-1096-1_13

    Chapter  Google Scholar 

  • Tachet, H., Richoux, P., Bournaud, M., & Usseglio-Polatera, P. (2010). Invertébrés d’eau douce. Systématique, biologie, écologie. Paris: CNRS Editions.

    Google Scholar 

  • Talling, J. F. (2003). Phytoplankton-zooplankton seasonal timing and the ‘clear-water phase’ in some English lakes. Freshwater Biology, 48(1), 39–52. https://doi.org/10.1046/j.1365-2427.2003.00968.x

    Article  CAS  Google Scholar 

  • Ter Braak, C. J. F., & Šmilauer, P. (1998). CANOCO Reference manual and User’s Guide to CANOCO for Windows. Software for Canonical Community Ordination (version 4). Wageningen: Centre for Biometry.

    Google Scholar 

  • Timm, T. (2009). A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia, 66, 1-235.

  • Townsend, C. R., Doledec, S., Norris, R., Peacock, K., & Arbuckle, C. (2003). The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwater Biology, 48(5), 768–785. https://doi.org/10.1046/j.1365-2427.2003.01043.x

    Article  Google Scholar 

  • Vallenduuk, H. J., & Moller Pillot, H. K. M. (2007). Chironomidae larvae of the Netherlands and adjacent lowlands. Zeist: KNNV Publishing.

    Google Scholar 

  • Vander Zanden, M. J., & Vadeboncoeur, Y. (2002). Fishes as integrators of benthic and pelagic food webs in lakes. Ecology, 83(8), 2152–2161.

  • Vanni, M. J., Boros, G., & McIntyre, P. B. (2013). When are fish sources vs. sinks of nutrients in lake ecosystems? Ecology, 94(10), 2195–2206. https://doi.org/10.1890/12-1559.1

    Article  Google Scholar 

  • Vasiliades, L., & Loukas, A. (2009). Hydrological response to meteorological drought using the Palmer drought indices in Thessaly, Greece. Desalination, 237(1–3), 3–21. https://doi.org/10.1016/j.desal.2007.12.019

    Article  CAS  Google Scholar 

  • Voshell, J. R., & Simmons, G. M. (1984). Colonization and succession of benthic macroinvertebrates in a new reservoir. Hydrobiologia, 112(1), 27–39. https://doi.org/10.1007/BF00007663

    Article  Google Scholar 

  • Whitfield, A. K., & Elliott, M. (2002). Fishes as indicators of environmental and ecological changes within estuaries: a review of progress and some suggestions for the future. Journal of Fish Biology, 61(sA), 229–250. https://doi.org/10.1111/j.1095-8649.2002.tb01773.x

    Article  Google Scholar 

  • Wright, J. F. (2000). An introduction to RIVPACS. In J. F. Wright, D. W. Sutcliffe, & M. T. Furse (Eds.), Assessing the Biological Quality of Fresh Waters: RIVPACS and Other Techniques (pp. 1–24). Ambleside: Freshwater Biological Association.

    Google Scholar 

  • Yuan, L. L. (2010). Estimating the effects of excess nutrients on stream invertebrates from observational data. Ecological Applications, 20(1), 110–125. https://doi.org/10.1890/08-1750.1

    Article  Google Scholar 

  • Zalidis, G. C., Takavakoglou, V., Panoras, A., Bilas, G., & Katsavouni, S. (2004). Re-establishing a sustainable wetland at former Lake Karla, Greece, using Ramsar restoration guidelines. Environmental Management, 34(6), 875–886. https://doi.org/10.1007/s00267-004-0022-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for research’s financial support by the Management Body of Ecodevelopment Area of Karla—Mavrovouni—Kefalovriso—Velestino, co-financed by the European Union (ERDF: European Regional Development Fund- ERDF) and Greek Nation in the framework of the Operational Program “Environment and Sustainable Development” 2007–2013 - Priority Axis “Protecting Nature and Biodiversity”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Bobori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobori, D.C., Ntislidou, C., Petriki, O. et al. Macroinvertebrate and fish communities in the watershed of a re-constructed Mediterranean water body: link to the ecological potential. Environ Monit Assess 190, 106 (2018). https://doi.org/10.1007/s10661-018-6484-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6484-y

Keywords

Navigation