Skip to main content

Advertisement

Log in

Spatial variability of surface water quality in a large Brazilian semiarid reservoir and its main tributaries

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Brazil has one of the greatest hydroelectric potential in the world with high number of reservoirs for the electricity generation. However, little is known about the influence of these environments on the water quality. The water quality monitoring data from 14 stations distributed throughout the Irapé HPP reservoir (lentic environment), and its main tributaries (lotic environment), between the years 2008 and 2018, were evaluated and compared to assess the spatial variability of water quality. The analyzed parameters included total alkalinity, thermotolerant coliforms, electric conductivity, biochemical oxygen demand, dissolved iron, total phosphorus, nitrate, total ammoniacal nitrogen, dissolved oxygen, pH, total dissolved solids, sulfate, water temperature, and turbidity. Cluster analysis (CA), Kruskal–Wallis (KW) tests, Spearman rank-order correlation, and principal component analysis (PCA) were applied to identify and compare the relationship between the main parameters in the lotic and lentic environments. The CA resulted in four clusters according to proximity and the environment type (lotic or lentic). In general, the water quality showed better conditions in the reservoir and in the lotic stations on the immediate surround. The results may be associated with the greater sedimentation in the lentic environment. The analyses indicated that agricultural activities and the geochemical characteristics of the region are the main responsible for changes in the water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Achieng, A. O., Raburu, P. O., Kipkorir, E. C., Ngodhe, S. O., Obiero, K. O., & Ani-sabwa, J. (2017). Assessment of water quality using multivariate techniques in River Sosiani, Kenya. Environmental Monitoring and Assessment, 189(6), 279–291. https://doi.org/10.1007/s10661-017-5992-5.

    Article  CAS  Google Scholar 

  • Aydin, H., Ustaoğlu, F., Tepe, Y., & Soylu, E. N. (2020). Assessment of water quality of streams in northeast Turkey by water quality index and multiple statistical methods. Environmental Forensics, 22, 270–287. https://doi.org/10.1080/15275922.2020.1836074

    Article  CAS  Google Scholar 

  • APHA. (2012). Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, 22nd edition.

  • Brazil. (2005). Conselho Nacional do Meio Ambiente – CONAMA. Resolução CONAMA n° 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da República da União da no DOU.

  • Cemig. (2012). Plano Ambiental de Conservação e Uso da Água do Entorno do Reservatório – PACUERA. Companhia Energética de Minas Gerais, Belo Horizonte.

  • Cemig. (2016). Síntese executiva dos relatórios parciais e consolidados - LO 067/2010 - 1ª renovação. Companhia Energética de Minas Gerais. Belo Horizonte: Cemig, 416.

  • Chen, Y., Li, J., Lu, H., & Xia, J. (2019). The dynamic benefit compensation in a multi-reservoir system based on importance analysis. Journal of Cleaner Production, 119402. https://doi.org/10.1016/j.jclepro.2019.119402

  • Cho, K. H., Pachepsk, Y. A., Kim, J. H., Kim, J. W., & Park, M. H. (2012). The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA. Water Research, 46(15), 4750–4760. https://doi.org/10.1016/j.watres.2012.05.057

    Article  CAS  Google Scholar 

  • Chounlamany, V., Tanchuling, M. A., & Inoue, T. (2017). Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods. Water Science and Technology, 76(6), 1510–1522. https://doi.org/10.2166/wst.2017.279

    Article  CAS  Google Scholar 

  • Christofaro, C., Leão, M. M. D., Oliveira, S. C., Viana, D. T., Amorim, C. C., & Carvalho, M. D. (2017). Spatio-temporal variations of water quality in Nova Ponte Reservoir, Araguari River Basin, Brazil. Water Science & Technology: Water Supply, 17(6), 1507–1514. https://doi.org/10.2166/ws.2017.055

    Article  CAS  Google Scholar 

  • Elçi, S. (2008). Effects of thermal stratification and mixing on reservoir water quality. Limnology, 9, 135–142. https://doi.org/10.1007/s10201-008-0240-x

    Article  CAS  Google Scholar 

  • Guo, C., Chen, Y., Xia, W., Qu, X., Yuan, H., Xie, S., & Lin, L. (2020) Eutrophication and heavy metal pollution patterns in the water suppling lakes of China’s south-to-north water diversion project Science of the Total Environment, 7(11), 134543. https://doi.org/10.1016/j.scitotenv.2019.134543

  • Hair, J. F. J., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados [recurso eletrônico]. 6 ed. – Dados eletrônicos – Porto Alegre: Bookman, 687.

  • Hajigholizadeh, M., & Melesse, A. M. (2017). Assortment and spatiotemporal analysis of surface water quality using cluster and discriminant analyses. Catena, 151, 247–258. https://doi.org/10.1016/j.catena.2016.12.018

  • Hauer, F. R., & Hill, W. R. (2007). Temperature, light, and oxygen. In: Hauer, F. R.; Lamberti, G. A. (eds), Methods in stream ecology (sec. ed., 103–177). Academic Press.

  • IBGE - Instituto Brasileiro de Geografia e Estatística. (2020). Pesquisa Nacional de Saneamento Básico 2017: abastecimento de água e esgotamento sanitário. Rio de Janeiro.

  • Igam. (2010). Monitoramento da qualidade das águas superficiais na bacia do rio São Francisco e seus afluentes em 2009. Instituto Mineiro de Gestão das Águas. Belo Horizonte: Instituto Mineiro de Gestão das Águas, 287.

  • Igam. (2014). Fase III- Enquadramento dos corpos de água em classes de acordo com os usos preponderantes: Plano Diretor de Recursos Hídricos da Bacia Hidrográfica do Alto Rio Jequitinhonha- PDRH-JQ1. Instituto Mineiro de Gestão das Águas. Maceió: Gama Engenharia e Recursos Hídricos, 240.

  • IHA - International Hydropower Association. (2020). Hydropower status report: sector trends and insights. Disponível em: <https://hydropower-assets.s3.eu-west-2.amazonaws.com/publications-docs/2020_hydropower_status_report.pdf>

  • Kändler, M., Blechinger, K., Seidler, C., Pavlů, V., Šanda, M., Dostál, T., Krása, J., Vitvar, T., & Štich, M. (2017). Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Science of the Total Environment, 586, 1316–1325. https://doi.org/10.1016/j.scitotenv.2016.10.221

    Article  CAS  Google Scholar 

  • Kędra, M., & Wiejaczka, L. (2018). Disturbance of water-air temperature synchronisation by dam reservoirs. Water and Environment Journal, 626, 1474–1483. https://doi.org/10.1111/wej.12156

    Article  Google Scholar 

  • Li, Z., Ma, J., Guo, J., Paerl, H. W., Brookes, J. D., Xiao, Y., Fang, F., Ouyang, W., & Lu, L. (2019). Water quality trends in the Three Gorges Reservoir region before and after impoundment (1992–2016). Ecohydrology & Hydrobiology, 19(3), 317–327. https://doi.org/10.1016/j.ecohyd.2018.08.005

  • Liu, W., Jin, L., Xu, J., Liu, J., Li, Y., Zhou, P., Wang, C., Dahlgren, R. A., & Wang, X. (2019). Insight into pH dependent Cr(VI) removal with magnetic Fe3S4. Chemical Engineering Journal, 359, 564–571. https://doi.org/10.1016/j.cej.2018.11.192

    Article  CAS  Google Scholar 

  • Lugo, J. L., Lugo, E. R., & Puente, M. (2021). A systematic review of microorganisms as indicators of recreational water quality in natural and drinking water systems. Journal of Water Health, 19(01), 20–28. https://doi.org/10.2166/wh.2020.179

    Article  Google Scholar 

  • Mangiafico, S. S. (2016). Summary and analysis of extension program evaluation in R, version 1.18.8. Online document. Retrieved April 22, 2021, from rcompanion.org/handbook/ (Pdf version: rcompanion.org/documents/RHandbookProgramEvaluation.pdf.)

  • Mian, H. R., Hu, G., Hewage, K., Rodriguez, M. J., & Sadiq, R. (2021). Drinking water quality assessment in distribution networks: A water footprint approach. Science of the Total Environment, 775. https://doi.org/10.1016/j.scitotenv.2021.145844

  • Moal, M. L., Gascuel-Odoux, C., Ménesguen, A., Souchond, Y., Étrillard, C., Levain, A., Moatard, F., Pannard, A., Souchu, F., Lefebvre, A., & Pinaya, G. (2019). Eutrophication: A new wine in an old bottle? Science of the Total Environment, 651, 1–11. https://doi.org/10.1016/j.scitotenv.2018.09.139

    Article  CAS  Google Scholar 

  • Muangthong, S., & Shrestha, S. (2015). Assessment of surface water quality using multivariate statistical techniques: Case study of the Nampong River and Songkhram River, Thailand. Environmental Monitoring and Assessment, 187(9), 4774. https://doi.org/10.1007/s10661-015-4774-1

    Article  Google Scholar 

  • Nienie, A. B., Sivalingam, P., Laffite, A., Ngelinkoto, P., Otamonga, J. P., Matand, A., Mulaji, C. K., Mubedi, J. I., Mpiana, P. T., & Pote, J. (2017). Seasonal variability of water quality by physicochemical indexes and traceable metals in suburban area in Kikwit, Democratic Republic of the Congo. International Soil and Water Conservation Research, 5(2), 158–165. https://doi.org/10.1016/j.iswcr.2017.04.004

    Article  Google Scholar 

  • Oliveira, K. L., Ramos, R. L., Oliveira, S. C., & Christofaro, M. (2021). Water quality index and spatio-temporal perspective of a large Brazilian water reservoir. Water Supply. https://doi.org/10.2166/ws.2020.374

    Article  Google Scholar 

  • Penghao, C., Pingkuo, L., & Hua, P. (2019). Prospects of hydropower industry in the Yangtze River Basin: China’s green energy choice. Renewable Energy, 131, 1168–1185. https://doi.org/10.1016/j.renene.2018.08.072

    Article  Google Scholar 

  • Pérez-Gutiérrez, J. D., Paz, J. O., & Tagert, M. L. M. (2017). Seasonal water quality changes in on-farm water storage systems in a south-central U.S. agricultural watershed. Agricultural Water Management, 187, 131–139. https://doi.org/10.1016/j.agwat.2017.03.014

    Article  Google Scholar 

  • Qu, X., Peng, W., & Liu, X. (2019). Identifying the impacts of water quality on macroinvertebrate degradation in the Taizi River with a reconsideration of water quality grades in China. E-proceedings of the 38th IAHR World Congress, Panama City, Panama.

  • Rohlf, F. J. (1970). Adaptive hierarchical clustering schemes. Systematic Zoology, 19(1), 58–82.

    Article  Google Scholar 

  • Saito, T., & Watanabe, N. (2020). Variations of water quality along acidic rivers in volcanic areas of eastern Japan. International Journal of GEOMATE, 19(71), 36 – 41. https://doi.org/10.21660/2020.71.5782

  • Siepak, M., & Sojka, M. (2017). Application of multivariate statistical approach to identify trace elements sources in surface waters: A case study of Kowalskie and Stare Miasto reservoirs, Poland. Environmental Monitoring and Assessment, 189(364). https://doi.org/10.1007/s10661-017-6089-x

  • Silva, T. V., & Miranda, G. H. R. (2015). Análise das variáveis da geografia física e humana sob a mesorregião do Vale do Jequitinhonha. Uberlândia.

  • Schmutz, S., & Moog, O. (2018). Dams: Ecological impacts and management. In: Schmutz S., Sendzimir J. (eds), Riverine Ecosystem Management. Aquatic Ecology Series, 8, 111 – 127. Springer, Cham.

  • Soares, A. L. C., Pinto, C. C., Costa, E. P., Melo, L. D. V., Oliveira, J. C., Guimarães, J. I., Alkimim, A. R., Carvalho, D. M., Souza, G. A., Dantas, M. S., Barroso, G. R., & Oliveira S. M. A. C. (2017). Identificação dos corpos d’água mais e menos impactados da sub-bacia do rio Piracicaba, inserida na bacia hidrográfica do Rio Doce. In: XXII Simpósio Brasileiro de Recursos Hídricos, Florianópolis.

  • Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. Taxon, 11, 33–40.

    Article  Google Scholar 

  • Tang, X., Li, R., Wu, M., Zhao, W., Zhao, L., Zhou, Y., & Bowes, M. J. (2019). Influence of turbid flood water release on sediment deposition and phosphorus distribution in the bed sediment of the Three Gorges Reservoir, China. Science of the Total Environment, 657, 36–45. https://doi.org/10.1016/j.scitotenv.2018.12.011

    Article  CAS  Google Scholar 

  • Tao, Y., Wang, Y., Rhoads, B., Wang, D., Ni, L., & Wu, J. (2020). Quantifying the impacts of the Three Gorges Reservoir on water temperature in the middle reach of the Yangtze River. Journal of Hydrology, 582. https://doi.org/10.1016/j.jhydrol.2019.124476

  • Tepe, Y., & Aydin, H. (2017). Water quality assessment of an urban water, Batlama Creek (Giresun), Turkey by applying multivariate statistical techniques. Fresenius Environmental Bulletin, 26(11), 6413–6420.

    CAS  Google Scholar 

  • Toklati, C., Kose, E., Cicek, A., Emiroglu, O., & Bastatli, Y. (2015). Use of cluster analysis to evaluate surface water quality: An application from downstream of meric river basin (Edirne, Turkey). International Journal of Advances in Science Engineering and Technology, 3(3), 33–35.

    Google Scholar 

  • Trindade, A. L. C., De Almeida, K. C., & B., Barbosa, P. E., & Oliveira, S. M. A. C. (2017). Tendências temporais e espaciais da qualidade das águas superficiais da sub-bacia do Rio das Velhas, estado de Minas Gerais. Engenharia Sanitária e Ambiental, Rio De Janeiro, 22(1), 13–24. https://doi.org/10.1590/s1413-41522016131457

    Article  Google Scholar 

  • Ustaoğlu, F., Tepe, Y., Taş, B., (2020a). Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecological Indicators, 113, 105815. https://doi.org/10.1016/j.ecolind.2019.105815

  • Ustaoğlu, F., Tepe, Y., Aydin, H., & Akbas, A. (2020b). Evaluation of surface water quality by multivariate statistical analyses and WQI: Case of Comlekci Stream, (Giresun-Turkey). Fresenius Environmental Bulletin, 29(01), 167–177.

    Google Scholar 

  • Varol, M. (2020). Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study Environmental Pollution, 266, 115417. https://doi.org/10.1016/j.envpol.2020.115417

  • Vicini, L. (2005). Análise multivariada da teoria à prática (p. 215). Monografia (Especialização) - Universidade Federal de Santa Maria.

    Google Scholar 

  • Wang, Y., Shen, Z., Niu, J., & Liu, R. (2009). Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions. Journal of Hazardous Materials, 162(1), 92–98. https://doi.org/10.1016/j.jhazmat.2008.05.013

    Article  CAS  Google Scholar 

  • Winton, R. S., Calamita, E., & Wehrli, B. (2019). Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences, 16, 1657–1671. https://doi.org/10.5194/bg-16-1657-2019

    Article  CAS  Google Scholar 

  • Wu, T., Wang, X., Zhou, J., Bing, H., Sun, H., & Wang, J. (2016). The fate of phosphorus in sediments after the full operation of the Three Gorges Reservoir, China. Environmental Pollution, 214, 282–289. https://doi.org/10.1016/j.envpol.2016.04.029

    Article  CAS  Google Scholar 

  • Xin, X. K., Li, K. F., Finlayson, B., & Yin, & W. (2015). Evaluation, prediction, and protection of water quality in Danjiangkou Reservoir. China. Water Science and Engineering, 8(1), 30–39. https://doi.org/10.1016/j.wse.2014.11.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Energy Company of the State of Minas Gerais (CEMIG), the Foundation for Research Support of the State of Minas Gerais (FAPEMIG), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the National Council of Technological and Scientific Development (CNPq) for their support and cooperation during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia Corrêa Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 52 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, K.L., Ramos, R.L., Oliveira, S.C. et al. Spatial variability of surface water quality in a large Brazilian semiarid reservoir and its main tributaries. Environ Monit Assess 193, 409 (2021). https://doi.org/10.1007/s10661-021-09194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09194-9

Keywords

Navigation