Skip to main content

Advertisement

Log in

A GIS-expert-based approach for groundwater quality monitoring network design in an alluvial aquifer: a case study and a practical guide

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Groundwater quality monitoring is a critical part of water management in all groundwater basins. In order to be effective and to meet the required needs, groundwater quality monitoring networks (GQMNs) must be designed to be able to operate long-term and economically without minimal disruption. The analytical hierarchical process (AHP), a multi-criteria decision-making program, was used to design a GQMN for an alluvial aquifer located in the Islam Abad plain west of Kermanshah province, Iran. This semi-arid area is subject to groundwater depletion and water quality changes. The model used 8 primary criteria sub-divided with 5 sub-criteria based on a combination of empirical data and expert opinion. The primary criteria included density of wells, well discharge, well depth, water quality (conductivity), flow direction, annual groundwater extraction, water level declines, and accessibility. The model showed that 59 of 254 production wells in the basin could provide optimal monitoring locations. When a second screening of the wells was used to determine constraints (physical conditions of the wells and pumps, owner permission of use, type of the pump, etc.), the number of wells was reduced to 13 wells. An initial round of water sampling and chemical analysis demonstrated that the design of the GQMN met the goals of the water management agency of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angulo, M., & Tang, W. H. (1999). Optimal ground-water detection monitoring system design under uncertainty. Journal of Geotechnical and Geoenvironmental Engineering, 125(6), 510–517.

    Google Scholar 

  • Baalousha, H. (2010). Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New Zealand. Agricultural Water Management, 97(2), 240–246.

    Google Scholar 

  • Babiker, I. S., Mohamed, M. A., Hiyama, T., & Kato, K. (2005). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Science of the Total Environment, 345(1–3), 127–140.

    CAS  Google Scholar 

  • Badham, J. M. (2015). Functionality, accuracy, and feasibility: talking with modelers. Journal on Policy and Complex Systems, 1(2), 60–87.

    Google Scholar 

  • Badham, J., Elsawah, S., Guillaume, J. H., Hamilton, S. H., Hunt, R. J., Jakeman, A. J., et al. (2019). Effective modeling for integrated water resource management: a guide to contextual practices by phases and steps and future opportunities. Environmental Modelling & Software, 116, 40–56.

    Google Scholar 

  • Bhat, S., Motz, L. H., Pathak, C., & Kuebler, L. (2015). Geostatistics-based groundwater-level monitoring network design and its application to the upper Florida aquifer, USA. Environmental Monitoring and Assessment, 187(1), 4183.

    Google Scholar 

  • Bhushan, N., & Rai, K. (2004). Strategic decision making: applying the analytical hierarchy process. Amsterdam: The Netherlands, Springer.

    Google Scholar 

  • Datta, B., Chakrabarty, D., & Dhar, A. (2009). Optimal dynamic monitoring network design and identification of unknown groundwater pollution sources. Water Resources Management, 23(10), 2031–2049.

    Google Scholar 

  • Dhar, A. (2013). Geostatistics-based design of regional groundwater monitoring framework. Journal of Hydraulic Engineering, 19(2), 80–87.

    Google Scholar 

  • Dhar, A., & Datta, B. (2009). Saltwater intrusion management of coastal aquifers. I: linked simulation-optimization. Journal of Hydrologic Engineering, 14(12), 1263-1272.

  • Esquivel, J. M., Morales, G. P., & Esteller, M. V. (2015). Groundwater monitoring network design using GIS and multicriteria analysis. Water Resources Management, 29(9), 3175–3194.

    Google Scholar 

  • Esri, A. D. (2011). Release 10. Documentation Manual. Redlands: Environmental Systems Research Institute.

    Google Scholar 

  • Everett, L. G. (1980). Groundwater monitoring. Schenectady, General Electric Company Technology Marketing Operations.

  • Gao, H., Wang, J., & Zhao, P. (1996). The updated kriging variance and optimal sample design. Mathematical Geology, 28(3), 295–313.

    Google Scholar 

  • Ghobadi, M. H., Taheri, M., & Taheri, K. (2017). Municipal solid waste landfill siting by using analytical hierarchy process (AHP) and a proposed karst vulnerability index in Ravansar County, west of Iran. Environmental Earth Sciences, 76(2), 68.

    Google Scholar 

  • Gogu, R. C., & Dassargues, A. (2000). Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium. Hydrogeology Journal, 8(3), 337–345.

    Google Scholar 

  • Hamby, D. M. (1995). A comparison of sensitivity analysis techniques. Health Physics, 68(2), 195–204.

    CAS  Google Scholar 

  • Harmancioglu, N. B., & Alpaslan, N. (1992). Water quality monitoring network design: a problem of multi-objective decision making 1. JAWRA Journal of the American Water Resources Association, 28(1), 179–192.

    CAS  Google Scholar 

  • Harmancioglu, N. B., Alpaslan, M. N., & Singh, V. P. (1998). Needs for environmental data management. Environmental data management (pp. 1–12). Dordrecht: Springer.

    Google Scholar 

  • Harmancioglu, N. B., Ozkul, S. D., & Alpaslan, M. N. (1999). Water quality monitoring and network design. In N. B. Harmancioglu, S. D. Ozkul, & M. N. Alpaslan (Eds.), Environmental Data Management, Water science and technology library (Vol. v. 27, pp. 61–106). Dordrecht: Springer.

    Google Scholar 

  • Khan, S., Chen, H. F., & Rana, T. (2008). Optimizing ground water observation networks in irrigation areas using principal component analysis. Groundwater Monitoring & Remediation, 28(3), 93–100.

    Google Scholar 

  • Kim, G. (2010). Integrated consideration of quality and quantity to determine regional groundwater monitoring site in South Korea. Water Resources Management, 24(14), 4009–4032.

    Google Scholar 

  • Kim, M. C., & Kim, I. S. (2009). Decision analysis based on AHP and GTST methodologies with application to CCF-defense strategies. Nuclear Technology, 166(3), 283–294.

    CAS  Google Scholar 

  • Loaiciga, H. A., Charbeneau, R. J., Everett, L. G., Fogg, G. E., Hobbs, B. F., & Rouhani, S. (1992). Review of ground-water quality monitoring network design. Journal of Hydraulic Engineering, 118(1), 11–37.

    Google Scholar 

  • Lodwick, W. A., Monson, W., & Svoboda, L. (1990). Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. International Journal of Geographical Information Systems, 4(4), 413–428.

    Google Scholar 

  • Mahar, P. S., & Datta, B. (1997). Optimal monitoring network and ground-water–pollution source identification. Journal of Water Resources Planning and Management, 123(4), 199–207.

    Google Scholar 

  • Masoumi, F., & Kerachian, R. (2010). Optimal redesign of groundwater quality monitoring networks: a case study. Environmental Monitoring and Assessment, 161(1–4), 247–257.

    Google Scholar 

  • Meyer, P. D., Valocchi, A. J., & Eheart, J. W. (1994). Monitoring network design to provide initial detection of groundwater contamination. Water Resources Research, 30(9), 2647–2659.

    Google Scholar 

  • Mogheir, Y., & Singh, V. P. (2002). Application of information theory to groundwater quality monitoring networks. Water Resources Management, 16(1), 37–49.

    Google Scholar 

  • Mogheir, Y., De Lima, J. L. M. P., & Singh, V. P. (2003). Assessment of spatial structure of groundwater quality variables based on the entropy theory. Hydrology and Earth System Sciences, 7(5), 707–721.

    CAS  Google Scholar 

  • Napolitano, P., & Fabbri, A. G. (1996). Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: IAHS Publications-Series of Proceedings and Reports-Intern Association of Hydrological Sciences, 235, 559–566.

  • Owlia, R. R., Abrishamchi, A., & Tajrishy, M. (2011). Spatial–temporal assessment and redesign of groundwater quality monitoring network: a case study. Environmental Monitoring and Assessment, 172(1–4), 263–273.

    Google Scholar 

  • Passarella, G., Vurro, M., & S’ Agostino, V., & Barcelona, M. J. (2003). Cokriging optimization of monitoring network configuration based on fuzzy and non-fuzzy variogram evaluation. Environmental Monitoring and Assessment, 82, 1–21.

  • Pathak, D. R., Hiratsuka, A., Awata, I., & Chen, L. (2009). Groundwater vulnerability assessment in shallow aquifer of Kathmandu Valley using GIS-based DRASTIC model. Environmental Geology, 57(7), 1569–1578.

    CAS  Google Scholar 

  • Pazand, K., Hezarkhani, A., Ataei, M., & Ghanbari, Y. (2011). Combining AHP with GIS for predictive Cu porphyry potential mapping: a case study in Ahar area (NW, Iran). Natural Resources Research, 20(4), 251–262.

    CAS  Google Scholar 

  • Rahmati, O., Samani, A. N., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059–7071.

    Google Scholar 

  • Rivett, M. O., Miller, A. V. M., MacAllister, D. J., Fallas, A., Wanangwa, G. J., Mleta, P., Phiri, P., Mannix, N., Monjerezi, M., & Kalin, R. M. (2018). A conceptual model based framework for pragmatic groundwater-quality monitoring network design in the developing world: application to the Chikwawa District, Malawi. Groundwater for Sustainable Development, 6, 213–226.

    Google Scholar 

  • Rouhani, S., & Hall, T. J. (1988). Geostatistical schemes for groundwater sampling. Journal of Hydrology, 103(1–2), 85–102.

    Google Scholar 

  • Saaty, T. L. (1980). Multicriteria decision making. McGraw-Hill: The analytic hierarchy process.

    Google Scholar 

  • Sadiq, M., Ahmed, J., Asim, M., Qureshi, A., & Suman, R. (2010). More on elicitation of software requirements and prioritization using AHP. In: 2010 International conference on data storage and data engineering (pp. 230-234). IEEE.

  • Singh, C. K., & Katpatal, Y. B. (2017). A GIS based design of groundwater level monitoring network using multi-criteria analysis and geostatistical method. Water Resources Management, 31(13), 4149–4163.

    Google Scholar 

  • Taheri, K., Gutiérrez, F., Mohseni, H., Raeisi, E., & Taheri, M. (2015). Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude–frequency relationships: a case study in Hamadan province, Iran. Geomorphology, 234, 64–79.

    Google Scholar 

  • Taheri, K., Taheri, M., & Parise, M. (2016). Impact of intensive groundwater exploitation on an unprotected covered karst aquifer: a case study in Kermanshah Province, western Iran. Environmental Earth Sciences, 75(17), 1221.

    Google Scholar 

  • Taheri, K., Missimer, T. M., Taheri, M., Moayedi, H., & Pour, F. M. (2020). Critical zone assessments of an alluvial aquifer system using the multi-influencing factor (MIF) and analytical hierarchy process (AHP) models in western Iran. Natural Resources Research, 29, 1163–1191. https://doi.org/10.1007/s11053-019-09516-2

    Article  Google Scholar 

  • Tesfamariam, S., & Sadiq, R. (2006). Risk-based environmental decision-making using fuzzy analytic hierarchy process (F-AHP). Stochastic Environmental Research and Risk Assessment, 21(1), 35–50.

    Google Scholar 

  • Tuinhof, A., Foster, S., Kemper, K., Garduño, H., & Nanni, M. (2003). Groundwater monitoring requirements for managing aquifer response and quality threats. World Bank Briefing Note, 9.

  • UNESCO (2009). Water in a changing world (Vol. 1). Earthscan

  • Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: an overview of applications. European Journal of Operational Research, 169(1), 1–29.

    Google Scholar 

  • Voogd, H. (1983). Multicriteria evaluation for urban and regional planning (Vol. 207). London: Pion, Ltd..

    Google Scholar 

  • Wind, Y., & Saaty, T. L. (1980). Marketing applications of the analytic hierarchy process. Management Science, 26(7), 641–658.

    Google Scholar 

  • Woldt, W. E., & Bogardi, I. (1992). Ground water monitoring network design using multi criteria decision making and geostatistics. Water Resources Bulletin, 28(1), 45–61.

    CAS  Google Scholar 

  • Wu, S., & Zidek, J. V. (1992). An entropy-based analysis of data from selected NADP/NTN network sites for 1983–1986. Atmospheric Environment. Part A. General Topics, 26(11), 2089–2103.

    Google Scholar 

  • Yang, Y., & Burn, D. H. (1994). An entropy approach to data collection network design. Journal of Hydrology, 157(1–4), 307–324.

    Google Scholar 

  • Zektser, I. S., & Everett, L. G. (2004). Groundwater resources of the world and their use, IHPVI series on groundwater (no. 6). Paris: Unesco.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Taheri .

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri , K., Missimer , T.M., Amini , V. et al. A GIS-expert-based approach for groundwater quality monitoring network design in an alluvial aquifer: a case study and a practical guide. Environ Monit Assess 192, 684 (2020). https://doi.org/10.1007/s10661-020-08646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08646-y

Keywords

Navigation