Skip to main content

Advertisement

Log in

A spatiotemporal analysis of the physicochemical parameters after the operation of the Corumbá IV reservoir (Midwest Brazil) to support better management decision

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The study presents the characterization of the water quality of the Corumbá IV reservoir in the State of Goiás, in the Brazilian Cerrado biome, based on data from the operation period between 2007 and 2017. Few are known about the temporal and spatial variations in the water quality of the reservoir. Up to now, the water quality has been analyzed only from the point of view of compliance with the limits required by Brazilian environmental legislation. Therefore, the integrated analysis of water quality parameters and water body dynamics may bring important information to support decision-making in reservoir management. An exploratory analysis of the limnological data series provided by the company in charge of the hydroelectric plant was then carried out. Univariate and multivariate statistical techniques were applied to analyze the data period from 2007 to 2017. The results identify four distinct limnological phases representing the transition of the environment. The first phase (2007 to 2009) characterized by the decomposition of the flooded vegetal organic matter and subsequent phases, after 8 years (2010 to 2017), have featured the transition process from the lotic condition to the consolidation of the lentic environment. The spatial analysis of the results demonstrates that tributaries influence the water quality of the reservoir differently, probably due to the different impacts suffered in the sub-basins (e.g., sewage discharges; runoff). Although it is possible to evidence the impact of anthropic activities on water quality, the reservoir still presents characteristics of an environment with low trophic status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

“Data for this research were available due to cooperation between the Institute of Geosciences of the University of Brasília and the consortium to accesses internal technical reports of the Corumbá IV Concessões Ltda consortium. Data are stored in this in-text data citation reference: Carvalho et al. (2020).” Carvalho, V.M; Viana, E.M.S; Carvalho, R.M.V; Alves & P.F., 2020. Programa de monitoramento de Qualidade da Água– UHE Corumbá IV. In: Relatório Técnico de Monitoramento de 2007–2017. Brasília-DF. 213p.

Code availability

Not applicable for that section

References

  • ABNT, RDJ (1989). Águas-Determinação de Resíduos (Sólidos)-Método Gravimétrico: NBR 10664. Rio de Janeiro, v. 14, (in Portuguese).

  • ABNT, RDJ (1999). Águas-Determinação do pH - Método eletrométrico. NBR 14339. Rio de Janeiro, v. 14,  3p. (in Portuguese).

  • ABNT, RDJ (1988). águas – Determinação de Oxigênio Dissolvido Método Iodométrico de Winkler e suas Modificações. NBR 10559. Rio de Janeiro. (in Portuguese).

  • Almeida, W. S., de Souza, N. M., Junior, D. S. R., & de Carvalho, J. C. (2013). Análise morfométrica em bacias hidrográficas fluviais como indicadores de processos erosivos e aporte de sedimentos no entorno do reservatório da Usina Hidrelétrica (UHE) Corumbá IV. Revista Brasileira de Geomorfologia, 14(2), 753–767p (in Portuguese).

    Google Scholar 

  • ANEEL. Matriz Renováveis/ Não Renováveis. https://app.powerbi.com/view?r=eyJrIjoiNjc4OGYyYjQtYWM2ZC00YjllLWJlYmEtYzdkNTQ1MTc1NjM2IiwidCI6IjQwZDZmOWI4LWVjYTctNDZhMi05MmQ0LWVhNGU5YzAxNzBlMSIsImMiOjR9 acesso em 17/11/2020

  • APHA (2017). Standard Methods for Examination of Water and Wastewater (Washington: American Public Health Association, American Water Works Association, and Water Env. Federation). 

  • Arora, M., Casas-Mulet, R., Costelloe, J. F., Peterson, T. J., McCluskey, A. H., & Stewardson, M. J. (2017). Chapter 6: Impacts of hydrological alterations on water quality. In Horne A.C, Webb J.A., Stewardson M. J., Richter B., Acreman M., Water for the Environment (pp. 101–126). Academic Press.

  • Barakat, A., El Baghdadi, M., Rais, J., Aghezzaf, B., & Slassi, M. (2016). Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. International soil and water conservation research, 4(4), 284–292.

    Article  Google Scholar 

  • Barrenha, P. I. I., Tanaka, M. O., Hanai, F. Y., Pantano, G., Moraes, G. H., Xavier, C., et al. (2017). Multivariate analyses of the effect of an urban wastewater treatment plant on spatial and temporal variation of water quality and nutrient distribution of a tropical mid-order river. Environmental Monitoring and Assessment, 190(1). doi:https://doi.org/10.1007/s10661-017-6386-4

  • Brandão, C. J., Botelho, M. J. C., & Sato, M. I. Z. (2018). Guia nacional de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. ANA/CETESB (in Portuguese).

  • Brasil (2005). Ministry of Environment. National Council of the Environment (CONAMA). Resolution No. 357 of March 18, 2005. Federal Official Gazette, Brasília. Available at: http://www2.mma.gov.br/port/conama/res/res86/res2086.html. Access on: 13 May. 2020 (in Portuguese).

  • Cardoso, M. R. D., Marcuzzo, F. F. N., & Barros, J. R. (2015). Classificação climática de Köppen-Geiger para o estado de Goiás e o Distrito Federal. Acta Geográfica, 8(16), 40–55 (in Portuguese).

    Google Scholar 

  • Carvalho, V.M; Viana, E.M.S; Carvalho, R.M.V & Alves, P.F. (2020). Programa de monitoramento de Qualidade da Água– UHE Corumbá IV. In Relatório Técnico de Monitoramento de 2007–2017. Brasília -DF. 213 (in Portuguese).

  • Chatanga, P., Ntuli, V., Mugomeri, E., Keketsi, T., & Chikowore, N. V. (2019). Situational analysis of physico-chemical, biochemical and microbiological quality of water along Mohokare River, Lesotho. The Egyptian Journal of Aquatic Research, 45(1), 45–51.

    Article  Google Scholar 

  • Costa, H. D. C., Marcuzzo, F. F. N., Ferreira, O. M., & Andrade, L. R. (2012). Espacialização e sazonalidade da precipitação pluviométrica do estado de Goiás e Distrito Federal. Revista Brasileira de Geografia Física, 1, 87–100 (in Portuguese).

    Article  Google Scholar 

  • Cruz, H. C., & Fabrizy, N. L. P. (1995). Impactos ambientais de reservatórios e perspectivas de uso múltiplo. Revista Brasileira de Energia, 4(1), 1–7. Delwiche, C. C. (1970). The nitrogen cycle. Scientific American, 223(3), 136–147 (in Portuguese).

  • Fernandes, C. T. C., & Bursztyn, M. A. A. (2008). Usos múltiplos das águas de reservatórios de grandes hidrelétricas: perspectivas e contradições ao desenvolvimento regional sustentável. Anais do IV Encontro Nacional da Associação Nacional de Pós-Graduação e Pesquisa em Ambiente e Sociedade. Brasilia: DF (in Portuguese).

  • Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., et al. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70(2), 153–226.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., et al. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(5878), 889–892.

    Article  CAS  Google Scholar 

  • Gao, Y., Zhou, F., Ciais, P., Miao, C., Yang, T., Jia, Y., et al. (2020). Human activities aggravate nitrogen-deposition pollution to inland water over China. National Science Review, 7(2), 430–440.

    Article  CAS  Google Scholar 

  • González-Márquez, L. C., Torres-Bejarano, F. M., Torregroza-Espinosa, A. C., Hansen-Rodríguez, I. R., & Rodríguez-Gallegos, H. B. (2018). Use of LANDSAT 8 images for depth and water quality assessment of El Guajaro reservoir, Colombia. Journal of South American Earth Sciences, 82, 231–238.

    Article  Google Scholar 

  • Gradilla-Hernández, M. S., de Anda, J., Garcia-Gonzalez, A., Meza-Rodríguez, D., Montes, C. Y., & Perfecto-Avalos, Y. (2020). Multivariate water quality analysis of Lake Cajititlán Mexico. Environmental Monitoring and Assessment, 192(1), 5.

    Article  Google Scholar 

  • Guedes, H. A., Silva, D. D. D., Elesbon, A. A., Ribeiro, C., Matos, A. T. D., & Soares, J. H. (2012). Aplicação da análise estatística multivariada no estudo da qualidade da água do Rio Pomba, MG. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(5), 558–563 (in Portuguese).

    Article  Google Scholar 

  • Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados. Bookman Editora (in Portuguese).

  • He, W., Luo, J., Xing, L., Yu, X., Zhang, J., & Chen, S. (2019). Effects of temperature-control curtain on algae biomass and dissolved oxygen in a large stratified reservoir: Sanbanxi Reservoir case study. Journal of environmental management, 248, 109250.

    Article  CAS  Google Scholar 

  • Heinzmann, B. (1998). Improvement of the surface water quality in the Berlin region. Water Science and Technology, 38(6), 191–200.

    Article  CAS  Google Scholar 

  • Hughes, D. J., Alderdice, R., Cooney, C., Kühl, M., Pernice, M., Voolstra, C.R. et al. (2020). Coral reef survival under accelerating ocean deoxygenation. Nature Climate Change 1–12https://doi.org/10.1038/s41558-020-0737-9

  • Inácio, D. V. (2012). Avaliação do uso de macrófitas aquáticas na recuperação do solo e no desenvolvimento de espécies arbóreas do cerrado em áreas degradadas adjacentes ao reservatório utilizado pela Usina Hidrelétrica Corumbá IV. (2012) 56 f. Dissertação (Mestrado em Gestão Ambiental) - Universidade Católica de Brasília, Brasília, (in Portuguese).

  • Jackson, D. A. (1993). Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74(8), 2204–2214. https://doi.org/10.2307/1939574

    Article  Google Scholar 

  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., et al. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and environmental safety, 72(2), 301–309.

    Article  CAS  Google Scholar 

  • Krawczyk, B., Szczukocki, D., Szczepańska, M., Czarny, K., Seliger, P., & Skrzypek, S. (2018). Spatial water quality estimation of artificial lakes in Central Poland. International Journal of Environment and Pollution, 63(3), 206–224.

    Article  CAS  Google Scholar 

  • Liu, Y., Islam, M. A., & Gao, J. (2003). Quantification of shallow water quality parameters by means of remote sensing. Progress in physical geography, 27(1), 24–43.

    Article  Google Scholar 

  • Mallin, M. A., & Corbett, C. A. (2006). How hurricane attributes determine the extent of environmental effects: multiple hurricanes and different coastal systems. Estuaries and Coasts, 29(6), 1046–1061.

    Article  Google Scholar 

  • Mapbiomas (2019). Coleção 4 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil, acessado em 17/12/2019 in <http://plataforma.mapbiomas.org/map#transitions> (in Portuguese).

  • Maranhão, N. & Soares, 2013. Plano de ação de recursos hídricos da unidade de gestão hídrica Corumbá. ANA/ SPR. 183p (in Portuguese).

  • Mirzaei, M., Jafari, A., Gholamalifard, M., Azadi, H., Shooshtari, S. J., Moghaddam, S. M. et al. (2020). Mitigating environmental risks: modeling the interaction of water quality parameters and land use cover Land Use Policy 0264–8377.https://doi.org/10.1016/j.landusepol.2018.12.014

  • Missaghi, S., Hondzo, M., & Herb, W. (2017). Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate. Climatic Change, 141(4), 747–757.

    Article  CAS  Google Scholar 

  • Momen, B., Eichler, L. W., Boylen, C. W., & Zehr, J. P. (1996). Application of multivariate statistics in detecting temporal and spatial patterns of water chemistry in Lake George New York. Ecological Modelling, 91(1–3), 183–192.

    Article  CAS  Google Scholar 

  • Morais, M., Serafim, A. M., Pinto, P., Ilhéu, A., & Ruivo, M. (2007). Monitoring the water quality in Alqueva Reservoir, Guadiana River, southern Portugal. (pp. 96–112). Reservoir and River Basin Management. Exchange of Experiences from Brazil.

    Google Scholar 

  • Morris, D. M., Gemeinhardt, T. R., Gosch, N. J. C., & Jensen, D. E. (2014). Water quality during two high-flow years on the Lower Missouri River: the effects of reservoir and tributary contributions. River research and applications, 30(8), 1024–1033.

    Article  Google Scholar 

  • Palma, P., Ledo, L., Soares, S., Barbosa, I. R., & Alvarenga, P. (2014). Spatial and temporal variability of the water and sediments quality in the Alqueva reservoir (Guadiana Basin; Southern Portugal). Science of the Total Environment, 470, 780–790.

    Article  Google Scholar 

  • Petersen, W., Bertino, L., Callies, U., & Zorita, E. (2001). Process identification by principal component analysis of river water-quality data. Ecological Modelling, 138(1–3), 193–213.

    Article  CAS  Google Scholar 

  • Rauch, W., Aalderink, H., Krebs, P., Schilling, W., & Vanrolleghe, P. (1998). Requirements for integrated wastewater models—driven by receiving water objectives. Water science and technology, 38(11), 97–104.

    Article  CAS  Google Scholar 

  • Robescu, D. & Ismail, A.H. (2019). Application of Multivariate Statistical Techniques In Water Quality Assessment Of Danube River, Romania. Environmental Engineering & Management Journal (EEMJ), v. 18, n. 3.

  • Schertzer, W. M., & Sawchuk, A. M. (1990). Thermal structure of the lower Great Lakes in a warm year: implications for the occurrence of hypolimnion anoxia. Transactions of the American Fisheries Society, 119(2), 195–209.

    Article  Google Scholar 

  • Serafim, A., Morais, M., Guilherme, P., Sarmento, P., Ruivo, M., & Magriço, A. (2006). Spatial and temporal heterogeneity in the Alqueva reservoir, Guadiana river Portugal. Limnetica, 25(3), 771–786.

    Google Scholar 

  • Solidoro, C., Canu, D. M., Cucco, A., & Umgiesser, G. (2004). A partition of the Venice Lagoon based on physical properties and analysis of general circulation. Journal of Marine Systems, 51(1–4), 147–160.

    Article  Google Scholar 

  • Souza Fraga, M., Reis, G. B., da Silva, D. D., Guedes, H. A. S., & Elesbon, A. A. A. (2020). Use of multivariate statistical methods to analyze the monitoring of surface water quality in the Doce River basin, Minas Gerais Brazil. Environmental Science and Pollution Research, 27(28), 35303–35318.

    Article  Google Scholar 

  • Streit, N. M., Canterle, L. P., Canto, M. W. D., & Hecktheuer, L. H. H. (2005). As clorofilas. Ciência Rural, 35(3), 748–755 (in Portuguese).

    Article  CAS  Google Scholar 

  • Suddick, E. C., Whitney, P., Townsend, A. R., & Davidson, E. A. (2013). The role of nitrogen in climate change and the impacts of nitrogen–climate interactions in the United States: foreword to thematic issue. Biogeochemistry, 114(1–3), 1–10.

    Article  CAS  Google Scholar 

  • Tripathi, M., & Singal, S. K. (2019). Allocation of weights using factor analysis for development of a novel water quality index. Ecotoxicology and environmental safety, 183, 109510.

    Article  CAS  Google Scholar 

  • Tundisi, J. G., & Tundisi, T. M. (2016). Limnologia. Oficina de Textos (in Portuguese).

  • Tundisi, J. G. (2018). Reservoirs: new challenges for ecosystem studies and environmental management. Water Security, 4, 1–7.

    Article  Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277(5325), 494–499.

    Article  CAS  Google Scholar 

  • Walm Engenharia e Tecnologia LTDA. (2011). Plano Ambiental de Conservação e uso do entorno do Reservatório da UHE Corumbá IV Internal Report, Brasília, (in Portuguese).

  • Wang, Y., Wang, P., Bai, Y., Tian, Z., Li, J., Shao, X., et al. (2013). Assessment of surface water quality via multivariate statistical techniques: a case study of the Songhua River Harbin region China. Journal of hydro-environment research, 7(1), 30–40.

    Article  Google Scholar 

  • Zeinalzadeh, K., & Rezaei, E. (2017). Determining spatial and temporal changes of surface water quality using principal component analysis. Journal of Hydrology: Regional Studies, 13, 1–10.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the company Corumbá Concessões SA, administrator of the Corumbá IV hydroelectric plant for the data provided.

Funding

This research was funded by the Fundação de Amparo a Pesquisa do Distrito Federal (FAPDF) grant number 23547.93.27555.30052018, and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Raiane Francy Costa Machado Silva conceptualized the work (methodology, data acquisition, analysis, and validation) and wrote the original draft manuscript. Tati de Almeda conceptualized the work (methodology, analysis, and validation) and helped to write the original draft manuscript. Rejane Ennes Cicerelli conceptualized the work (methodology, analysis, and validation) and helped to write the original draft manuscript. Lenora Nunes Ludolf Gomes participated in data analysis, writing, and editing.

Corresponding author

Correspondence to Rejane Ennes Cicerelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 147 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.F.C.M., de Almeida, T., Cicerelli, R.E. et al. A spatiotemporal analysis of the physicochemical parameters after the operation of the Corumbá IV reservoir (Midwest Brazil) to support better management decision. Environ Monit Assess 193, 247 (2021). https://doi.org/10.1007/s10661-021-09039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09039-5

Keywords

Navigation