Skip to main content

Advertisement

Log in

Seasonal variation of nutrient salts and heavy metals in mangrove (Avicennia marina) environment, Red Sea, Egypt

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the Egyptian Red Sea coast, nutrient salts, major ions, and heavy metals ion concentrations were examined in mangroves and the results were compared to respective concentrations in a reference area. Water samples were collected during the four seasons of 2012 from three different mangrove regions, Safaga, Abo Gheson, and El Quseer, besides, a mangrove free region, Marsa Alam. A temporal variation in the chemical composition of seawater of the mangrove and reference regions was recorded. Phosphorous and nitrogen forms were measured and calculated. Fe, Mn, Cu, Zn, Ni, Cr, Cd, and Pb ions were measured in water samples. Redfield nitrogen to phosphorous ratio explained the oligotrophic nature of the Red Sea. Ca and Mg ions besides total alkalinity showed negligible variations. The relatively greater concentration values of ammonium, 242.11 μg/l, dissolved inorganic nitrogen, 315.55 μg/l, and oxidizable organic matter, 0.4 mg-O2/l, may be caused by the impact of mangroves. Seawater contamination by heavy metals was assessed, using the metal index, in the mangrove regions which, compared to the reference region, were highly contaminated. Analysis of variance showed no significant variation among mangrove stations. Principal component analysis suggested that El Quseer and Safaga, mangrove regions, were contaminated by metal ions. Safaga possessed the highest concentration of Cd and Zn ions, while the highest concentrations of Mn, Cu, Ni, and Pb ions were observed at El Quseer. This may be attributed to industrial and shipping activities. It is concluded that the mangrove ecosystem along the Red Sea highly affects marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd El-Wahab, M., Dar, M. A., & Mohammad, T. A. (2005). Sediments, coral reefs and seawater interactions in some coastal lagoons, Red Sea, Egypt. Egyptian Journal of Aquatic Research, 31, 69–85.

    Google Scholar 

  • Abo-El-Khair, E. M., Abdel-Halim, A. M., Fahmy, M. A., & Shreadah, M. A. (2011). Environmental conditions of the surface water of the Red Sea Egyptian coastal waters; during a decade of EIMP Project. Egyptian Journal of Aquatic Research, 37(1), 23–30.

    CAS  Google Scholar 

  • Abollino, O., Aceto, M., Gioia, C. L., Sarzanini, C., & Mentasti, E. (2001). Spatial and seasonal variations of major, minor and trace elements in Antarctic seawater. Chemometric investigation of variable and site correlations. Advances in Environmental Research, 6(1), 29–43.

    Article  CAS  Google Scholar 

  • Alongi, D. M. (1994). The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia, 285, 19–32.

    Article  CAS  Google Scholar 

  • Alongi, D. M., Tirendi, F., & Clough, B. F. (2000). Below-ground decomposition of organic matter in forests of the mangrove Rhizophorastylosa and Avicennia marina along the arid coast of Western Australia. Aquatic Botany, 68(2), 97–122.

    Article  Google Scholar 

  • American Public Health Association (APHA). (1995). Standard method for the examination of water and wastewater (19th edn.). APHA: Washington, DC

  • Beaumont, L. J., Pitman, A., Perkins, S., Zimmermann, N. E., Yoccoz, N. G., & Thuiller, W. (2011). Impacts of climate change on the world’s most exceptional ecoregions. Proceedings of the National Academy of Sciences USA, 108(6), 2306–2311.

    Article  CAS  Google Scholar 

  • Behzad, H., Ibarraa, M. A., Mineta, K., & Gojobori, T. (2016). Metagenomic studies of the Red Sea. Gene, 576(2), 717–723.

    Article  CAS  Google Scholar 

  • Bosire, J. O., Dahdouh-Guebas, F., Kairo, J. G., Kazungu, J., Dhairs, F., & Koedam, N. (2005). Litter degradation and CN dynamics in reforested mangrove plantation at Gazi Bay, Kenya. Biological Conservation, 126(2), 287–295.

    Article  Google Scholar 

  • Boutier, B., Chiffoleau, J. F., Auger, D., & Truquet, I. (1993). Influence of the Loire River on dissolved lead and cadmium concentrations in coastal waters of Brittany. Estuarine Coastal and Shelf Science, 36(2), 133–145.

    Article  CAS  Google Scholar 

  • Byrne, R. H., Kump, L. R., & Cantrell, K. J. (1988). The Influence of temperature and pH on trace metal speciation in seawater. Marine Chemistry, 25, 163–181.

    Article  CAS  Google Scholar 

  • Caerio, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., Medeiros, G., & Painho, M. (2005). Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecological Indicators, 5(2), 151–169.

    Article  Google Scholar 

  • Carlberg, S. R. (1972). New Baltic Manual. Cooperative Research Report (Series A, No. 29, pp. 1–145). Copenhagen: International Council for the Exploration of the Sea.

  • Chaterjee, G., & Raziuddin, M. (2006). Status of water body in relation to some physico-chemical parameters in Asansol Town, West Bengal. Proceedings of Zoological Society of India, 5(2), 41–48.

    Google Scholar 

  • Chester, R. (2000). Marine geochemistry (2nd edn., pp. 493). Oxford: Block Well Science Ltd.

  • Conley, D. J., Schelske, C. L., & Stoermer, E. F. (1993). Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series, 101, 179–192.

    Article  CAS  Google Scholar 

  • Danielsson, ‘. A., Papush, L., & Rahm, L. (2008). Alterations in nutrient limitations scenarios of a changing Baltic Sea. Journal of Marine Systems, 73, 263–283.

    Article  Google Scholar 

  • Davis, J. C. (1986). Statistics and Data Analysis in Geology. New York: John Wiley & Sons. Inc.

    Google Scholar 

  • Devez, A., Achterberg, E., & Gledhill, M. (2009). Metal ion-binding properties of phytochelatins and related ligands. Metal Ions in Life Sciences, 5, 441–481.

    Article  CAS  Google Scholar 

  • Dittmar, T., & Lara, R. J. (2001). Driving forces behind nutrient and organic matter dynamics in a mangrove tidal creek in north Brazil. Estuarine, Coastal and Shelf Science, 52(2), 249–259.

    Article  CAS  Google Scholar 

  • Dvir, O., Rijn, J. V., & Neori, A. (1999). Nitrogen transformations and factors leading to nitrite accumulation in a hypertrophic marine fish culture system. Marine Ecology Progress Series, 199, 97–106.

    Article  Google Scholar 

  • El-Taher, A., Zakaly, H. M. H., & Elsaman, R. (2018). Environmental implications and spatial distribution of natural radionuclides and heavy metals in sediments from four harbours in the Egyptian Red Sea coast. Applied Radiation and Isotopes, 131, 13–22.

    Article  CAS  Google Scholar 

  • Fahmy, M. (2003). Water quality in the Red Sea coastal waters (Egypt): analysis of spatial and temporal variability. Chemistry and Ecology, 19(1), 67–77.

    Article  CAS  Google Scholar 

  • Fahmy, M. A., Abdel Fattah, L. M., Abdel-Halim, A. M., Aly-ldeen, M. A., Abo-El-Khair, E. M., Ahdy, H. H., Hemeill, A., Abu El-Soud, A., & Shreadah, M. A. (2016). Evaluation of the quality for the Egyptian Red Sea coastal waters during 2011-2013. Journal of Environmental Protection, 7, 1810–1834.

    Article  CAS  Google Scholar 

  • FAO. (2007). The world’s mangroves 1980–2005. A thematic study prepared in the framework of the Global Forest Resources Assessment 2005. FAO Forestry Paper 153. Rome: Food and Agriculture Organization of the United Nations.

  • Feller, I. C., Lovelock, C. E., Berger, U., McKee, K. L., Joye, S. B., & Ball, M. C. (2010). Biocomplexity in mangrove ecosystems. Annual Review of Marine Science, 2, 395–417.

    Article  CAS  Google Scholar 

  • Ferreira, T. O., Otero, X. L., Vidal-Torrado, P., & Macías, F. (2007). Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma, 142, 36–46.

    Article  CAS  Google Scholar 

  • Frihy, O. E., Hassan, A. N., El Sayed, W. R., Iskander, M. M., & Sherif, M. Y. (2006). A review of methods for constructing coastal recreational facilities in Egypt (Red Sea). Ecological Engineering, 27(1), 1–12.

    Article  Google Scholar 

  • Galal, N. (1999). Studies on the Coastal Ecology and Management of the Nabq Protected Area, South Sinai, Egypt. Ph.D. Thesis, University of York, York, UK.

  • Gao, Y., Oshita, K., Lee, K.-H., Oshima, M., & Motomizu, S. (2002). Development of column-pretreatment chelating resins for matrix elimination/multi-element determination by inductively coupled plasma-mass spectrometry. Analyst, 127, 1713–1719.

    Article  CAS  Google Scholar 

  • Giridharan, L., Venugopal, T., & Jayaprakash, M. (2007). Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the groundwater in the proximity of River Cooum, Chennai, India. Environmental Monitoring and Assessment, 143, 161–178.

    Article  Google Scholar 

  • Grasshoff, K., Kremlingl, K., & Ehrhardt, M. (1999). Methods of seawater analysis (3rd edn.). Weinheim: WILEY-VCH.

  • Grunwald, M., Dellwig, O., Kohlmeier, C., Kowalski, N., Beck, M., Badewien, T. H. A., Kotzur, S., Liebezeit, G., & Brumsack, H. J. (2010). Nutrient dynamics in a back barrier tidal basin of the Southern North Sea: time-series, model simulations, and budget estimates. Journal of Sea Research, 64(3), 199–212.

    Article  Google Scholar 

  • Guerguss, M. S., Shreadah, M. A., Fahmy, M. A., Abo-El-Khair, E. M., & Abdel-Halim, A. M. (2009). Assessment of water quality in the Red Sea using in situ measurements and remote sensing. Egyptian Journal of Aquatic Research, 35(2), 1–14.

    Google Scholar 

  • Harbison, P. (1986). Mangrove muds: a sink and a source for trace metals. Marine Pollution Bulletin, 17(6), 246–250.

    Article  CAS  Google Scholar 

  • Hartmann, M., Scholten, J. C., Stoffers, P., & Wehner, F. (1998). Hydrographic structure of brine-filled deeps in the Red Sea: new results from the Shaban, Kebrit, Atlantis II and Discovery deep. Marine Geology, 144(4), 311–330.

    Article  CAS  Google Scholar 

  • Jennings, R. R., Tackett, J. H., Wheeler, D. R., Berry, C. R., Canaday, J. T., & Arnold, E. R. (1970). The preliminary investigation of the water quality in the upper Roanoke River watershed (pp. 163). Report from the Technical Services Division of the Virginia State Water Control Board, Richmond.

  • Johnson, K. S., Coale, K. H., Berelson, W. M., & Gordon, R. M. (1996). On the formation of the manganese maximum in the oxygen minimum. Geochimica et Cosmochimica Acta, 60(8), 1291–1299.

    Article  CAS  Google Scholar 

  • Kathiresan, K. (2000). Flora and Fauna in mangrove ecosystems: a manual for identification. All India coordinated project on coastal and marine biodiversity: training and capacity building on coastal biodiversity (east coast) (389 pp. 58). Parangipettai: Ministry of Environment and Forests, CAS in Marine Biology.

  • Kathiresan, K., Rajendran, N., & Thangadurai, G. (1996). Growth of mangrove seedlings in intertidal area of Vellar estuary southeast coast of India. Indian Journal of Marine Sciences, 25, 240–243.

    Google Scholar 

  • Khalil, A. S. M. (2002). Monitoring program for Mangrove and intertidal biotopes in the Red Sea and Gulf of Aden. Jeddah: PRESGA.

    Google Scholar 

  • Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany, 89(2), 128–137.

    Article  Google Scholar 

  • Lawson, E. O. (2011). Physico-chemical parameters and heavy metal contents of water from the mangrove swamps of Lagos Lagoon, Lagos, Nigeria. Advances in Biological Research, 5(1), 08–21.

    CAS  Google Scholar 

  • Mandura, A. S. (1997). A mangrove stand under sewage pollution stress : red Sea. Mangroves and Salt Marshes, 1, 255–262.

    Article  Google Scholar 

  • Marchand, C., Lallier-Vergès, E., & Baltzer, F. (2003). The composition of sedimentary organic matter in relation to the dynamic features of a mangrove-fringed coast in French Guiana. Estuarine, Coastal and Shelf Science, 56(1), 119–130.

    Article  CAS  Google Scholar 

  • Mclusky, D. S. (1989). The estuarine ecosystem (2nd ed.p. 214). New York: Chapman and Hall.

    Book  Google Scholar 

  • Mohamed, A. W. (2005). geochemistry and sedimentology of core sediments and the influence of human activities; Qusier, Safaga and Hurghada harbors, Red Sea Coast, Egypt. Egyptian Journal of Aquatic Research, 31, 93–103.

    Google Scholar 

  • Mohamed, M. A. E., Madkour, H. A., & El-Saman, M. I. (2011). Impact of anthropogenic activities and natural inputs on oceanographic characteristics of water and geochemistry of surface sediments in different sites along the Egyptian Red Sea Coast. African Journal of Environmental Science and Technology, 5(7), 494–511.

    Google Scholar 

  • Muller, F. L. L. (1996). Interactions of copper, lead and cadmium with the dissolved, colloidal and particulate components of estuarine and coastal waters. Marine Chemistry, 52, 245–268.

    Article  CAS  Google Scholar 

  • Nielsen, M. A., & Andersen, F. (2003). Phosphorous dynamics during decomposition of mangrove (Rizophora apiculata) leaves in sediments. Journal of Experimental Marine Biology and Ecology, 293, 73–88.

    Article  CAS  Google Scholar 

  • Pardo, R., Helenab, B. A., Cazurroa, C., Guerrab, C., Debana, L., Guerrab, C. M., & Vegaa, M. (2004). Application of two and three way principal component analysis to the interpretation of chemical fractionation results obtained by the use of the B.C.R. procedure. Analytica Chimica Acta, 523(1), 125–132.

    Article  CAS  Google Scholar 

  • PERSGA/GEF. (2004). Status of Mangroves in the Red Sea and Gulf of Aden.PERSGA Technical Series No. 11. Jeddah: PERSGA.

    Google Scholar 

  • Philippart, C. J. M., Cadée, G. C., van Raaphorst, W., & Riegman, R. (2000). Long-term phytoplankton–nutrient interactions in a shallow coastal sea: algal community structure, nutrient budgets, and denitrification potential. Limnology and Oceanography, 45(1), 131–144.

    Article  CAS  Google Scholar 

  • Price, A. R. G., Medely, P. A. H., McDowell, R. J., Dawson, S. A. R., Hogarth, P. J., & Ormond, R. F. G. (1987). Aspects of mangal ecology along the Red Sea coast of Saudi Arabia. Journal of Natural History, 21(2), 449–464.

    Article  Google Scholar 

  • Rasul, N. M. A., Stewart, I. C. F., & Nawab, Z. A. (2015). Introduction to the Red Sea: Its Origin, Structure, and Environment. In N. Rasul & I. Stewart (Eds.), The Red Sea. Springer Earth System Sciences. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Reddy, M. S., Basha, S., Joshi, H. V., & Ramachandraiah, G. (2005). Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the AlangSosiya ship scrapping yard, Gulf of Cambay, India. Chemosphere, 61(11), 1587–1593.

    Article  Google Scholar 

  • Saravanakumar, A., Rajkumar, M., SeshSerebiah, J., & Thivakaran, G. A. (2008). Seasonal variations in physicochemical characteristics of water, sediment and soil texture in arid zone mangroves of Kachchh Gujarat. Journal of Environmental Biology, 29(5), 725–732.

    CAS  Google Scholar 

  • Schaetzl, R., & Anderson, S. (2005). Soil Genesis and Geomorphology. New York: Cambridge University Press.

    Book  Google Scholar 

  • Shanas, P. R., Aboobacker, V. M., Albarakati, A. M. A., & Zubier, K. M. (2017). Climate driven variability of wind-waves in the Red Sea. Ocean Modelling, 119, 105–117.

    Article  Google Scholar 

  • Shreadah, M. A., Masoud, M. S., Said, T. O., & El Zokm, G. (2008). Applications of IR, X-Ray, TGA And DTA to determine the mineral composition of the sediments and study of reaction kinetics along the Egyptian Red Sea coasts. Egyptian Journal of Aquatic Research, 34(4), 16–34.

    CAS  Google Scholar 

  • Silva, C. A. R., Lacerda, L. D., Silva, L. F. F., & Rezende, C. E. (1991). Forest structure and biomass distribution in a red mangrove stand, Sepetiba Bay, Rio de Janeiro. Revista Brasileira de Botânica, 14, 21–25.

    Google Scholar 

  • Smith, S. M., & Snedaker, S. C. (1995). Salinity responses in two populations of viviparous Rhizophora mangle L. seedlings. Biotropica, 27(4), 435–440.

    Article  Google Scholar 

  • Stanley, S. M. (2006). Influence of seawater chemistry on biomineralization throughout phanerozoic time: paleontological and experimental evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 214–236.

    Article  Google Scholar 

  • Stolte, W., McCollin, T., Noordeloos, A. A. M., & Riegman, R. (1994). Effect of nitrogen source on the size distribution within marine phytoplankton populations. Journal of Experimental Marine Biology and Ecology, 184(1), 83–97.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110(2), 195–205.

    Article  CAS  Google Scholar 

  • Tamasi, G., & Cini, R. (2004). Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. Science of the Total Environment, 327, 41–51.

    Article  CAS  Google Scholar 

  • Tett, P., Heaney, S. I., & Droop, M. R. (1985). The Redfield Ratio and phytoplankton growth rate. Journal of the Marine Biological Association of the United Kingdom, 65(2), 487–504.

    Article  Google Scholar 

  • Thiel, H., & Karbe, L. (1986). Risk assessment of mining metalliferous muds in the deep Red Sea. Ambio, 15, 34–41.

    CAS  Google Scholar 

  • Tse, P., Nip, T. H. M., & Wong, C. K. (2008). Nursery function of mangrove: a comparison with mudflat in terms of fish species composition and fish diet. Estuarine, Coastal and Shelf Science, 80(2), 235–242.

    Article  Google Scholar 

  • Uchiyama, Y., Nadaoka, K., Rolke, P., Adachi, K., & Yagi, H. (2000). Submarine groundwater discharge into the sea and associated nutrient\ transport in a sandy beach. Water Resources Research, 36(6), 1467–1479.

    Article  CAS  Google Scholar 

  • Vogelaar, J. C. T., Klapwijkm, A., Van Lierm, J. B., & Rulkens, W. H. (2000). Temperature effects on the oxygen transfer rate between 20 and 558c. Water Research, 34(3), 1037–1041.

    Article  CAS  Google Scholar 

  • Wilkei, M. L. (1995). Mangrove Conservation and Management in the Sudan. FAO Report. Rome: Ministry of Environment and Tourism, Khartoum and FAO.

    Google Scholar 

  • Wolanski, E., Mazda, Y., & Ridd, P. V. (1992). Mangrove hydrodynamics. In A. I. Robertson & D. M. Alongi (Eds.), Tropical Mangrove Ecosystems. Coastal and Estuarine Studies 41 (pp. 43–62). Washington, D.C: American Geophysical Union.

    Chapter  Google Scholar 

  • WQC (Water Quality Criteria). (1972). A report of the committee on water quality criteria (p. 593). Washington DC: NAS.

    Google Scholar 

  • Yee, D., Grieb, T., Mills, W., & Sedlak, M. (2007). Synthesis of long-term nickel monitoring in San Francisco Bay. Environmental Research, 105(1), 20–33.

    Article  CAS  Google Scholar 

  • Zhang, M., Yuan, D., Huang, Y., Chen, G., & Zhang, Z. (2010a). Sequential injection spectrophotometric determination of nanomolar nitrite in seawater by on-line preconcentrationwith HLB cartridge. Acta Oceanologica Sinica, 29(1), 100–107.

    Article  CAS  Google Scholar 

  • Zhang, Z., Tao, F., Du, J., Shi, P., Yu, D., Meng, Y., & Sun, Y. (2010b). Surface water quality and its control in a river with intensive human impactsea case study of the Xiangjiang River, China. Journal of Environmental Management, 91(12), 2483–2490.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. El Ashmawy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoud, M.S., Abdel-Halim, A.M. & El Ashmawy, A.A. Seasonal variation of nutrient salts and heavy metals in mangrove (Avicennia marina) environment, Red Sea, Egypt. Environ Monit Assess 191, 425 (2019). https://doi.org/10.1007/s10661-019-7543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7543-8

Keywords

Navigation