Skip to main content
Log in

Trace metals in indoor dust from a university campus in Northeast India: implication for health risk

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study reports concentrations of trace metals and the associated health risks in settled dust of different microenvironments of a university in Northeast India. Settled dust samples were collected from the most accessible indoor locations by the students of Tezpur University, a rural-residential university of mid Brahmaputra Valley of Assam. Collected samples were digested in an aqua regia–assisted microwave digestion system and analyzed for iron (Fe), nickel (Ni), zinc (Zn), cadmium (Cd), and lead (Pb) using atomic absorption spectroscopy (AAS). The highest concentration was obtained for Fe with a mean value of 1353.51 ± 123 mg/kg. Cadmium showed the lowest concentration with a mean value of 0.75 ± 0.57 mg/kg. Cadmium was the highly enriched element followed by Pb, Zn, and Ni. The metals mostly fall in the “extremely high enrichment” category. The study revealed that infiltrated soil or street dust, eroding wall paints, and automotive sources were the main contributing sources of the metals. The calculated Hazard Index (HI) value, 0.39, was lower than the acceptable HI value of 1 indicating no significant non-cancer risk to the students from exposure to these heavy metals at present. The study also found no carcinogenic risk on exposure to the metals present in the indoor dust samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasnejad, A., & Abbasnejad, B. (2019). Distribution, sources and pollution status of Pb in indoor and outdoor dusts of Kerman City, SE Iran. Environmental Forensics, 20(1), 106–119.

    Article  CAS  Google Scholar 

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238.

    CAS  Google Scholar 

  • Adekola, F. A., & Dosumu, O. O. (2001). Heavy metal determination in household dusts from Ilorin City, Nigeria. NISEB JOURNAL, 1(3), 217–221.

    Google Scholar 

  • Albar, H. M. S. A., Ali, N., Eqani, S. A. M. A. S., Alhakamy, N. A., Nazar, E., Rashid, M. I., et al. (2020). Trace metals in different socioeconomic indoor residential settings, implications for human health via dust exposure. Ecotoxicology and Environmental Safety, 189, 109927.

    Article  CAS  Google Scholar 

  • Al-Khashman, O. A. (2004). Heavy metal distribution in dust, street dust and soils from the work place in Karak industrial estate, Jordan. Atmospheric Environment, 38(39), 6803–6812.

    Article  CAS  Google Scholar 

  • Al-Momani, I. F. (2007). Trace elements in street and household dusts in Amman, Jordan. Soil & Sediment Contamination, 16(5), 485–496.

    Article  CAS  Google Scholar 

  • Arar, S., Al-Hunaiti, A., Masad, M. H., Maragkidou, A., Wraith, D., & Hussein, T. (2019). Elemental contamination in indoor floor dust and its correlation with PAHs, fungi, and Gram+/− bacteria. International Journal of Environmental Research and Public Health, 16, 3552.

    Article  CAS  Google Scholar 

  • Barrio-Parra, F., Miguel, E., Lázaro-Navas, S., Gómez, A., & Izquierdo, M. (2017). Indoor dust metal loadings: A human health risk assessment. Exposure and Health, 10, 41–50.

    Article  CAS  Google Scholar 

  • Bhuyan, P., Deka, P., Prakash, A., Balachandran, S., & Hoque, R. R. (2018). Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environmental Pollution, 234, 997–1010.

    Article  CAS  Google Scholar 

  • Bini, C., & Wahsha, M. (2014). Potentially harmful elements and human health. In C. Bini & J. Bech (Eds.), PHEs, environment and human health (pp. 401–463). New York: Springer.

    Chapter  Google Scholar 

  • Boor, B., Siegel, J., & Novoselac, A. (2013). Monolayer and multilayer particle deposits on hard surfaces: Literature review and implications for particle resuspension in the indoor environment. Aerosol Science and Technology, 47, 831–847.

    Article  CAS  Google Scholar 

  • Brokbartold, M., Wischermann, M., & Marschner, B. (2012). Plant availability and uptake of lead, zinc, and cadmium in soils contaminated with anti-corrosion paint from pylons in comparison to heavy metal contaminated urban soils. Water, Air, & Soil Pollution, 223(1), 199–213.

    Article  CAS  Google Scholar 

  • Chattopadhyay, G., Lin, K. C. P., & Feitz, A. J. (2003). Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93(3), 301–307.

    Article  CAS  Google Scholar 

  • Chithra, V. S., & Nagendra, S. M. S. (2013). Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmospheric Environment, 77, 579–587.

    Article  CAS  Google Scholar 

  • Chithra, V. S., & Nagendra, S. M. S. (2014). Characterizing and predicting coarse and fine particulates in classrooms located close to an urban roadway. Journal of the Air & Waste Management Association, 64(8), 945–956.

    Article  CAS  Google Scholar 

  • Cincinelli, A., & Martellini, T. (2017). Indoor air quality and health. International Journal of Environmental Research and Public Health, 14(11), 1286.

    Article  CAS  Google Scholar 

  • Darus, F. M., Nasir, R. A., Sumari, S. M., Ismail, Z. S., & Omar, N. A. (2012). Heavy metals composition of indoor dust in nursery schools building. Procedia-Social and Behavioral Sciences, 38, 169–175.

    Article  Google Scholar 

  • Das, A., Kumar, R., Patel, S. S., Saha, M. C., & Guha, D. (2020). Source apportionment of potentially toxic elements in street dust of a coal mining area in Chhattisgarh, India, using multivariate and lead isotopic ratio analysis. Environmental Monitoring and Assessment, 192(6), 396–396.

    Article  CAS  Google Scholar 

  • Davies, B. E., Elwood, P. C., Gallacher, J., & Ginnever, R. C. (1985). The relationships between heavy metals in garden soils and house dusts in an old lead mining area of North Wales, Great Britain. Environmental Pollution Series B, Chemical and Physical, 9(4), 255–266.

    Article  CAS  Google Scholar 

  • Deka, P., & Hoque, R. R. (2014). Incremental effect of festive biomass burning on wintertime PM10 in Brahmaputra Valley of Northeast India. Atmospheric Research, 143, 380–391.

    Article  CAS  Google Scholar 

  • Deka, P., & Hoque, R. R. (2015). Chemical characterization of biomass fuel smoke particles of rural kitchens of South Asia. Atmospheric Environment, 108, 125–132.

    Article  CAS  Google Scholar 

  • Deka, P., Bhuyan, P., Daimari, R., Sarma, K. P., & Hoque, R. R. (2016). Metallic species in PM 10 and source apportionment using PCA-MLR modeling over mid-Brahmaputra Valley. Arabian Journal of Geosciences, 9(5), 335.

    Article  CAS  Google Scholar 

  • Dixon, S. L., Gaitens, J. M., Jacobs, D. E., Strauss, W., Nagaraja, J., Pivetz, T., Wilson, J. W., & Ashley, P. J. (2009). Exposure of US children to residential dust lead, 1999–2004: II. The contribution of lead-contaminated dust to children’s blood lead levels. Environmental Health Perspectives, 117(3), 468–474.

    Article  CAS  Google Scholar 

  • Doyi, I. N., Isley, C. F., Soltani, N. S., & Taylor, M. P. (2019). Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environment International, 133, 105125.

    Article  CAS  Google Scholar 

  • Dundar, M. S., & Altundağ, H. (2002). Heavy metal determination of house dust in Adapazari, Turkey, after earthquake. Trace Elements and Electrolytes, 19, 55–58.

    CAS  Google Scholar 

  • Eneji, I. S., Adams, I. U., & Julius, K. A. (2015). Assessment of heavy metals in indoor settled Harmattan dust from the University of Agriculture Makurdi, Nigeria. Open Journal of Air Pollution, 4(04), 198–207.

    Article  Google Scholar 

  • Farkhondeh, T., Samarghandian, S., & Sadighara, P. (2015). Lead exposure and asthma: An overview of observational and experimental studies. Toxin Reviews, 34(1), 6–10.

    Article  CAS  Google Scholar 

  • Fergusson, J. E., & Kim, N. D. (1991). Trace elements in street and house dusts: Sources and speciation. Science of the Total Environment, 100, 125–150.

    Article  CAS  Google Scholar 

  • Florea, A., Büsselberg, D., & Carpenter, D. (2012). Metals and disease. Journal of Toxicology, 825354.

  • Gadkari, N., & Pervez, S. (2008). Source apportionment of personal exposure of fine particulates among school communities in India. Environmental Monitoring and Assessment, 142(1–3), 227–241.

    Article  CAS  Google Scholar 

  • Gope, M., Masto, R. E., George, J., Hoque, R. R., & Balachandran, S. (2017). Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicology and Environmental Safety, 138, 231–241.

    Article  CAS  Google Scholar 

  • Gurjar, B. R., & Mohan, M. (2003). Potential health risks due to toxic contamination in the ambient environment of certain Indian states. Environmental Monitoring and Assessment, 82, 203–223.

    Article  CAS  Google Scholar 

  • Habil, M., Massey, D. D., & Taneja, A. (2013). Exposure of children studying in schools of India to PM levels and metal contamination: Sources and their identification. Air Quality, Atmosphere & Health, 6, 575–587.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Hegazy, A. A., Zaher, M. M., & Abd el-hafez, M. A., Morsy, A. A., & Saleh, R. A. (2010). Relation between anemia and blood levels of lead, copper, zinc and iron among children. BMC Research Notes, 3, 133.

    Article  CAS  Google Scholar 

  • Hunt, A., Johnson, D. L., Brooks, J., & Griffith, D. A. (2008). Risk remaining from fine particle contaminants after vacuum cleaning of hard floor surfaces. Environmental Geochemistry and Health, 30(6), 597–611.

    Article  CAS  Google Scholar 

  • Iwegbue, C. M., Nwose, N., Egobueze, F. E., Odali, E. W., Tesi, G. O., Nwajei, G. E., & Martincigh, B. S. (2019). Risk assessment of human exposure to potentially toxic metals in indoor dust from some small and medium scale enterprise workplace environments in southern Nigeria. Indoor and Built Environment., 1420326X1987600. https://doi.org/10.1177/1420326X19876007.

  • Jabeen, N., Ahmed, S., Hassan, S., & Alam, N. (2001). Levels and sources of heavy metals in house dust. Journal of Radioanalytical and Nuclear Chemistry, 247(1), 145–149.

    Article  CAS  Google Scholar 

  • Kadili, J. A., Itodo, A. U., & Eneji, I. S. (2017). Toxic metals in office dust as geochemical indicators of indoor contamination. FUW Trends in Science & Technology Journal, 2(1A), 101–105.

    Google Scholar 

  • Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. International Journal of Environmental Research and Public Health, 13(7), 663.

    Article  CAS  Google Scholar 

  • Khillare, P. S., Pandey, R., & Balachandran, S. (2004). Characterisation of indoor PM10 in residential areas of Delhi. Indoor and Built Environment, 13, 139–147.

    Article  Google Scholar 

  • Kogan, S., Sood, A., & Garnick, M. S. (2017). Zinc and wound healing: A review of zinc physiology and clinical applications. Wounds: A Compendium of Clinical Research and Practice, 29(4), 102–106.

    Google Scholar 

  • Kulshrestha, A., Bisht, D. S., Masih, J., Massey, D., Tiwari, S., & Taneja, A. (2009). Chemical characterization of water-soluble aerosols in different residential environments of semi arid region of India. Journal of Atmospheric Chemistry, 62, 121–138.

    Article  CAS  Google Scholar 

  • Kurt-Karakus, P. B. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, 47–55.

    Article  CAS  Google Scholar 

  • Lau, W. K. Y., Liang, P., Man, Y. B., Chung, S. S., & Wong, M. H. (2014). Human health risk assessment based on trace metals in suspended air particulates, surface dust, and floor dust from e-waste recycling workshops in Hong Kong, China. Environmental Science and Pollution Research, 21(5), 3813–3825.

    Article  CAS  Google Scholar 

  • Lee, J. D. (1964). Concise inorganic chemistry. Oxford, U.K.: Blackwell Science Ltd..

    Google Scholar 

  • Lentini, P., Zanoli, L., Granata, A., Signorelli, S. S., Castellino, P., & Dell'Aquila, R. (2017). Kidney and heavy metals-the role of environmental exposure (review). Molecular Medicine Reports, 15(5), 3413–3419.

    Article  CAS  Google Scholar 

  • Levin, S. T., & Goldberg, M. (2000). Clinical evaluation and management of lead-exposed construction workers. American Journal of Industrial Medicine, 37, 23–43.

    Article  CAS  Google Scholar 

  • Li, H., Qian, X., Hu, W., Wang, Y., & Gao, H. (2013). Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. The Science of the Total Environment, 456, 212–221.

    Article  CAS  Google Scholar 

  • Li, Y., Fang, F., Lin, Y., Wang, Y., Kuang, Y., & Wu, M. (2020). Heavy metal contamination and health risks of indoor dust around Xinqiao mining area, Tongling, China. Human and Ecological Risk Assessment: An International Journal, 26(1), 46–56.

    Article  CAS  Google Scholar 

  • Lin, Y., Fang, F., Wang, F., & Xu, M. (2015). Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China. Environmental Monitoring and Assessment, 187(9), 565.

    Article  CAS  Google Scholar 

  • Lu, X., Zhang, X., Li, L. Y., & Chen, H. (2014). Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environmental Research, 128, 27–34.

    Article  CAS  Google Scholar 

  • Madany, I. M., Akhter, M. S., & Al Jowder, O. A. (1994). The correlations between heavy metals in residential indoor dust and outdoor street dust in Bahrain. Environment International, 20(4), 483–492.

    Article  CAS  Google Scholar 

  • Masih, J., Nair, A., Gautam, S., Singhal, R. K., Basu, H., Dyavarchetty, S., Uzgare, A., Tiwari, R., & Taneja, A. (2019). Chemical characterization of sub-micron particles in indoor and outdoor air at two different microenvironments in the western part of India. SN Applied Sciences, 1(2), 165.

    Article  CAS  Google Scholar 

  • Mazinanian, N., Hedberg, Y., & Wallinder, I. O. (2013). Nickel release and surface characteristics of fine powders of nickel metal and nickel oxide in media of relevance for inhalation and dermal contact. Regulatory Toxicology and Pharmacology, 65(1), 135–146.

    Article  CAS  Google Scholar 

  • Moghtaderi, T., Aminiyan, M. M., Alamdar, R., & Moghtaderi, M. (2019). Index-based evaluation of pollution characteristics and health risk of potentially toxic metals in schools dust of Shiraz megacity, SW Iran. Human and Ecological Risk Assessment: An International Journal, 25(1–2), 410–437.

    Article  CAS  Google Scholar 

  • Mohammed, F. S., & Crump, D. (2013). Characterization of indoor/outdoor settled dust and air pollutants in Damaturu, Nigeria. International Journal of Engineering and Technology, 5(1), 104–108.

    Article  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108–118.

    Google Scholar 

  • Neisi, A., Goudarzi, G., Akbar Babaei, A., Vosoughi, M., Hashemzadeh, H., Naimabadi, A., Mohammadi, M. J., & Hashemzadeh, B. (2016). Study of heavy metal levels in indoor dust and their health risk assessment in children of Ahvaz city, Iran. Toxin Reviews, 35(1–2), 16–23.

    Article  CAS  Google Scholar 

  • Pal, M., Hoque, R. R., & Balachandran, S. (2018). Lead concentration and associated health risk assessment in the indoor dust in winter season at Durgapur, West Bengal. International Journal of Bio-resource, Environment and Agricultural Sciences (IJBEAS), 4(1), 687–695.

    Google Scholar 

  • Parveen, R., Saini, R., & Taneja, A. (2018). Chemical characterization and health risk assessment of soil and airborne particulates metals and metalloids in populated semiarid region, Agra, India. Environmental Geochemistry and Health, 40(5), 2021–2035.

    Article  CAS  Google Scholar 

  • Popoola, O. E., Bamgbose, O., Okonkwo, O. J., Arowolo, T. A., Popoola, A. O., & Awofolu, O. R. (2012). Heavy metals content in classroom dust of some public primary schools in metropolitan Lagos, Nigeria. Research Journal of Environmental and Earth Sciences, 4(4), 460–465.

    CAS  Google Scholar 

  • Praveena, S. M., Abdul Mutalib, N. S., & Aris, A. Z. (2015). Determination of heavy metals in indoor dust from primary school (Sri Serdang, Malaysia): Estimation of the health risks. Environmental Forensics, 16(3), 257–263.

    Article  CAS  Google Scholar 

  • Qian, J., Peccia, J., & Ferro, A. R. (2014). Walking-induced particle resuspension in indoor environments. Atmospheric Environment, 89, 464–481.

    Article  CAS  Google Scholar 

  • Rana, M. N., Tangpong, J., & Rahman, M. M. (2018). Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: A mini review. Toxicology Reports, 5, 704–713.

    Article  CAS  Google Scholar 

  • Rashed, M. N. (2008). Total and extractable heavy metals in indoor, outdoor and street dust from Aswan City, Egypt. CLEAN–Soil, Air, Water, 36(10–11), 850–857.

    Article  CAS  Google Scholar 

  • Rasmussen, P. E. (2004). Can metal concentrations in indoor dust be predicted from soil geochemistry? Canadian Journal of Analytical Sciences and Spectroscopy, 49(3), 166–174.

    CAS  Google Scholar 

  • Rasmussen, P., Levesque, C., Chénier, M., & Gardner, H. (2018). Contribution of metals in resuspended dust to indoor and personal inhalation exposures: Relationships between PM10 and settled dust. Building and Environment, 143, 513–522.

    Article  Google Scholar 

  • Rehman, A., Liu, G., Yousaf, B., Zia-ur-Rehman, M., Ali, M. U., Rashid, M. S., Farooq, M. R., & Javed, Z. (2020). Characterizing pollution indices and children health risk assessment of potentially toxic metal(oid)s in school dust of Lahore, Pakistan. Ecotoxicology and Environmental Safety, 190, 110059.

    Article  CAS  Google Scholar 

  • Rodriguez, J., & Mandalunis, P. M. (2018). A review of metal exposure and its effects on bone health. Journal of Toxicology, 4854152.

  • Rohra, H., Tiwari, R., Khare, P., & Taneja, A. (2018). Indoor-outdoor association of particulate matter and bounded elemental composition within coarse, quasi-accumulation and quasi-ultrafine ranges in residential areas of northern India. Science of the Total Environment, 631-632, 1383–1397.

    Article  CAS  Google Scholar 

  • Sabzevari, E., & Sobhanardakani, S. (2018). Analysis of selected heavy metals in indoor dust collected from City of Khorramabad, Iran: A case study. Jundishapur Journal of Health Sciences, 10(3), e67382.

    Google Scholar 

  • Sahu, V., & Gurjar, B. R. (2020). Spatial and seasonal variation of air quality in different microenvironments of a technical university in India. Building and Environment, 107310.

  • Sahu, V., Elumalai, S. P., Gautam, S., Singh, N. K., & Singh, P. (2018). Characterization of indoor settled dust and investigation of indoor air quality in different micro-environments. International Journal of Environmental Health Research, 28(4), 419–431.

    Article  CAS  Google Scholar 

  • Said, I., Salman, S. A., & Elnazer, A. A. (2019). Multivariate statistics and contamination factor to identify trace elements pollution in soil around Gerga City, Egypt. Bulletin of the National Research Centre, 43(1), 43.

    Article  Google Scholar 

  • Seshan, B. R. R., Natesan, U., & Deepthi, K. (2010). Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. International Journal of Environmental Science & Technology, 7(2), 291–306.

    Article  CAS  Google Scholar 

  • Sharpe, M. (2004). Safe as houses? Indoor air pollution and health. Journal of Environmental Monitoring: JEM, 6(5), 46N–49N.

    Article  CAS  Google Scholar 

  • Singh, P., Saini, R., & Taneja, A. (2014). Physicochemical characteristics of PM 2.5: Low, middle, and high–income group homes in Agra, India - a case study. Atmospheric Pollution Research, 5(3), 352–360.

    Article  CAS  Google Scholar 

  • Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246–253.

    Article  CAS  Google Scholar 

  • Sulaiman, F. R., Bakri, N. I. F., Nazmi, N., & Latif, M. T. (2017). Assessment of heavy metals in indoor dust of a university in a tropical environment. Environmental Forensics, 18(1), 74–82.

    Article  CAS  Google Scholar 

  • Tan, S. Y., Praveena, S. M., Abidin, E. Z., & Cheema, M. S. (2016). A review of heavy metals in indoor dust and its human health-risk implications. Reviews on Environmental Health, 31(4), 447–456.

    Article  CAS  Google Scholar 

  • Tong, S. T., & Lam, K. C. (2000). Home sweet home? A case study of household dust contamination in Hong Kong. Science of the Total Environment, 256(2–3), 115–123.

    Article  CAS  Google Scholar 

  • Tran, D. T., Alleman, L. Y., Coddeville, P., & Galloo, J. C. (2012). Elemental characterization and source identification of size resolved atmospheric particles in French classrooms. Atmospheric Environment, 54, 250–259.

    Article  CAS  Google Scholar 

  • Turner, A. (2011). Oral bioaccessibility of trace metals in household dust: A review. Environmental Geochemistry and Health, 33(4), 331–341.

    Article  CAS  Google Scholar 

  • Turner, A., & Hefzi, B. (2010). Levels and bioaccessibilities of metals in dusts from an arid environment. Water, Air, & Soil Pollution, 210(1–4), 483–491.

    Article  CAS  Google Scholar 

  • U. S. Environmental Protection Agency (USEPA) (1996). Soil screening guidance: Technical background document, EPA/540/R95/128. Office of Solid Waste and Emergency Response, Washington, D.C. 20460, USA.

  • U. S. Environmental Protection Agency (USEPA) (2001). Toxics release inventory (TRI), public data release, executive summary, EPA 260-S-03-001, Office of Environmental Information (2810A) Washington, D.C. 20460, USA.

  • U.S. Environmental Protection Agency (USEPA) (1989). Risk assessment guidance for superfund volume 1: Human health evaluation manual (Part A), EPA/540/1–89/002. Office of Emergency and Remedial Response, Washington, D.C. 20450, USA.

  • U.S. Environmental Protection Agency (USEPA) (2002). Supplemental guidance for developing soil screening levels for superfund sites, OSWER 9355.4–24, Office of Solid Waste and Emergency Response, Washington, D.C. 20460, USA.

  • U.S. Environmental Protection Agency (USEPA) (2004). Risk assessment guidance for superfund volume I: Human health evaluation manual (part E, supplemental guidance for dermal risk assessment). Washington, D.C.

  • U.S. Environmental Protection Agency (USEPA) (2011a). Exposure factors handbook - soil and dust ingestion. https://www.epa.gov/sites/production/files/2015-09/documents/efh-chapter05.pdf (accessed on 20-09-2020).

  • U.S. Environmental Protection Agency (USEPA). (2011b). Integrated risk information system (IRIS). Washington, D.C.

  • van der Kuijp, T. J., Huang, L., & Cherry, C. R. (2013). Health hazards of China’s lead-acid battery industry: A review of its market drivers, production processes, and health impacts. Environmental Health, 12(1), 61.

    Article  CAS  Google Scholar 

  • Veysi, R., Heibati, B., Jahangiri, M., Kumar, P., Latif, M. T., & Karimi, A. (2019). Indoor air quality-induced respiratory symptoms of a hospital staff in Iran. Environmental Monitoring and Assessment, 191(2), 50.

    Article  CAS  Google Scholar 

  • Von Lindern, I. H., Spalinger, S. M., Bero, B. N., Petrosyan, V., & Von Braun, M. C. (2003). The influence of soil remediation on lead in house dust. Science of the Total Environment, 303(1–2), 59–78.

    Article  Google Scholar 

  • Wahab, N. A. A., Darus, F. M., Isa, N., Sumari, S. M., & Hanafi, N. F. M. (2012). Heavy metal concentration of settled surface dust in residential building. The Malaysian Journal of Analytical Sciences, 16(1), 18–23.

    Google Scholar 

  • Wan, D., Han, Z., Yang, J., Yang, G., & Liu, X. (2016). Heavy metal pollution in settled dust associated with different urban functional areas in a heavily air-polluted city in North China. International Journal of Environmental Research and Public Health, 13(11), 1119.

    Article  CAS  Google Scholar 

  • Yadav, I. C., Devi, N. L., Singh, V. K., Li, J., & Zhang, G. (2019). Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere, 218, 1100–1113.

    Article  CAS  Google Scholar 

  • Yaghi, B., & Abdul-Wahab, S. A. (2004). Levels of heavy metals in outdoor and indoor dusts in Muscat, Oman. International Journal of Environmental Studies, 61(3), 307–314.

    Article  CAS  Google Scholar 

  • Zhang, S., Sun, L., Zhang, J., Liu, S., Han, J., & Liu, Y. (2020). Adverse impact of heavy metals on bone cells and bone metabolism dependently and independently through anemia. Advanced Science, 2000383.

  • Zhao, X., Lin, L., & Zhang, Y. (2019). Contamination and human health risks of metals in indoor dust from university libraries: A case study from Qingdao, China. Human and Ecological Risk Assessment: An International Journal, 1–10. https://doi.org/10.1080/10807039.2019.1697851.

  • Zhou, L., Liu, G., Shen, M., Hu, R., Sun, M., & Liu, Y. (2019). Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China. Environmental Pollution, 251, 839–849.

    Article  CAS  Google Scholar 

  • Zofkova, I., Davis, M., & Blahos, J. (2017). Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiological Research, 66(3).

Download references

Acknowledgements

  1. 1.

    Tezpur University for AAS facility and other logistics.

  2. 2.

    Prof. R.R. Hoque, Department of Environmental Science, Tezpur University for laboratory support, and his inputs in the revised submission.

  3. 3.

    Anonymous reviewers for providing insightful comments and suggestions that helped to improve the paper significantly.

  4. 4.

    Dr. Pranamika Bhuyan, Assam Women’s University, for going through the revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Deka.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohain, M., Deka, P. Trace metals in indoor dust from a university campus in Northeast India: implication for health risk. Environ Monit Assess 192, 741 (2020). https://doi.org/10.1007/s10661-020-08684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08684-6

Keywords

Navigation