Skip to main content

Advertisement

Log in

Genotypic diversity in multi-drug-resistant E. coli isolated from animal feces and Yamuna River water, India, using rep-PCR fingerprinting

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Genotypic diversity among multi-drug-resistant (MDR) aquatic E. coli isolated from different sites of Yamuna River was analyzed using repetitive element PCR (rep-PCR) methods viz. ERIC-PCR and (GTG)5-PCR and compared with the MDR animal fecal isolates. The 97 E. coli isolates belonging to different serotypes, phylogroups, and multi-drug resistance patterns were analyzed. High genetic diversity was observed by both the methods; however, (GTG)5 typing showed higher discriminating potential. Combination of ERIC types (E1–E32) and (GTG)5 types (G1–G46) generated 77 genotypes. The frequency of genotypes ranged from 0.013 to 0.065. The genotype composition of E. coli isolates was highly diverse at all the sampling sites across Yamuna River except at its entry site in Delhi. The sampling sites under the influence of high anthropogenic activities showed an increase in number of unique genotype isolates. These sites also exhibited high multiple antibiotic resistance (MAR) indexes (above 0.25) suggesting high risk of contamination. Principal coordinate analysis (PCoA) showed limited clustering of genotypes based on the sampling sites. The most frequent genotypes were grouped in the positive zone of both the principal coordinates (PC1 and PC2). The genotypes of most of the animal fecal isolates were unique and occupied a common space in the negative PC1 area forming a separate cluster. High genotypic diversity among the aquatic E. coli and the drain isolates, discharging the untreated municipal waste in the river, was observed, suggesting that the sewage effluents contribute substantially to contamination of this river system than animal feces. The presence of such a high diversity among the MDR E. coli isolates in the natural river systems is of great public health significance and highlights the need of an efficient surveillance system for better management of Indian natural water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aristizábal-Hoyos, A. M., Rodríguez, E. A., Arias, L., & Jiménez, J. N. (2019). High clonal diversity of multidrug-resistant and extended spectrum beta-lactamase-producing Escherichia coli in a wastewater treatment plant. Journal of Environmental Management, 245, 37–47.

    Google Scholar 

  • Azam, M., Jan, A. T., Kumar, A., Siddiqui, K., Mondal, A. H., & Haq, Q. M. R. (2018). Study of pandrug and heavy metal resistance among E. coli from anthropogenically influenced Delhi stretch of river Yamuna. Brazilian Journal of Microbiology, 49(3), 471–480.

    CAS  Google Scholar 

  • Baldy-Chudzik, K., & Stosik, M. (2005). Specific genomic fingerprints of Escherichia coli strains with repetitive sequences and PCR as an effective tool for monitoring freshwater environments. Polish Journal of Environmental Studies, 14, 551–557.

    Google Scholar 

  • Bergholz, P. W., Noar, J. D., & Buckley, D. H. (2011). Environmental patterns are imposed on the population structure of Escherichia coli after fecal deposition. Applied and Environmental Microbiology, 77(1), 211–219.

    CAS  Google Scholar 

  • Beyer, W., Mukendi, F. M., Kimmig, P., & Bohm, R. (1998). Suitability of repetitive-DNA-sequence-based PCR fingerprinting for characterizing epidemic isolates of Salmonella enterica serovar Saintpaul. Journal of Clinical Microbiology, 36(6), 1549–1554.

    CAS  Google Scholar 

  • Bidhuri, S., & Jain, P. (2019). Identifying waterborne disease prone areas using geospatial approach along the right bank of Yamuna River in Delhi. International Journal of Environmental Health Research, 29(5), 561–581.

    CAS  Google Scholar 

  • Bogaerts, P., Rodriguez-Villalobos, H., Bauraing, C., Deplano, A., Laurent, C., Berhin, C., Struelens, M. J., & Glupczynski, Y. (2010). Molecular characterization of AmpC-producing Escherichia coli clinical isolates recovered at two Belgian hospitals. Pathologie Biologie, 58(1), 78–83.

    CAS  Google Scholar 

  • Borges, L. G. D. A., Dalla Vechia, V., & Corçóo, G. (2003). Characterisation and genetic diversity via REP-PCR of Escherichia coli isolates from polluted waters in southern Brazil. FEMS Microbiology Ecology, 45(2), 173–180.

    Google Scholar 

  • Cook, K. L., Bolster, C. H., Ayers, K. A., & Reynolds, D. N. (2011). Escherichia coli diversity in livestock manures and agriculturally impacted stream waters. Current Microbiology, 63(5), 439–449. https://doi.org/10.1007/s00284-011-0002-6.

  • De Vuyst, L., Camu, N., De Winter, T., Vandemeulebroecke, K., Van de Perre, V., Vancanneyt, M., et al. (2008). Validation of the (GTG)5-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. International Journal of Food Microbiology, 125(1), 79–90.

    Google Scholar 

  • Dubey, R. S. (2016). Assessment of water quality status of Yamuna river and its treatment by electrode based techniques. International Journal of Engineering Sciences & Research Technology, 5(2), 448–455.

    CAS  Google Scholar 

  • Fogarty, L. R., Haack, S. K., Wolcott, M. J., & Whitman, R. L. (2003). Abundance and characteristics of the recreational water quality indicator bacteria Escherichia coli and enterococci in gull faeces. Journal of Applied Microbiology, 94(5), 865–878.

    CAS  Google Scholar 

  • Gevers, D., Huys, G., & Swings, J. (2001). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiology Letters, 205(1), 31–36.

    CAS  Google Scholar 

  • Goto, D. K., & Yan, T. (2011). Genotypic diversity of Escherichia coli in the water and soil of tropical watersheds in Hawaii. Applied And Environmental Microbiology, 77(12), 3988–3997.

    CAS  Google Scholar 

  • Grundmann, H., Hori, S., & Tanner, G. (2001). Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. Journal of Clinical Microbiology, 39(11), 4190–4192.

    CAS  Google Scholar 

  • Haberman, D. L. (2006). River of love in an age of pollution: the Yamuna River of northern India. Berkeley: University of California Press.

    Google Scholar 

  • Hashemi, A., & Baghbani-arani, F. (2015). The effective differentiation of Salmonella isolates using four PCR-based typing methods. Journal of Applied Microbiology, 118(6), 1530–1540.

    CAS  Google Scholar 

  • Hu, Y., Cai, J., Zhou, H., Chi, D., Zhang, X., Chen, W., et al. (2013). Molecular typing of CTX-M-producing Escherichia coli isolates from environmental water, swine feces, specimens from healthy humans, and human patients. Applied and Environmental Microbiology, 79(19), 5988–5996.

    CAS  Google Scholar 

  • Hunter, P. R., & Gaston, M. A. (1988). Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. Journal of Clinical Microbiology, 26(11), 2465–2466.

    CAS  Google Scholar 

  • Iacumin, L., Comi, G., Cantoni, C., & Cocolin, L. (2006). Molecular and technological characterization of Staphylococcus xylosus isolated from naturally fermented Italian sausages by RAPD, Rep-PCR and Sau-PCR analysis. Meat Science, 74(2), 281–288.

    CAS  Google Scholar 

  • Kaushik, M., Khare, N., Kumar, S., & Gulati, P. (2019). High prevalence of antibiotic resistance and integrons in Escherichia coli isolated from urban river water, India. Microbial Drug Resistance, 25(3), 359–370.

    CAS  Google Scholar 

  • Khare, N., Kaushik, M., Kumar, S., & Gulati, P. (2020). Evaluation of genetic diversity among aquatic and fecal isolates of Escherichia coli using multilocus variable number of tandem repeat analysis. 3 Biotech, 10(2), 63.

    Google Scholar 

  • Kon, T., Weir, S. C., Howell, E. T., Lee, H., & Trevors, J. T. (2009). Repetitive element (REP)-polymerase chain reaction (PCR) analysis of Escherichia coli isolates from recreational waters of southeastern Lake Huron. Canandian Journal of Microbiology, 55(3), 269–276.

    CAS  Google Scholar 

  • Krumperman, P. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology, 46, 165–170.

    CAS  Google Scholar 

  • Labrador, K. L., Nacario, M. A. G., Malajacan, G. T., Abello, J. J. M., Galarion, L. H., Rensing, C., & Rivera, W. L. (2020). Selecting rep-PCR markers to source track fecal contamination in Laguna Lake, Philippines. Journal of Water and Health, 18(1), 19–29.

    Google Scholar 

  • Lan, R., & Reeves, P. R. (2000). Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends in Microbiology, 8(9), 396–401.

    CAS  Google Scholar 

  • Londero, A., Costa, M., Sucari, A., & Leotta, G. (2019). Comparison of three molecular subtyping techniques for Listeria monocytogenes. Revista Argentina de Microbiologia, 51(4), 359–362.

    Google Scholar 

  • Lyautey, E., Lu, Z., Lapen, D. R., Berkers, T. E., Edge, T. A., & Topp, E. (2010). Optimization and validation of rep-PCR genotypic libraries for microbial source tracking of environmental Escherichia coli isolates. Canadian Journal of Microbiology, 56(1), 8–17.

    CAS  Google Scholar 

  • Ma, H., Fu, L., & Li, J. (2011). Differentiation of fecal Escherichia coli from human, livestock, and poultry sources by rep-PCR DNA fingerprinting on the shellfish culture area of East China Sea. Current Microbiology, 62(5), 1423–1430.

    CAS  Google Scholar 

  • McLellan, S. L., Daniels, A. D., & Salmore, A. K. (2003). Genetic characterization of Escherichia coli populations from host sources of fecal pollution by using DNA fingerprinting. Applied and Environmental Microbiology, 69(5), 2587–2594.

    CAS  Google Scholar 

  • Mohapatra, B. R., & Mazumder, A. (2008). Comparative efficacy of five different rep-PCR methods to discriminate Escherichia coli populations in aquatic environments. Water Science and Technology, 58(3), 537–547.

    CAS  Google Scholar 

  • Mohapatra, B. R., Broersma, K., & Mazumder, A. (2007). Comparison of five rep-PCR genomic fingerprinting methods for differentiation of fecal Escherichia coli from humans, poultry and wild birds. FEMS Microbiology Letters, 277(1), 98–106.

    CAS  Google Scholar 

  • Murugan, K., Prabhakaran, P., Al-Sohaibani, S., & Sekar, K. (2012). Identification of source of faecal pollution of Tirumanimuttar River, Tamilnadu, India using microbial source tracking. Environmental Monitoring and Assessment, 184(10), 6001–6012.

    CAS  Google Scholar 

  • Nicholas, A., Kim, Y. K., Lee, W. K., Selasi, G. N., Na, S. H., Kwon, H. I., Kim, Y. J., Lee, H. S., Song, K. E., Shin, J. H., & Lee, J. C. (2017). Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolates from two Korean hospitals. PLoS One, 12(3), e0174716.

    Google Scholar 

  • Rohlf, F. J. (2008). NTSYSpc: Numerical Taxonomy System, ver, 2.20. Setauket: Exeter Publishing Ltd.

    Google Scholar 

  • Sabat, A. J., Budimir, A., Nashev, D., Sá-Leão, R., van Dijl, J. M., Laurent, F., et al. (2013). Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Eurosurveillance, 18(4), 1–15.

    Google Scholar 

  • Sharma, D., & Kansal, A. (2011). Water quality analysis of River Yamuna using water quality index in the national capital territory, India (2000–2009). Applied Water Science, 1, 147–157.

    CAS  Google Scholar 

  • Sprenger, C., Lorenzen, G., Grunert, A., Ronghang, M., Dizer, H., Selinka, H. C., Girones, R., Lopez-Pila, J. M., Mittal, A. K., & Szewzyk, R. (2014). Removal of indigenous coliphages and enteric viruses during riverbank filtration from highly polluted river water in Delhi (India). Journal of Water and Health, 12(2), 332–342.

    CAS  Google Scholar 

  • Švec, P., Vancanneyt, M., Seman, M., Snauwaert, C., Lefebvre, K., Sedláček, I., et al. (2005). Evaluation of (GTG)5-PCR for identification of Enterococcus spp. FEMS Microbiology Letters, 247(1), 59–63.

    Google Scholar 

  • Tikoo, A., Tripathi, A. K., Verma, S. C., Agrawal, N., & Nath, G. (2001). Application of PCR fingerprinting techniques for identification and discrimination of Salmonella isolates. Current Science, 80(8), 1049–1052.

    CAS  Google Scholar 

  • Versalovic, J., Koeuth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 19(24), 6823–6831.

    CAS  Google Scholar 

  • Versalovic, J., Schneider, M., de Bruijn, F. J., & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, 5, 25–40.

    CAS  Google Scholar 

  • Weir, B. S. (1990). Genetic data analysis: methods for discrete population genetic data analysis. Sunderland: Sinauer Associates Inc Publishers.

    Google Scholar 

Download references

Acknowledgments

Financial assistance received from the University Grant Commission (UGC) (Major Research Project grant no. UGC-41-1172/2012) and the Department of Science and Technology (DST grant no. 1196 SR/FST/LS-I/2017/4) is duly acknowledged. NK and MK are grateful to Maharshi Dayanand University for providing University Research Scholarship. NK sincerely thanks UGC for RGNF grant (UGC-RGNF grant no. F1-17.1/2016-17/RGNF-2015-17-SC-HAR-18413/(SA-III/Website)) and MK thanks CSIR for the Senior Research Fellowship (no. 09/382(0212)/19-EMR-I). The authors also wish to acknowledge National Salmonella and Escherichia Centre, Central Research Institute, Kasauli, Himachal Pradesh, India, for serotyping E. coli isolates.

Funding

This study was funded by the University Grant Commission (UGC) (Major Research Project grant no. UGC-41-1172/2012) and the Department of Science and Technology (grant no. 1196 SR/FST/LS-I/2017/4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Gulati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig 1.

Representative gels showing (A) ERIC- fingerprints (Lane 1-17) and (B) (GTG)5- fingerprints (Lane 18-34) of E. coli obtained in the present study. (JPG 968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khare, N., Kaushik, M., Martin, J.P. et al. Genotypic diversity in multi-drug-resistant E. coli isolated from animal feces and Yamuna River water, India, using rep-PCR fingerprinting. Environ Monit Assess 192, 681 (2020). https://doi.org/10.1007/s10661-020-08635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08635-1

Keywords

Navigation