Skip to main content

Advertisement

Log in

Pollution assessment of the Red Sea-Gulf of Aqaba seawater, northwest Saudi Arabia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The water pollution index (PIj), degree of contamination (Cd), heavy metal pollution index (HPI), and statistical analyses were used to assess seawater pollution and identify the possible sources of heavy metals from the Red Sea-Gulf of Aqaba coastline, northwest Saudi Arabia. Concentrations of Cr, Sb, Co, Ni, Cu, Zn, Cd, As, Fe, Mn, Hg, and Pb were analyzed and interpreted in 33 surface seawaters samples. The mean heavy metals of seawater were in the following order: Zn (5.51 μg/l) > Ni (2.45) > As (2.43) > Cu (2.34) > Mn (2.20) > Fe (1.81) > Pb (1.31) > Sb (0.64) > Co (0.31) > Cr (0.26) > Cd (0.05) > Hg (0.008). The spatial distribution of heavy metals showed high levels in some individual samples, especially nearby the residential cities, may be due to anthropogenic sources. PIj and Cd indicated light and low pollution for the seawater samples, respectively, while HPI indicated low pollution for 10 samples and medium pollution for the rest ones. The lack of significant correlations between metal pairs (except Cu and As) indicated different sources of pollution. Pollution indices, principal component analysis, and Pearson’s correlation coefficient reveal that the quality of seawater in the Red Sea-Gulf of Aqaba coastline is mainly controlled by geogenic processes with minor anthropogenic input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abadi, M., Zamani, A., Parizanganeh, A., Khosravi, Y., & Badiee, H. (2018). Heavy metals and arsenic content in water along the southern Caspian coasts in Iran. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-2455-7.

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2000). Toxicological profile for Arsenic TP-92/09. Georgia: Center for disease control, Atlanta.

    Google Scholar 

  • Akif, M., Khan, A. R., Hussain, Z., Mall-Abrar, K., M., & Sok, K., Min, Z., Muhammad, A. (2002). Textile effluents and their contribution towards aquatic pollution in the Kabul River (Pakistan). Journal of the Chemical Society of Pakistan, 24(2), 106–111.

  • Alharbi, T., Alfaifi, H., & El-Sorogy, A. S. (2017). Metal pollution in Al-Khobar seawater, Arabian Gulf, Saudi Arabia. Marine Pollution Bulletin, 119, 407–415.

    Article  CAS  Google Scholar 

  • Alharbi, T., & El-Sorogy, A. S. (2019). Assessment of seawater pollution of the Al-Khafji coastal area, Arabian Gulf. Saudi Arabia. Environmental Monitoring and Assessment, 191, 383.

    Article  Google Scholar 

  • Ali, H., Khan E., & Ilahi, I.  (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation Hindawi Journal of Chemistry. https://doi.org/10.1155/2019/6730305

  • Al-Mur, B. A., Quicksall, A. N., & Al-Ansari, A. M. (2017). Spatial and temporal distribution of heavy metals in coastal core sediments from the Red Sea. Saudi Arabia. Oceanologia, 59(3), 262–270.

    Article  Google Scholar 

  • Al-Sofyani, A. A., Marimuthu, N., & Wilson, J. J. (2014). A rapid assessment of scleractinian and non-Scleractinian coral growth forms along the Saudi Arabian coast, Red Sea. Journal of Ocean University of China, 13(2), 243–248.

    Article  Google Scholar 

  • Al-Taani, A. A., Batayneh, A., Nazzal, Y., Ghrefat, H., Elawadi, E., & Zaman, H. (2014). Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia. Marine Pollution Bulletin, 86, 582–590.

    Article  CAS  Google Scholar 

  • Backman, B., Bodis, D., Lahermo, P., Rapant, S., & Tarvainen, T. (1997). Application of a groundwater contamination index in Finlandand Slovakia. Environmental Geology, 36, 55–64.

    Article  Google Scholar 

  • Badr, N. B., El-Fiky, A. A., Mostafa, A. R., & Al-Mur, B. A. (2009). Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environmental Monitoring and Assessment, 155(1–4), 509–526.

    Article  CAS  Google Scholar 

  • Bozkurt, E., Eliri, Ö., & Kesiktaş, M. (2014). Analysis of heavy metals in seawater samples collected from beaches of Asian side of Istanbul. Journal of Recreation and Tourism Research, 1(1), 39–47.

    Google Scholar 

  • Chen, H., Lu, X., & Li, L. Y. (2014). Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi’an, China. Atmospheric Environment, 88, 172–182.

    Article  CAS  Google Scholar 

  • Donat, J. R., & Bruland, K. W. (1995). Trace elements in the oceans. In B. Salbu & E. Steinnes (Eds.), Trace elements in natural waters (pp. 247–292). Boca Raton: CRC Press.

    Google Scholar 

  • Dossis, P., & Warren, L. J. (1980). Distribution of heavy metals between the minerals and organic debris in a contaminated marine sediment. In R. A. Baker (Ed.), Contaminants and Sediments (pp. 119–139). Ann Arbor: Ann Arbor Science Publishers.

    Google Scholar 

  • El-Sorogy, A., & Attiah, A. (2015). Assessment of metal contamination in coastal sediments, seawaters and bivalves of the Mediterranean Sea coast. Egypt. Marine Pollution Bulletin, 101, 867–871.

    Article  CAS  Google Scholar 

  • El-Sorogy, A., Youssef, M., Al-Kahtany, Kh., & Saleh, M. M. (2020). Distribution, source, contamination and ecological risk status of heavy metals in the Red Sea-Gulf of Aqaba coastal sediments. Marine Pollution Bulletin (Accepted): Saudi Arabia.

    Google Scholar 

  • El-Sorogy, A. S., Youssef, M., & Al-Kahtany, Kh. (2016). Integrated assessment of the Tarut Island coast, Arabian Gulf. Saudi Arabia. Environmental Earth Sciences, 75, 1336.

    Article  Google Scholar 

  • Ghandour, I. M., Basaham, S., Al-Washmi, A., & Masuda, H. (2014). Natural and anthropogenic controls on sediment composition of an arid coastal environment: Sharm Obhur, Red Sea. Saudi Arabia. Environmental Monitoring and Assessment, 186(3), 1465–1484.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (3rd ed., p. 331). Boca Ratón. London New York Washington, D.C: CRC Press.

    Google Scholar 

  • Kahal, A., El-Sorogy, A. S., Alfaifi, H., Almadani, S., & Ghrefat, H. A. (2018). Spatial distribution and ecological risk assessment of the coastal surface sediments from the Red Sea, northwest Saudi Arabia. Marine Pollution Bulletin, 137, 198–208.

    Article  CAS  Google Scholar 

  • Kahal, A., El-Sorogy, A. S., Qaysi, S., Almadani, S., Kassem, S. M., & Al-Dossari, A. (2020). Contamination and ecological risk assessment of the Red Sea coastal sediments, southwest Saudi Arabia. Marine Pollution Bulletin, 154, 111125.

    Article  CAS  Google Scholar 

  • Karuppasamy, M., Qurban, M.A.B., Krishnakumar, P.K. (2019). Metal contamination assessment in the sediments of the Red Sea Coast of Saudi Arabia. In Oceanographic and biological aspects of the Red Sea (pp. 147–170). Springer, Cham. https://doi.org/10.1007/978-3-319-99417-8_9

  • Lian, M., Wang, J., Sun, L., Xu, Z., Tang, J., Yan, J., & Zeng, X. (2019). Profiles and potential health risks of heavy metals in soil and crops from the watershed of Xi River in Northeast China. Ecotoxicology and Environmental Safety, 169, 442–448.

    Article  CAS  Google Scholar 

  • Louriño-Cabana, B., Lesven, L., Charriau, A., Billon, G., Ouddane, B., & Boughriet, A. (2011). Potential risks of metal toxicity in contaminated sediments of Deûle river in Northern France. Journal of Hazardous Materials, 186(2–3), 2129–2137.

    Article  Google Scholar 

  • Obinna, I. B., & Ebere, E. C. (2019). A Review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Analytical Methods in Environmental Chemistry Journal, 2(3), 5–38.

    Article  Google Scholar 

  • Pan, K., Lee, O. O., Qian, P. Y., & Wang, W. X. (2011). Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea. Saudi Arabia. Mar Poll Bull, 62(5), 1140–1146.

    Article  CAS  Google Scholar 

  • Prasanna, M. V., Praveena, S. M., Chidambaram, S., Nagarajan, R., & Elayaraja, A. (2012). Evaluation of water quality pollution indices for heavy metal contamination monitoring: A case study from Curtin Lake, Miri City, East Malaysia. Environmental Earth Sciences, 67, 1987–2001.

    Article  CAS  Google Scholar 

  • Qin, H., Su, Q., Khu, S., & Tang, N. (2014). Water quality changes during rapid urbanization in the Shenzhen River Catchment: An integrated view of socio-economic and infrastructure development. Sustainability, 6, 7433–7451.

    Article  Google Scholar 

  • Rezania, S., Taib, S. M., Md Din, M. F., Dahalan, F. A., & Kamyab, H. (2016). Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from Wastewater. Journal of Hazardous Materials, 318, 587–599.

    Article  CAS  Google Scholar 

  • Shi, Z., Qin, Sh., Zhang, Ch., Chiu, Y., Zhang, L. (2020). The impacts of water pollution emissions on public health in 30 provinces of China. Healthcare 8, 119, https://doi.org/10.3390/healthcare8020119.

  • Shriadah, M. A., Okbah, M. A., & El-Deek, M. S. (2004). Trace metals in the water columns of the Red Sea and the Gulf of Aqaba. Egypt. Water Air Soil Pollution, 153, 115–124.

    Article  CAS  Google Scholar 

  • Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals. Berlin: Springer.

    Book  Google Scholar 

  • Tanjung, R. H. R., Hamuna, B., & Alianto, . (2019). Assessment of water quality and pollution index in coastal waters of Mimika. Indonesia. Journal of Ecological Engineering, 20(2), 87–94.

    Article  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment. National Institute of Health, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6.

    Article  Google Scholar 

  • Tian, H. Z., Lu, L. H., & J.M., Gao, J.J., Cheng, K., Liu, K. Y., Qiu, P. P., Zhu, C. Y. (2013). A review of key hazardous trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts. Energy & Fuels, 27(2), 601–614.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO). (2011). Guidelines for drinking-water quality (4th ed.). Switzerland: Geneva.

    Google Scholar 

  • Youssef, M., & El-Sorogy, A. S. (2016). Environmental assessment of heavy metal contamination in bottom sediments of Al-Kharrar lagoon, Rabigh, Red Sea. Saudi Arabian Journal of Geosciences, 9, 474.

    Article  Google Scholar 

  • Youssef, M., El-Sorogy, A. S., Osman, M., Ghandour, I., & Manaa, A. (2020). Distribution and metal contamination in core sediments from the North Al-Wajh area, Red Sea. Saudi Arabia. Mar Poll Bull, 152, 110924.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable suggestions and constructive comments. The Deanship of Scientific Research, King Saud University, provided funding for this research group (No. RG-1435-033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelbaset S. El-Sorogy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sorogy, A., Youssef, M. Pollution assessment of the Red Sea-Gulf of Aqaba seawater, northwest Saudi Arabia. Environ Monit Assess 193, 141 (2021). https://doi.org/10.1007/s10661-021-08911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08911-8

Keywords

Navigation