Skip to main content
Log in

Fractionation and accumulation of selected metals in a tropical estuary, south-west coast of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Estimating the fractional distribution of sediment-bound heavy metals is highly significant for its ecological risk assessment in contaminated aquatic systems, since environmental factors enhance the mobility of heavy metals and its accumulation in different ecological matrices. In this study, the fractional distribution of Zn, Cd, Pb and Cu in the sediments of the Cochin estuary, along the south-west coast of India, was estimated along with its accumulation in four edible crustaceans. The high mobility of heavy metals in the Cochin estuary was evident from the distribution in fractions other than residual fraction. The exchangeable fractions of Zn and Cd were high in the Cochin estuary, indicating its high bioavailability. Even though the exchangeable fraction is negligible, Pb poses the risk of bioaccumulation due to the presence of oxidisable and reducible fractions. The level of heavy metals varies in different species of edible prawns, and high accumulation of all metals was observed in Metapenaeus dobsoni. Various risk assessment indices show that Cd and Pb pose significant ecological and human health risks in the Cochin estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All data and materials are available with the authors.

References

  • Alonso Castillo, M. L., Vereda Alonso, E., Siles Cordero, M. T., Cano Pavón, J. M., & García de Torres, A. (2011). Fractionation of heavy metals in sediment by using microwave assisted sequential extraction procedure and determination by inductively coupled plasma mass spectrometry. Microchemical Journal, 98(2), 234–239. https://doi.org/10.1016/j.microc.2011.02.004

    Article  CAS  Google Scholar 

  • Amirah, M. N., Afiza, A S., Faizal, W. I. W., Nurliyana, M. H., & Laili, S. (2013). Human health risk assessment of metal contamination through consumption of fish. Journal of Environment Pollution and Human Health (1), 1–5. https://doi.org/10.12691/jephh-1-1-1

  • Arain, M. B., Kazi, T. G., Jamali, M. K., Baig, J. A., Afridi, H. I., Jalbani, N., & Sarfraz, R. A. (2009). Comparison of different extraction approaches for heavy metal partitioning in sediment samples. Pedosphere, 19(4), 476–485. https://doi.org/10.1016/S1002-0160(09)60140-5

    Article  CAS  Google Scholar 

  • Aydin, S., & Kucuksezgin, F. (2012). Distribution and chemical speciation of heavy metals in the surficial sediments of the Bakırçay and Gediz Rivers. Eastern Aegean. Environmental Earth Sciences., 65, 789–803. https://doi.org/10.1007/s12665-011-1124-7

    Article  CAS  Google Scholar 

  • Ayodele, O. A., Gabriel, A. O., Celinah, A., Kayode, S. A., & Olateju, D. A. (2016). Distributions of cadmium and lead in peri-urban wetlands as influenced by soil organic matter, clay fraction, and moisture content. Cogent Food & Agriculture, 2(1), 1159406. https://doi.org/10.1080/23311932.2016.1159406

    Article  CAS  Google Scholar 

  • Bai, J., Jia, J., Zhang, G., Zhao, Q., Lu, Q., Cui, B., & Liu, X. (2016). Spatial and temporal dynamics of heavy metal pollution and source identification in sediment cores from the short-term flooding riparian wetlands in a Chinese delta. Environmental Pollution, 219, 379–388. https://doi.org/10.1016/j.envpol.2016.05.016

    Article  CAS  Google Scholar 

  • Bai, J., Zhao, Q., Wang, W., Wang, X., Jia, J., Cui, B., & Liu, X. (2019). Arsenic and heavy metals pollution along a salinity gradient in drained coastal wetland soils: Depth distributions, sources and toxic risks. Ecological Indicators, 96 (August 2018), 91–98. https://doi.org/10.1016/j.ecolind.2018.08.026

  • Balachandran, K.K., Raj, C.M.L., Nair, M., Joseph, T., Sheeba, P., Venugopal, P. (2005) Heavy metal accumulation in a flow restricted, tropical estuary Estuarine, Coastal and Shelf Science. 65 https://doi.org/10.1016/j.ecss.2005.06.013

  • Bott, A. W. (1995). Voltammetric determination of trace concentrations of metals in the environment. Current Separation., 14(1), 24–30.

    CAS  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloidal and Interface Sciences., 27, 1–18. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  Google Scholar 

  • Chatterjee, M., Filho, E. V. S., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., & Bhattacharya, B. D. (2006). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International., 33, 346–356.

    Article  Google Scholar 

  • Chu, W. L., Dang, N. L., Kok, Y. Y., Ivan Yap, K. S., Phang, S. M., & Convey, P. (2019). Heavy metal pollution in Antarctica and its potential impacts on algae. Polar Science, 20, 75–83. https://doi.org/10.1016/j.polar.2018.10.004

    Article  Google Scholar 

  • Coung, D. T., & Obbard, O. J. (2006). Metal speciation in coastal marine sediments from Singapore using a modified BCR sequential extraction procedure. Applied Geochemistry, 21, 1335–1346. https://doi.org/10.1016/j.apgeochem.2006.05.001

    Article  CAS  Google Scholar 

  • EC. (2001). Commission regulations as regards heavy metals, Directive, European Union, 2001/22/EC, No: 466.

  • Enya, O., Lin, C., & Qin, J. (2019). Heavy metal contamination status in soil-plant system in the Upper Mersey Estuarine Floodplain, Northwest England. Marine Pollution Bulletin, 146, 292–304. https://doi.org/10.1016/j.marpolbul.2019.06.026

    Article  CAS  Google Scholar 

  • Fedotov, P. S., Kördel, W., Miró, M., Peijnenburg, W. J. G. M., Wennrich, R., & Huang, P. M. (2012). Extraction and fractionation methods for exposure assessment of trace metals, metalloids, and hazardous organic compounds in terrestrial environments. Critical Reviews in Environmental Science and Technology, 42(11), 1117–1171. https://doi.org/10.1080/10643389.2011.556544

    Article  CAS  Google Scholar 

  • Ferraro, L., Sammartino, S., Feo, M. L., Rumolo, P., Manta, D. S., Marsella, E., & Sprovieri, M. (2009). Utility of benthic foraminifera for biomonitoring of contamination in marine sediments: A case study from the Naples harbour (Southern Italy). Journal of Environmental Monitoring, 11(6), 1226–1235. https://doi.org/10.1039/b819975b

    Article  CAS  Google Scholar 

  • Gaonkar, C., & Matta, V. M. (2019). Assessment of metal contamination in a tropical estuary, West Coast of India. Environmental Earth Sciences, 79, 2. https://doi.org/10.1007/s12665-019-8745-7

    Article  CAS  Google Scholar 

  • George, R., Martin, G. D., Nair, S. M., Thomas, S. P., & Jacob, S. (2016). Geochemical assessment of trace metal pollution in sediments of the Cochin backwaters. Environmental Forensics, 17(2), 156–171. https://doi.org/10.1080/15275922.2016.1163623

    Article  CAS  Google Scholar 

  • Ghrefat, H. A., Yusuf, N., Jamarh, A., & Nazzal, J. (2012). Fractionation and risk assessment of heavy metals in soil samples collected along Zerqa River. Jordan. Environmental Earth Sciences, 66(1), 199–208. https://doi.org/10.1007/s12665-011-1222-6

    Article  CAS  Google Scholar 

  • Ginson, J., & Bindu, J. (2017). Review on biochemical composition and microflora of prawns. Fishery Technology, 54(2), 75–85.

    Google Scholar 

  • Golia, E. E., Tsiropoulos, N. G., Dimirkou, A., & Mitsios, I. (2007). Distribution of heavy metals of agricultural soils of central Greece using the modified BCR sequential extraction method. International Journal of Environmental Analytical Chemistry, 87(13–14), 1053–1063. https://doi.org/10.1080/03067310701451012

    Article  CAS  Google Scholar 

  • Häder, D. P., Banaszak, A. T., Villafañe, V. E., Narvarte, M. A., González, R. A., & Helbling, E. W. (2020). Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Science of the Total Environment, 713, 136586. https://doi.org/10.1016/j.scitotenv.2020.136586

    Article  CAS  Google Scholar 

  • Han, L., Bai, J., Gao, Z., Wang, W., Wang, D., Cui, B., & Liu, X. (2019). Polycyclic aromatic hydrocarbons (PAHs) in surface soils from reclaimed and ditch wetlands along a 100-year chronosequence of reclamation in a Chinese estuary: Occurrence, sources, and risk assessment. Agriculture, Ecosystems and Environment, 286(February), 106648. https://doi.org/10.1016/j.agee.2019.106648

    Article  CAS  Google Scholar 

  • Harikumar, P. S., & Jisha, T. S. (2010). Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the southwest coast of India. International Journal of Engineering Science and Technology, 2(5), 840–850.

    Google Scholar 

  • Jain, C. K., Rao, V. V. S. G., Prakash, B. A., Kumar, K. M., & Yoshida, M. (2010). Metal fractionation study on bed sediments of Hussainsagar Lake, Hyderabad. India. Environmental Monitoring and Assessment, 166(1–4), 57–67. https://doi.org/10.1007/s10661-009-0984-8

    Article  CAS  Google Scholar 

  • Jayaraju, N., Reddy, B. C. S. R., & Reddy, K. R. (2011). Anthropogenic metal pollution in surface sediments of the Tambaraparni River Estuary. Chemistry and Ecology, 27, 37–41. https://doi.org/10.1080/02757540.2011.570752

    Article  CAS  Google Scholar 

  • Jiang, D., Hu, Z., Liu, F., Zhang, R., Duo, B., Fu, J., & Li, M. (2014). Heavy metals levels in fish from aquaculture farms and risk assessment in Lhasa, Tibetan Autonomous Region of China. Ecotoxicology, 23, 577–583. https://doi.org/10.1007/s10646-014-1229-3

    Article  CAS  Google Scholar 

  • John, S., Muraleedharan, K. R., Revichandran, C., Azeez, S. A., Seena, G., & Cazenave, P. W. (2020). What controls the flushing efficiency and particle transport pathways in a tropical Estuary? Cochin Estuary. Southwest coast of India. Water, 12(3), 908. https://doi.org/10.3390/w12030908

    Article  Google Scholar 

  • Joseph, P., Nandan, B. S., Adarsh, K. J., et al. (2019). Heavy metal contamination in representative surface sediments of mangrove habitats of Cochin. Southern India. Environmental Earth Sciences, 78, 490. https://doi.org/10.1007/s12665-019-8499-2

    Article  CAS  Google Scholar 

  • Kaladharan, P., Krishnakumar, P. K., Prema, D., Nandakumar, A., Khambadkar, L. R., & Valsala, K. K. (2011). Assimilative capacity of Cochin inshore waters with reference to contaminants received from the backwaters and the upstream areas. Indian Journal of Fisheries, 2, 75–83.

    Google Scholar 

  • Kaladharan, P., Prema, D., Valsala, K. K., & Leelabhai, K. S. (2005). Trends in heavy metal concentrations in sediment, finfishes and shellfishes in inshore waters of Cochin, southwest coast of India. Journal of Marine Biological Association India, 47(1), 1–7.

    Google Scholar 

  • Kumar, I. J. N., Sajish, P. R., Nirmal, R., Basil, G., & Shailendra, V. (2011). An assessment of the accumulation potential of Pb, Zn and Cd by Avicennia marina (Forssk) Vierh. in Vamleshwar Mangroves , Gujarat , India. Journal of Water and Land Development, 3(1), 36–40.

  • Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Singh Sidhu, G. P., Bali, A. S., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364. https://doi.org/10.1016/j.chemosphere.2019.124364

    Article  CAS  Google Scholar 

  • Kurilov, P. I., Kruglyakova, R. P., Savitskaya, N. I., & Fedotov, P. S. (2009). Fractionation and speciation analysis of heavy metals in the Azov Sea bottom sediments. Journal of Analytical Chemistry, 64(7), 738–745. https://doi.org/10.1134/S1061934809070144

    Article  CAS  Google Scholar 

  • Locatelli, C., Astara, A., Vasca, E., & Campanella, V. (1999). Voltammetric and spectroscopic determination of toxic metals in sediments and sea water of Salerno Gulf. Environmenatl Monitoring and Assessment, 58, 23–37. https://doi.org/10.1023/A:1006078927576

    Article  CAS  Google Scholar 

  • Lu, Q., Bai, J., Gao, Z., Zhao, Q., & Wang, J. (2016). Spatial and Seasonal Distribution and Risk Assessments for Metals in a TamarixChinensis Wetland, China. Wetlands, 36, 125–136. https://doi.org/10.1007/s13157-014-0598-y

    Article  Google Scholar 

  • Lu, Y., Zhu, F., Chen, J., Gan, H., & Guo, Y. (2007). Chemical fractionation of heavy metals in urban soils of Guangzhou. China. Environmental Monitoring and Assessment, 134(1–3), 429–439. https://doi.org/10.1007/s10661-007-9634-1

    Article  CAS  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Roy, D. V. (2011). Spatial analysis of trace element contamination in sediments of Tamiraparani estuary, southeast coast of India. Estuarine, Coastal and Shelf Science, 92(4), 618–628. https://doi.org/10.1016/j.ecss.2011.03.001

    Article  CAS  Google Scholar 

  • Menon, N. N., Balchand, A. N., & Menon, N. R. (2000). Hydrobiology of the Cochin backwater system – a review. Hydrobiologia, 430, 149–183.

    Article  CAS  Google Scholar 

  • Mohan, M., Augustine, T., Jayasooryan, K. K., ShyleshChandran, M. S., & Ramasamy, E. V. (2012). Fractionation of selected metals in the sediments of Cochin estuary and Periyar River, southwest coast of India. The Environmentalist, 32(4), 383–393. https://doi.org/10.1007/s10669-012-9399-0

    Article  Google Scholar 

  • Mohan, M., Shylesh Chandran, M. S., Jayasooryan, K. K., & Ramasamy, E. V. (2014). Mercury in the sediments of Vembanad Lake, western coast of India. Environmental Monitoring and Assessment, 186(6), 3321–3336. https://doi.org/10.1007/s10661-014-3620-1

    Article  CAS  Google Scholar 

  • Morales-Hernndez, F., Soto-Jimnez, M. F., & Pez-Osuna, F. (2004). Heavy Metals in sediments and lobster (Panulirus gracilis) from the discharge area of the submarine sewage outfall in Mazatln Bay (SE Gulf of California). Archives of Environmental Contamination and Toxicology, 46(4), 485–491. https://doi.org/10.1007/s00244-003-3064-z

    Article  CAS  Google Scholar 

  • Mukherjee, D., Mukherjee, A., & Kumar, B. (2009). Chemical fractionation of metals in freshly deposited marine estuarine sediments of Sundarban ecosystem. India. Environmental Geology, 58(8), 1757–1767. https://doi.org/10.1007/s00254-008-1675-4

    Article  CAS  Google Scholar 

  • Murugan, S. S., Karuppasamy, R., Poongodi, K., & Puvaneswari, S. (2008). Bioaccumulation pattern of zinc in freshwater fish Channa punctatus (Bloch) after chronic exposure. 59, 55–59.

  • Nael, M., Khademi, H., Jalalian, A., Schulin, R., Kalbasi, M., & Sotohian, F. (2009). Effect of geo-pedological conditions on the distribution and chemical speciation of selected trace elements in forest soils of western Alborz. Iran. Geoderma, 152(1–2), 157–170. https://doi.org/10.1016/j.geoderma.2009.06.001

    Article  CAS  Google Scholar 

  • Nair, M., Jayalakshmy, K. V., Balachandran, K. K., & Joseph, T. (2006). Bioaccumulation of toxic metals by fish in a semi-enclosed tropical ecosystem. Environmental Forensics, 7(3), 197–206. https://doi.org/10.1080/15275920600840438

    Article  CAS  Google Scholar 

  • Nakazato, T., Akasaka, M., & Tao, H. (2006). A rapid fractionation method for heavy metals in soil by continuous-flow sequential extraction assisted by focused microwaves. Analytical and Bioanalytical Chemistry, 386(5), 1515–1523. https://doi.org/10.1007/s00216-006-0700-2

    Article  CAS  Google Scholar 

  • Nemati, K., Abu Bakar, N. K., Bin Abas, M. R., Sobhanzadeh, E., & Low, K. H. (2011). Comparison of unmodified and modified BCR sequential extraction schemes for the fractionation of heavy metals in shrimp aquaculture sludge from Selangor. Malaysia. Environmental Monitoring and Assessment, 176(1–4), 313–320. https://doi.org/10.1007/s10661-010-1584-3

    Article  CAS  Google Scholar 

  • Passos, C. J. S., Da Silva, D. S., Lemire, M., Fillion, M., Guimarães, J. R. D., Lucotte, M., & Mergler, D. (2008). Daily mercury intake in fish-eating populations in the Brazilian Amazon. Journal of Exposure Science & Environmental Epidemiology, 18, 76–87. https://doi.org/10.1038/sj.jes.7500599

    Article  CAS  Google Scholar 

  • Prasad, M., Ramanathan, A. L., Shrivastav, S. K., & Anshumali. & Saxena, R. . (2006). Metal fractionation studies in surfacial and core sediments in the Achankovil River Basin in India. Environmental Monitoring and Assessment, 121(1–3), 77–102. https://doi.org/10.1007/s10661-005-9108-2

    Article  CAS  Google Scholar 

  • Pueyo, M., Sastre, J., Hernández, E., Vidal, M., López-Sánchez, J. F., & Rauret, G. (2003). Prediction of trace element mobility in contaminated soils by sequential extraction. Journal of Environmental Quality, 32, 2054–2066. https://doi.org/10.2134/jeq2003.2054

    Article  CAS  Google Scholar 

  • Purushothaman, P., & Chakrapani, G. J. (2007). Heavy metals fractionation in Ganga River sediments. India. Environmental Monitoring and Assessment, 132(1–3), 475–489. https://doi.org/10.1007/s10661-006-9550-9

    Article  CAS  Google Scholar 

  • Raj, S., Jee, P. K., & Panda, C. R. (2013). Textural and heavy metal distribution in sediments of Mahanadi estuary, East coast of India. Indian Journal of Geo-Marine Sciences, 42, 370–374.

    CAS  Google Scholar 

  • Ramzi, A., Habeeb Rahman, K., Gireeshkumar, T. R., Balachandran, K. K., Jacob, C., & Chandramohanakumar, N. (2017). Dynamics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Cochin estuary. India. Marine Pollution Bulletin, 114(2), 1081–1087. https://doi.org/10.1016/j.marpolbul.2016.10.015

    Article  CAS  Google Scholar 

  • Rauret, G., López-Sánchez, J. F., & Sahuquillo, a, Barahona, E., Lachica, M., Ure, a M., & Quevauviller, P. (2000). Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid. Journal of Environmental Monitoring, 2(3), 228–233. https://doi.org/10.1039/b001496f

    Article  CAS  Google Scholar 

  • Reynoldson, T. B. (1987). Interactions between sediment contaminants and benthic organisms. Hydrobiologia, 149(1), 53–66. https://doi.org/10.1007/BF00048646

    Article  CAS  Google Scholar 

  • Saha, S. B., Mitra, A., & Bhattacharyya, S. B. (2001). Status of sediment with special reference to heavy metal pollution of a brackish water tidal ecosystem in northern Sundarbans of West Bengal. Tropical Ecology, 42(1), 127–132.

    CAS  Google Scholar 

  • Salas, P. M., Sujatha, C. H., Ratheesh Kumar, C. S., & Cheriyan, E. (2017). Heavy metal distribution and contamination status in the sedimentary environment of Cochin estuary. Marine Pollution Bulletin, 119(2), 191–203. https://doi.org/10.1016/j.marpolbul.2017.04.018

    Article  CAS  Google Scholar 

  • Selvam, A. P., Priya, S. L., Banerjee, K., Hariharan, G., Purvaja, R., & Ramesh, R. (2012). Heavy metal assessment using geochemical and statistical tools in the surface sediments of Vembanad Lake, Southwest Coast of India. Environmental Monitoring and Assessment., 184, 5899–5915. https://doi.org/10.1007/s10661-011-2389-8

    Article  CAS  Google Scholar 

  • Sheeba, V. A., Abdulaziz, A., Gireeshkumar, T. R., Ram, A., Rakesh, P. S., Jasmin, C., & Parameswaran, P. S. (2017). Role of heavy metals in structuring the microbial community associated with particulate matter in a tropical estuary. Environmental Pollution, 231, 589–600. https://doi.org/10.1016/j.envpol.2017.08.053

    Article  CAS  Google Scholar 

  • Sheeba, V. A., Anas, A., Jasmin, C., Vincent, M., & Parameswaran, P. S. (2020). Response of particle-associated bacteria to long-term heavy metal contamination in a tropical estuary. World Journal of Microbiology and Biotechnology, 36(5), 1–10. https://doi.org/10.1007/s11274-020-02842-1

    Article  CAS  Google Scholar 

  • Shylesh Chandran, M. S., Ramasamy, E. V., Mohan, M., Shruthi, N. S., Jayasooryan, K. K., Augustine, T., & Mohan, K. (2019). Distribution and risk assessment of trace metals in multifarious matrices of Vembanad Lake system, Peninsular India. Marine Pollution Bulletin, 145, 490–498. https://doi.org/10.1016/j.marpolbul.2019.06.034

  • Siraswar, R., & Nayak, G. N. (2011). Mudflats in lower middle estuary as a favourable location for concentration of metals, west coast of India. Indian Journal of Geo-Marine Science, 40, 372–385.

    CAS  Google Scholar 

  • Sivaperumal, P., Sankar, T. V., & Nair, P. G. V. (2007). Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-a-vis international standards. Food Chemistry, 102, 612–620. https://doi.org/10.1016/j.foodchem.2006.05.041

    Article  CAS  Google Scholar 

  • Sobolewski, A. (1999). A review of processes responsible for metal removal in wetlands treating contaminated mine drainage. International Journal of Phytoremediation, 1(1), 19–51. https://doi.org/10.1080/15226519908500003

    Article  CAS  Google Scholar 

  • Sruthi, S. N., & M S, S., Mohan, M., & Ramasamy, E. V. (2018). Distribution of priority pollutants in the sediment of Vembanad Estuary. Peninsular India. Marine Pollution Bulletin, 133(March), 294–303. https://doi.org/10.1016/j.marpolbul.2018.05.033

    Article  CAS  Google Scholar 

  • Sundararajan, M., & Natesan, U. (2010). Geochemistry of core sediments from Mullipallam Creek, South East coast of India. Environment and Earth Sciences, 61(5), 947–961.

    Article  CAS  Google Scholar 

  • Sutherland, R. A., & Tack, F. M. G. (2002). Determination of Al, Cu, Fe, Mn, Pb and Zn in certified reference materials using the optimized BCR sequential extraction procedure. Analytica Chimica Acta, 454(2), 249–257. https://doi.org/10.1016/S0003-2670(01)01553-7

    Article  CAS  Google Scholar 

  • Sutherland, R. A., & Tack, F. M. G. (2003). Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research, 8(1), 37–50. https://doi.org/10.1016/S1093-0191(02)00144-2

    Article  CAS  Google Scholar 

  • USEPA. (2007). Microwave assisted acid digestion of sediments, sludges, soils, and oils. USEPA -METHOD 3051A.

  • Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197

    Article  CAS  Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Ramkumar, T., & Vasudevan, S. (2014). A study on seasonal accumulation of metals in Tirumalairajan river estuary and adjacent coastal track, Tamil Nadu, east coast of India. Indian Journal of Geo-Marine Sciences, 43, 841–847.

    Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Ramkumar, T., & Selvam, S. (2018). Ecological risk assessment of selected heavy metals in the surface sediments of three estuaries in the southeastern coast of India. Environmental Earth Sciences, 77, 116. https://doi.org/10.1007/s12665-018-7294-9

    Article  CAS  Google Scholar 

  • Vinita, J., Revichandran, C., & Manoj, N. T. (2017). Suspended sediment dynamics in Cochin estuary, West Coast. India. Journal of Coastal Conservation, 21(1), 233–244. https://doi.org/10.1007/s11852-017-0494-8

    Article  Google Scholar 

  • Wang, Z., Shan, X. Q., & Zhang, S. (2002). Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere, 46(8), 1163–1171. https://doi.org/10.1016/S0045-6535(01)00206-5

    Article  CAS  Google Scholar 

  • Xiao, R., Bai, J., Lu, Q., Zhao, Q., Gao, Z., Wen, X., & Liu, X. (2015). Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China. Science of the Total Environment, 517, 66–75. https://doi.org/10.1016/j.scitotenv.2015.02.052

    Article  CAS  Google Scholar 

  • Yao, D., Mei, S., Fu-gui, Y., Heng-yi, J., Gong-sheng, L., & Chun-xiao, D. (2008). Environmental geochemistry of heavy metals in urban soils of Qingdao City. Geology China, 35, 539–550.

    CAS  Google Scholar 

  • Yuan, X., Chen, Y., Li, B., & Siegel, D. I. (2009). Source of sediments and metal fractionation in two Chinese estuarine marshes. Environmental Earth Sciences, 60(7), 1535–1544. https://doi.org/10.1007/s12665-009-0288-x

    Article  CAS  Google Scholar 

  • Zhang, G., Bai, J., Xiao, R., Zhao, Q., Jia, J., Cui, B., & Liu, X. (2017). Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere, 184, 278–288. https://doi.org/10.1016/j.chemosphere.2017.05.155

    Article  CAS  Google Scholar 

  • Zhao, Q., Liu, S., & Deng, L. (2012). Spatio-temporal variation of heavy metals in fresh water after dam construction: A case study of the Manwan Reservoir. Lancang River., 184(7), 4253–4266. https://doi.org/10.1007/s10661-011-2260-y

    Article  CAS  Google Scholar 

  • Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., & Anjum, M. Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250, 109557. https://doi.org/10.1016/j.jenvman.2019.109557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the University Grants Commission, Ministry of Human Resources Development, Govt. of India, for support through Junior Research Fellowship and Senior Research Fellowship. The authors acknowledge the KSCSTE-SARD, DST-FIST and DST-PURSE funding for the instrumental facility.

Funding

The funding is from MoES, DST-FIST and PURSE programme.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed to the manuscript in various ways such as problem identification, sampling and analysis, interpretation, writing, editing and proof reading.

Ethics declarations

Ethics approval

Authors declare that there is no experiment included in the manuscript which require ethics approval.

Consent to participate

All the authors give consent for participation in the work.

Consent for publication

All the authors give consent for publication, and no data of any individual person have been included in the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RTF 170 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayasooryan, K.K., Ramasamy, E.V., Chandini, P.K. et al. Fractionation and accumulation of selected metals in a tropical estuary, south-west coast of India. Environ Monit Assess 193, 220 (2021). https://doi.org/10.1007/s10661-021-09019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09019-9

Keywords

Navigation